
3

© 1994 Microchip Technology Inc. DS00589A-page 1

3

A PC-Based Development Programmer for the PIC16C84

AN589

3-15

A PC-Based Development Programmer for the PIC16C84

After entering programming mode, RB7 is used to seri-
ally enter programming modes and data into the part. A
high to low transition on RB6, the clock input, qualifies
each bit of the data applied on RB7. The serial com-
mand-data format is specified in Figure 1.2.1.3 of the
Microchip PIC16C84 Programming Specification
(DS30189D). The first 6 bits form the command field, and
the last 16 bits form the data field. Notice that the data
field is composed of one zero starting bit, 14 actual data
bits, and one zero stop bit. The increment address
command, shown in Figure 1.2.1.5 (see PIC16C84 Data
Sheet, DS30189D), is comprised of only the command
field. Table 1.2.1.1 (see DS30189D) summarizes the
available commands and command codes for serial
programming mode.

The read mode is similar to programming mode with the
exception that the data direction of RB7 is reversed after
the 6-bit command to allow the requested data to be
returned to the programmer. Figure 1.2.1.4 (see
DS30189D) shows this sequence which starts by shift-
ing the 6-bit command into the part. After the read
command is issued, the programmer tri-states its buffer
to allow the part to serially shift its internal data back to
the programmer. The rising edge of RB6, the clock input,
controls the data flow by sequentially shifting previously
programmed or data bits from the part. The programmer
qualifies this data on the falling edge of RB6. Notice that
16 clock cycles are necessary to shift out 14 data bits.

Accidental in circuit reprogramming is prevented during
normal operation by the MCLR voltage which should
never exceed the maximum circuit supply voltage of 6V
DC and the logic levels of port bits RB7 and RB8.

After program/verification the MCLR pin is brought low to
reset the target microcontroller and electrically released.
The target circuit is then free to activate the MCLR signal.
In the event MCLR is not forced by the target circuit, R4
(a 2K Ohm pull up resistor in the programmer) provides
a high logic level on the target microcontroller which
enables execution of its program independent of the
programmer connection. Provisions should be made to
prevent the target circuit from resetting the target micro-
controller with MCLR or effecting the RB6 and RB6
during the programming process. In most cases this can
be done without jumpers.

Author: Robert Spur - Analog Design Specialist, Inc.

PROGRAMMING THE PIC16C84
MICROCONTROLLER

This application note describes the construction of a low
cost serial programmer for the PIC16C84 microcontrol-
ler which is controlled using a PC with a parallel (Centronix
printer) port. This programmer has the capability of
programming the PIC16C84 microcontroller, and read-
ing back internal data without removing the device form
the target circuit.

This feature is very useful in applications where changes
in program code or constants are necessary to compen-
sate for other system features. For example, an embed-
ded control system may have to compensate for vari-
ances in a mechanical actuator performance or loading.
The basic program can be programmed and tested in
design. The final program and control constants can be
easily added later in the production phase without re-
moving the microcontroller from the circuit.

Automatic software and performance upgrades can also
be implemented with an in-system. Upon receiving new
system software via disk or modem, a control processor
with the included programming code could perform an in
circuit reprogramming of other microcontrollers in the
system.

This programmer can load program code, part configu-
ration, and EEPROM data into the PIC16C84 part. In
read back mode, it can verify all verify all data entries.

FUNCTION DESCRIPTION

The PIC16C84 microcontroller is put into programming
mode by forcing a low logic level on the RB7 (pin 13) and
RB6 (pin 12) while the MCLR (pin 4) is first brought low
to reset the part, and then brought to the program/verify
voltage of 12 to 14 volts. The MCLR pin remains at the
program/verify voltage for the remainder of the program-
ming or verification time.

DS00589A-page 2 © 1994 Microchip Technology Inc.

A PC-Based Development Programmer for the PIC16C84

DETAILED CIRCUIT DESCRIPTION
 A logic high on PC parallel interface latch bit D4 turns
on Q3 causing the MCLR pin to go low which places the
target part in reset mode. The reset condition is then
removed and the program/verify voltage is applied by
placing a logic high on D3 and a logic low on D4 which
turns off Q3 and turns on Q2 and Q1. Circuit protection
of Q1 and Q3 is obtained from connecting the emitter of
Q2 to latch bit D4 which prevents a simultaneous reset
and program/verify voltage mode. Q2, a 2N3904, has a
reverse emitter base break down voltage of 6 volts
which will not be exceeded when 5 volt logic is used on
the parallel interface.

The resistors R1, R2, R3, and the diode D1 provide a
logic level interface to the analog circuitry. R4 provides
a MCLR (master clear) pull up function during target
circuit run mode. The programming voltage is supplied
and adjusted by an external lab supply. This supply
should have a current limit in the 100 ma range. 5 volts
for U2 (LS244) is locally regulated from programming
supply voltage by U1. R5 (750 ohm resistor) is con-
nected to the regulator output to insures proper 5 volt
regulation when the 13.5 volt programming voltage is
applied through the pull up resistor R4.

3-16

Data and clock are connected to the part via a tri-state
buffer U2. PC parallel port interface bit D0 is used for
data and port bit D1 is used for clock. During program-
ming mode both clock and data buffers are enabled by
port bits D2 and D5. During read mode, the data buffer
is tri-stated via D2 and the printer data acknowledge
signal line is used to receive verification data from the
part.

After program/verification mode both the data and clock
lines are tri-stated via D2 and D5 allowing the these lines
to be used by the target circuit. This allows the program-
mer to remain physically, but not electrically connected
to the target system.

An optional 5 volt line was included in the 3-foot program-
ming interconnect cable for convince. Short interconnec-
tion leads and good grounding are always good con-
struction practice.

To meet the programming verification specification, the
target part’s supply voltage should be first set to the
maximum specified supply voltage and a program/data
read back should be preformed. This process is then
repeated at the lowest specified supply voltage.

FIGURE 1: PROGRAMMER SCHEMATIC

LS244 pin 20
U1

Q1
2N3906

R1
2K

C1
22uF
35V

Vpp (13.5V)

D3

D4

GND

Q2
2N3904

R2
2K

R3, 2K

D1
1N4148

Q3
2N3904

LS244 pin 10

MCLR (pin 4)

+5Vdc
C2
68uF
10V

R5
750

R4
2K

GND (pin 5)18, 25

6

5

D2 4

2

1

2
DATA (RB7, pin 13)

18

U2
74LS244

D0

ACK
10

D5 7

3

19

17
CLOCK (RB6, pin 12)

3

U2
74LS244

D1

BUSY
11

12
PE Resistors: 1/4 watt, 5%

PIC16C84
INTERFACE

PC PARALLEL
INTERFACE

LM340-5

3

© 1994 Microchip Technology Inc. DS00589A-page 3

3

A PC-Based Development Programmer for the PIC16C84

3-17

SOFTWARE DESCRIPTION
The listed code provides a hardware-software interface
to a standard PC parallel (Centronix) interface port. The
code can be adapted to a microprocessor parallel inter-
face port by substituting an output command for the
“biosprint” command.

Control software can transfer the PIC16C84 program,
configuration bits, and EEPROM data from a standard
PROM interface file into the target system by reading the
file and calling the function in Figure 2 using the appro-
priate command name in the definition table, and the
data to be programmed. The command names are
repeated here for reference.

LOAD_CONFIG Sets PIC16C84 data pointer to
configuration.

LOAD_DATA Loads, but does not program,
data.

READ_DATA Reads data at current pointer
location.

INC_ADDR Increments PIC16C84 data
pointer.

BEGIN_PROG Programs data at current data
pointer location.

PARALLEL_MODE Puts PIC16C84 into parallel
mode. (not used)

LOAD_DATA_DM Loads EEPROM data.

READ_DATA_DM Reads EEPROM data.

Function “int ser_pic16c84(<command>,<data [or 0]>)
is called to preform command. Function returns internal
data after read commands.

EXAMPLE 1: PUT TARGET SYSTEM INTO PROGRAM MODE.
 .. program code..

 ser_pic16c84(PROGRAM_MODE,0);

 .. program code..

EXAMPLE 2: READ DATA FROM THE TARGET SYSTEM
 .. program code..

 data = ser_pic16c84(READ_DATA,0); // read data

 // transfers data from target part to variable “data”.

 .. more program code ..

EXAMPLE 3: PROGRAM DATA INTO THE TARGET SYSTEM
 .. program code..

 ser_pic16c84(LOAD_DATA,data); // load data into target

 ser_pic16c84(BEGIN_PROG,0); // program loaded data

 ser_pic16c84(INC_ADDR,0); // increment to next address

 // transfers data from program variable “data” to target

 part.

 .. more program code ..

EXAMPLE 4: PUT TARGET SYSTEM INTO RUN MODE
 .. program code..

 ser_pic16c84(RUN,0);

 .. program code..

Do not forget to initiate the programming mode before
programming, increment the addresses after each byte
is programmed, and put the programmer in run mode
after programming.

Designed by: Analog Design Specialist, Inc.
P.O. Box 26-0846
Littleton, CO 80126

DS00589A-page 4 © 1994 Microchip Technology Inc.

A PC-Based Development Programmer for the PIC16C84

//************************** FIGURE #2 ********************************
//** **
//** SERIAL PROGRAMMING ROUTINE FOR THE PIC16C84 MICROCONTROLLER **
//** **
//** Analog Design Specialists **
//** **
//***

//FUNCTION PROTOTYPE: int ser_pic16c84(int cmd, int data)

// cmd: LOAD_CONFIG -> part configuration bits
// LOAD_DATA -> program data, write
// READ_DATA -> program data, read
// INC_ADDR -> increment to the next address (routine does not auto increment)
// BEGIN_PROG -> program a previously loaded program code or data
// LOAD_DATA_DM -> load EEPROM data regesters (BEGIN_PROG must folow)
// READ_DATA_DM -> read EEPROM data
//
// data: 1) 14 bits of program data or
// 2) 8 bits of EEPROM data (least significant 8 bits of int)

// Additional programmer commands (not part of PIC16C84 programming codes)
//
// cmd: RESET -> provides 1 ms reset pulse to target system
// PROGRAM_MODE -> initializes PIC16C84 for programming
// RUN -> disconnects programmer from target system
//
// function returns:1) 14 or 8 bits read back data for read commands
// 2) zero for write data commands
// 3) PIC_PROG_EROR = -1 for programming function errors
// 4) PROGMR_ERROR = -2 for programmer function errors

#include <bios.h>

#define LOAD_CONFIG 0
#define LOAD_DATA 2
#define READ_DATA 4
#define INC_ADDR 6
#define BEGIN_PROG 8
#define PARALLEL_MODE 10 // not used
#define LOAD_DATA_DM 3
#define READ_DATA_DM 5
#define MAX_PIC_CMD 63 // division between pic and programmer commands

#define RESET 64 // external reset command, not neded for programming
#define PROGRAM_MODE 65 // initialize program mode
#define RUN 66 // electrically disconnect programmer

#define PIC_PROG_EROR -1
#define PROGMR_ERROR -2

#define PTR 0 // use device #0

// parallel port bits
// d0: data output to part to be programmed
// d1: programming clock
// d2: data dirrection, 0= enabel tri state buf -> send data to part
// d3: Vpp control 1= turn on Vpp
// d4: ~MCLR =0, 1 = reset device with MCLR line
// d5: clock line tri state control, 0 = enable clock line

int ser_pic16c84(int cmd, int data) // custom interface for pic 16c84
 {
 int i, s_cmd;

 if(cmd <=MAX_PIC_CMD) // all programming modes
 {
 biosprint(0,8,PTR); // set bits 001000, output mode, clock & data low

3-18

3

© 1994 Microchip Technology Inc. DS00589A-page 5

3

A PC-Based Development Programmer for the PIC16C84

 s_cmd = cmd; // retain command “cmd”
 for (i=0;i<6;i++) // output 6 bits of command
 {
 biosprint(0,(s_cmd&0x1) +2+8,PTR); // set bits 001010, clock hi
 biosprint(0,(s_cmd&0x1) +8,PTR); // set bits 001000, clock low
 s_cmd >>=1;
 }

 if((cmd ==INC_ADDR)||(cmd ==PARALLEL_MODE) // command only, no data cycle
 return 0;

 else if(cmd ==BEGIN_PROG) // program command only, no data cycle
 {
 delay(10); // 10 ms PIC programming time
 return 0;
 }

 else if((cmd ==LOAD_DATA)||(cmd ==LOAD_DATA_DM)||(cmd ==LOAD_CONFIG)) // output 14 bits of
data
 {
 for (i=200;i;i—) ; // delay between command & data
 biosprint(0,2+8,PTR); // set bits 001010, clock hi; leading bit
 biosprint(0, 8,PTR); // set bits 001000, clock low

 for (i=0;i<14;i++) // 14 data bits, lsb first
{
biosprint(0,(data&0x1) +2+8,PTR); // set bits 001010, clock hi
biosprint(0,(data&0x1) +8,PTR); // set bits 001000, clock low
data >>=1;
}

 biosprint(0,2+8,PTR); // set bits 001010, clock hi; trailing bit

 // ***************** Analog Design Specialists ******************

 biosprint(0, 8,PTR); // set bits 001000, clock low

 return 0;
 }

 else if((cmd ==READ_DATA)||(cmd ==READ_DATA_DM)) //read 14 bits from part, lsb first
 {
 biosprint(0, 4+8,PTR); // set bits 001100, clock low, tri state data

buffer
 for (i=200;i;i—) ; // delay between command & data
 biosprint(0,2+4+8,PTR); // set bits 001110, clock hi, leading bit
 biosprint(0, 4+8,PTR); // set bits 001100, clock low

 data =0;
 for (i=0;i<14;i++) // input 14 bits of data, lsb first

{
data >>=1; // shift data for next input bit
biosprint(0,2+4+8,PTR); // set bits 001110, clock hi
biosprint(0, 4+8,PTR); // set bits 001100, clock low
if(!(biosprint(2,0,0)&0x40)) data += 0x2000; //use printer acknowledge line for input,

data lsb first
}

 biosprint(0,2+4+8,PTR); // set bits 001110, clock hi, trailing bit
 biosprint(0, 4+8,PTR); // set bits 001100, clock low
 return data;
 }

 else return PIC_PROG_EROR; // programmer error

 }
 else if(cmd == RESET) // reset device
 {
 biosprint(0,32+16+4,PTR); // set bits 110100, MCLR = low (reset

PIC16C84), programmer not conected

3-19

DS00589A-page 6 © 1994 Microchip Technology Inc.

A PC-Based Development Programmer for the PIC16C84

 delay(1); // 1ms delay
 biosprint(0,32 +4,PTR); // set bits 100100, MCLR = high
 return 0;
 }

 else if(cmd ==PROGRAM_MODE) // enter program mode
 {
 biosprint(0,32+16+4,PTR); // set bits 110100, Vpp off, MCLR = low

(reset PIC16C84)
 delay(10); // 10 ms, allow programming voltage to

stabelize

 biosprint(0,8,PTR); // set bits 001000, Vpp on , MCLR = 13.5
volts, clock & data connected

 delay(10); // 10 ms, allow programming voltage to
stablize

 return 0;
 }

 else if(cmd ==RUN) // disconects programmer from device
 {
 biosprint(0,32+4,PTR); // set bits 100100
 return 0;
 }
 else return PROGMR_ERROR; // command error
 }

3-20

WORLDWIDE SALES & SERVICE

AMERICAS (continued)
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC
Hong Kong
Microchip Technology
Unit No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431
Korea
Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934
Singapore
Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65 334 8870 Fax: 65 334 8850
Taiwan
Microchip Technology
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259
France
Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso Ingresso No. 2
Via Paracelso 23, 20041
Agrate Brianza (MI) Italy
Tel: 39 039 689 9939 Fax: 39 039 689 9883

JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166 Fax: 81 45 471 6122

9/22/95

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277
Technical Support: 602 786-7627
Web: http://www.mchip.com/microhip
Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990 Fax: 508 480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075
Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 214 991-7177 Fax: 214 991-8588
Dayton
Microchip Technology Inc.
35 Rockridge Road
Englewood, OH 45322
Tel: 513 832-2543 Fax: 513 832-2841
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty
is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property
rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip.
No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights
reserved. All other trademarks mentioned herein are the property of their respective companies.

All rights reserved. 1995, Microchip Technology Incorporated, USA.

	PROGRAMMING THE PIC16C84 MICROCONTROLLER
	FUNCTION DESCRIPTION
	DETAILED CIRCUIT DESCRIPTION
	SOFTWARE DESCRIPTION
	WORLDWIDE SALES & SERVICE

