Dec. 2000
Edition 2.0

ASSP

Dual Serial Input
 PLL Frequency Synthesizer

MB15F78UL

■ DESCRIPTION

The Fujitsu MB15F78UL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 2600 MHz and a 1200 MHz prescalers. A $32 / 33$ or a $64 / 65$ for the 2600 MHz prescaler, and a $16 / 17$ or a $32 / 33$ for the 1200 MHz prescaler can be selected for the prescaler that enables pulse swallow operation.
The BiCMOS process is used, as a result a supply current is typically 4.5 mA typ. at 2.7 V . The supply voltage range is from 2.4 V to 3.6 V . A refined charge pump supplies well-balanced output current with 1.5 mA and 6 mA selectable by serial data. The data format is same as the previous one MB15F08SL, MB15F78SP. Fast locking is acheived for adopting the new circuit.
The new package (BCC20) decreases a mount area of MB15F78UL more than 30% comparing with the former BCC16(for dual PLL).
MB15F78SP is ideally suited for wireless mobile communications, such as GSM and PCS.

FEATURES

- High frequency operation: RX synthesizer : 2600 MHz max

TX synthesizer : 1200MHz max

- Low power supply voltage: $\mathrm{Vcc}=2.4$ to 3.6 V
- Ultra Low power supply current : Icc $=4.5 \mathrm{~mA}$ typ. ($\mathrm{Vcc}=\mathrm{Vp}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{SW}=0 \mathrm{in} \mathrm{TX}, \mathrm{RX}$ locking state)
- Direct power saving function : Power supply current in power saving mode

$$
\text { Typ. } 0.1 \mu \mathrm{~A}\left(\mathrm{Vcc}=\mathrm{Vp}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right) \text {, Max. } 10 \mu \mathrm{~A}(\mathrm{Vcc}=\mathrm{Vp}=2(\mathrm{~V})
$$

- Dual modulus prescaler : 2600MHz prescaler(32/33. 64/65) / 1200MHz prescealer(16/
- Serial input 14-bit programmable reference divider: $R=3$ to 16,383
- Serial input programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 3 to 2,047
- On-chip phase comparator for fast lock and low
- On-chip phase control for phase comparator
- Operating temperature: $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$
- Sireal data format compatible with MB15F08SL

20-pin, Plastic TSSOP

20-pad, Plastic BCC

(LCC-20P-M05)

■ PIN ASSIGNMENT

- PIN DESCRIPTIONS

Pin No.		Pin name	I/O	Descriptions
TSSOP	BCC			
1	19	OSCin	I	The programmable reference divider input. TCXO should be connected with a AC coupling capacitor.
2	20	GND	-	Ground for OSC input buffer and the shift registor circuit.
3	1	$\mathrm{fin}_{\text {tx }}$	I	Prescaler input pin for the TX-PLL. Connection to an external VCO should be AC coupling.
4	2	Xfintx	I	Prescaler complimentary input for the TX-PLL section. This pin should be grounded via a capacitor.
5	3	GNDTX	-	Ground for the TX-PLL section.
6	4	Vcctx	-	Power supply voltage input pin for the TX-PLL section(except for the charge pump circuit), the shift register and the oscillator input buffer. When power is OFF, latched data of TX-PLL is lost.
7	5	PStx	I	Power saving mode control for the TX-PLL section. This pin must be set at "L" Power-ON. (Open is prohibited.) PSTx = "H" ; Normal mode PSTx = "L" ; Power saving mode
8	6	Vpтх	-	Power supply voltage input pin for the TX-PLL charge pump.
9	7	Dотх	0	Charge pump output for the TX-PLL section. Phase characteristics of the phase detector can be reversed by FC-bit.
10	8	LD/fout	0	Lock detect signal output(LD)/ phase comparator monitoring outut (fout). The output signal is selected by a LDS bit in a serial data. LDS bit = "1" ; outputs fout signal LDS bit = "0" ; outputs LD sihnal
11	9	Dorx	O	Charge pump output for the RX-PLL section. Phase characteristics of the phase detector can be reversed by FC-bit.
12	10	Vprx	-	Power supply voltage input pin for the RX-PLL charge pump.
13	11	PSRX	I	Power saving mode control for the RX-PLL section. This pin must be set at "L" Power-ON. (Open is prohibited.) $P_{\text {PX }}=$ "H" ; Normal mode PSRX = "L" ; Power saving mode
14	12	Vccrix	-	Power supply voltage input pin for the RX-PLL section(except for the charge pump circuit).
15	13	GND ${ }_{\text {RX }}$	-	Ground for the RX-PLL section.
16	14	Xfinkx	I	Prescaler complimentary input for the RX-PLL section. This pin should be grounded via a capacitor.
17	15	$\mathrm{fin}_{\mathrm{RX}}$	I	Prescaler input pin for the RX-PLL. Connction to an external VCO should be AC coupling.
18	16	LE	1	Load enable signal input (with the schmitt trigger circuit.) When LE is set " H ", data in the shift register is transferred to the corresponding latch according to the control bit in a serial data.
19	17	Data	I	Serial data input (with the schmitt trigger circuit.) A data is transferred to the corresponding latch (TX-ref counter, TXprog. counter, RX-ref. counter, RX-prog. counter) according to the control bit in a serial data.
20	18	Clock	1	Clock input for the 23-bit shift register (with the schmitt trigger circuit.) One bit data is shifted into the shift register on a rising edge of the clock.

BLOCK DIAGRAM

O -- TSSOP 20
() -- BCC 20

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remark
Power supply voltage	V_{cc}	-0.5 to +4.0	V	
	Vp_{p}	V_{cc} to +4.0	V	
Input voltage	V_{1}	-0.5 to $\mathrm{Vcc}+0.5$	V	
Output voltage	Vo	GND to Vcc	V	$\mathrm{LD} / \mathrm{fout}$
	V_{co}	GND to Vp	V	Do
	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min.	Typ.	Max.		
Power supply voltage	Vcc	2.4	2.7	3.6	V	V ccrx $=\mathrm{V}$ cctx
	V p	Vcc	2.7	3.6	V	
Input voltage	V	GND	-	Vcc	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Handling Precautions

(1) Vccrx, Vprx, Vcctx and Vptx must supply equal voltage. Even if either RX-PLL or TX-PLL is not used, power must be supplied to both Vccrx,Vprx,Vcctx and Vptx to keep them equal. It is recommended that the non-use PLL is controlled by power saving function.
(2) To protect against damage by electrostatic discharge, note the following handling precautions:
-Store and transport devices in conductive containers.
-Use properly grounded workstations, tools, and equipment.
-Turn off power before inserting or removing this device into or from a socket.
-Protect leads with conductive sheet, when transporting a board mounted device.

- ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min.		Typ.	Max.			
Power supply current*1			Icctx	$\begin{aligned} & \operatorname{fin}_{T x}=910 \mathrm{MHz} \\ & \text { Vсстx }=\text { Vртх }=2.7 \mathrm{~V} \end{aligned}$	1.1	1.7	2.4	mA
		Iccrix	$\begin{aligned} & \operatorname{fin}_{R x}=2500 \mathrm{MHz} \\ & V_{c C_{R X}}=V_{R X}=2.7 \mathrm{~V} \end{aligned}$	1.8	2.8	3.9	mA	
Power saving current*9		IPSTX	PS ${ }_{\text {TX }}=P S_{\text {RX }}=$ " ${ }^{\prime \prime}$	-	$0.1{ }^{\text {² }}$	10	$\mu \mathrm{A}$	
		IPSRX	PS tx $^{\text {P }}$ PS $S_{\text {Rx }}=$ " ${ }^{\prime \prime}$	-	$0.1{ }^{\text {² }}$	10	$\mu \mathrm{A}$	
Operating frequency	fintx ${ }^{\text {+3 }}$	fintx	TX PLL	100	-	1200	MHz	
	$\mathrm{fin}_{\mathrm{Rx}}{ }^{*}$	$\mathrm{fin}_{\mathrm{RX}}$	RX PLL	400	-	2600	MHz	
	OSCIN	fosc	-	3	-	40	MHz	
Input sensitivity	$\mathrm{fin}_{\text {тX }}$	Pfintx	TX PLL, 50Ω system	-15	-	+2	dBm	
	$\mathrm{fin}_{\mathrm{RX}}$	Pfinkx	RX PLL, 50Ω system	-15	-	+2	dBm	
	OSCin	Vosc	-	0.5	-	Vcc	Vp-p	
"H" level Input voltage	Data, Clock, LE	Vı	Schmitt trigger input	$\begin{gathered} \mathrm{Vcc} \times \\ 0.7+0.4 \end{gathered}$	-	-	V	
"L" level Input voltage		VIL	Schmitt trigger input	-	-	$\begin{gathered} \text { Vccx } \\ 0.3-0.4 \end{gathered}$		
"H" level Input voltage	PS	VIH	-	$\begin{gathered} \text { Vccx } \\ 0.7 \end{gathered}$	-	-	V	
"L" level Input voltage		VIL	-	-	-	$\begin{gathered} \text { Vccx } \\ 0.3 \end{gathered}$		
"H" level Input current	Data, Clock, LE, PS	$1 H^{* 4}$	-	-1.0	-	+1.0	$\mu \mathrm{A}$	
"L" level Input current		$11 L^{*}$	-	-1.0	-	+1.0		
"H" level Input current	OSCin	IH	-	0	-	+100	$\mu \mathrm{A}$	
"L" level Input current		$1 L^{*}{ }^{4}$	-	-100	-	0		
"H" level output voltage	LD/fout	Vон	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=2.7 \mathrm{~V}$, Іон $=-1 \mathrm{~mA}$	$\begin{gathered} \text { Vcc- } \\ 0.4 \end{gathered}$	-	-	V	
"L" level output voltage		Vol	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{p}=2.7 \mathrm{~V}$, $\mathrm{loL}=1 \mathrm{~mA}$	-	-	0.4		
"H" level output voltage	Dotx Dorx	Vоон	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=2.7 \mathrm{~V}$, І $\mathrm{IDOH}=-0.5 \mathrm{~mA}$	$\begin{gathered} \text { Vp - } \\ 0.4 \end{gathered}$	-	-	V	
"L" level output voltage		Vool	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=2.7 \mathrm{~V}$, IDoL= $=0.5 \mathrm{~mA}$	-	-	0.4		
High impedance cutoff current	Dotx Dorx	loff	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{FFF}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{p}}-0.5 \mathrm{~V} \end{aligned}$	-	-	2.5	nA	
"H"level Output current	LD/fout	Іон*4	$\mathrm{Vcc}=\mathrm{Vp}=2.7 \mathrm{~V}$	-	-	-1.0	mA	
"L" level Output current		IdoL	$\mathrm{V} \mathrm{cc}=\mathrm{Vp}=2.7 \mathrm{~V}$	1.0	-	-		

(Continued)
(Continued)
$\mathrm{Ta}=\left(\mathrm{Vcc}=2.4\right.$ to 3.6 V , $\mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Condition		Value			Unit	
		Min.			Typ.	Max.			
"H"level Output current	Dотх*8 Dorx		$\mathrm{IDOH}^{* 4}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}$	CS bit ="H"	-8.2	-6.0	-4.1	mA
		$\begin{aligned} & \quad \begin{array}{l} =2.1 \\ \mathrm{~V} \text { дон }=\mathrm{V}_{\mathrm{p}} / 2 \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \end{array} \end{aligned}$		CS bit ="L"	-2.2	-1.5	-0.8		
"L" level Output current		Idol	$\begin{aligned} & \mathrm{V} \mathrm{cc}=\mathrm{V}_{\mathrm{p}} \\ & =2.7 \mathrm{~V} \\ & \mathrm{~V} \text { doL }=\mathrm{Vp}_{\mathrm{p}} / 2 \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	CS bit ="H"	4.1	6.0	8.2		
				CS bit ="L"	0.8	1.5	2.2		
Charge pump current rate	Idoi/loon	Іоомт ${ }^{\text {5 }}$	$V_{\text {DO }}=V_{p} / 2$		-	3	-	\%	
	vs Voo	Idovd ${ }^{6}$	$0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Do}} \leq \mathrm{V}_{\mathrm{p}}-0.5 \mathrm{~V}$		-	10	-	\%	
	vs Ta	Idota ${ }^{\text {T }}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{DO}}=\mathrm{Vp} / 2 \end{aligned}$		-	5	-	\%	

*1: Conditions; fosc=12.8MHz, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{SW}=$ "L" in locking state.
*2: $V c_{T x}=V_{p T x}=V_{c c_{R x}}=V_{p r x}=2.7 \mathrm{~V}$, fosc $=12.8 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in power saving mode.
*3: AC coupling. 1000 pF capacitor is connected under the condition of min. operating frequency.
*4: The symbol "-"(minus) means direction of current flow.
*5: $\quad \mathrm{Vcc}=\mathrm{Vp}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \quad\left(| | I_{3}\left|-\left|I_{4}\right|\right|\right) /\left[\left(\left|I_{3}\right|+\left|I_{4}\right|\right) / 2\right] \times 100(\%)$
*6: $\mathrm{Vcc}=\mathrm{Vp}=2.7 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \quad\left[\left(\left.| |\right|_{2}\left|-\left|\left.\right|_{1}\right|\right|\right) / 2\right] /\left[\left(\left|I_{1}\right|+\left|I_{2}\right|\right) / 2\right] \times 100(\%)$ (Applied to each Idol, Iooh)

*8: When Charge pump current is measured, set LDS="0", T1="0" and T2="1".
*9: $P S_{T x=}=P S_{R x}=G N D$ (VIL=GND and VIH=Vcc for Clock, Data, LE)

■ FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f v c o=\{(P \times N)+A\} \times$ fosc $\div R$
fvco: Output frequency of external voltage controlled oscillator (VCO)
P: \quad Preset divide ratio of dual modulus prescaler (16 or 32 for TX-PLL, 32 or 64 for RX-PLL)
N: Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)
A: Preset divide ratio of binary 7-bit swallow counter ($0 \leq A \leq 127$, condition; $A<N$)
fosc: Reference oscillation frequency
R: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)

Serial Data Input

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of TX/RX-PLL sections, programmable reference dividers of TX/RX-PLL sections are controlled individually.
Serial data of binary data is entered through Data pin.
On a rising edge of clock, one bit of serial data is transferred into the shift register. On a rising edge of load enable signal , the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Table1. Control Bit

Control bit		Destination of serial data
CN1	CN2	
0	0	The programmable reference counter for the TX-PLL.
1	0	The programmable reference counter for the RX-PLL.
0	1	The programmable counter and the swallow counter for the TX-PLL
1	1	The programmable counter and the swallow counter for the RX-PLL

Shift Register Configuration

Programmable Reference Counter

Programmable Counter

CN1, 2 : Control bit
N1 to N11 : Divide ratio setting bits for the programmable counter (3 to 2,047)
A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)
SWTX/RX : Divide ratio setting bit for the prescaler
(16/17 or 32/33 for the SWTx, 32/33 or 64/65 for the SWRx)
FCTX/RX : Phase control bit for the phase detector(TX : FCTX, RX : FCRX)
LDS : LD/fout signal select bit
NOTE: Data input with MSB first.
[Table. 1]
[Table. 4]
[Table. 5]
[Table. 6]
[Table. 7]
[Table. 3]

Table2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio (R)	\mathbf{R} $\mathbf{1 4}$	\mathbf{R} $\mathbf{1 3}$	\mathbf{R} $\mathbf{1 2}$	\mathbf{R} $\mathbf{1 1}$	\mathbf{R} $\mathbf{1}$	\mathbf{R} $\mathbf{9}$	\mathbf{R} $\mathbf{8}$	\mathbf{R} $\mathbf{7}$	\mathbf{R} $\mathbf{6}$	\mathbf{R} $\mathbf{5}$	\mathbf{R} $\mathbf{4}$	\mathbf{R} $\mathbf{3}$	\mathbf{R} $\mathbf{2}$	\mathbf{R} $\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\cdot														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.
Table. 3 LD/fout output Selectable Bit Setting

LD/fout pin state		LDS	T1	T2
LD output		0	0	0
		0	1	0
		0	1	1
fout output	frtx	1	0	0
	frrx	1	1	0
	fртх	1	0	1
	fprx	1	1	1

Table. 4 Binary 11-bit Programmable Counter Data Setting

Divide ratio (N)	\mathbf{N} \mathbf{N}	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{6}$	\mathbf{N} $\mathbf{5}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\cdot											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.
Table. 5 Binary 7-bit Swallow Counter Data Setting

Divide ratio (N)	\mathbf{A} $\mathbf{7}$	\mathbf{A} $\mathbf{6}$	\mathbf{A} $\mathbf{5}$	\mathbf{A} $\mathbf{4}$	\mathbf{A} $\mathbf{3}$	\mathbf{A} $\mathbf{2}$	\mathbf{A} $\mathbf{1}$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot							
127	1	1	1	1	1	1	1

Note: • Divide ratio (A) range $=0$ to 127
Table. 6 Prescaler Data Setting

		SW = "1"	SW = "0"
Prescaler divide ratio	TX-PLL	16/17	32/33
	RX-PLL	32/33	64/65

Table. 7 Phase Comparator Phase Switching Data Setting

	FCTx,RX = 1	FC $T x, R X=\mathbf{0}$
	Dotx, RX	
$\mathrm{fr}>\mathrm{fp}$	H	L
$\mathrm{fr}=\mathrm{fp}$	Z	Z
$\mathrm{fr}<\mathrm{fp}$	L	H
VCO polarity	1	2

Note: • Z = High-impedance

- Depending upon the VCO and LPF polarity, FC bit should be set.

Table. 8 Charge Pump Current Setting

CS	Current value
1	$\pm 6.0 \mathrm{~mA}$
0	$\pm 1.5 \mathrm{~mA}$

4. Power Saving Mode (Intermittent Mode Control Circuit)

Table 9. PS Pin Setting

PS pin	Status
H	Normal mode
L	Power saving mode

The intermittent mode control circuit reduces the PLL power consumption.
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.
The phase detector output, Do, becomes high impedance.
For the single PLL, the lock detector, LD, remains high, indicating a locked condition.
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.
Setting the PS pin high, releases the power saving mode, and the device works normally.
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time.
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.
Note: When power $\left(\mathrm{V}_{\mathrm{cc}}\right)$ is first applied, the device must be in standby mode, $\mathrm{PS}=$ Low, for at least $1 \mu \mathrm{~s}$.

Note: • PS pin must be set at "L" for Power ON.

- SERIAL DATA INPUT TIMING

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase error detection range $=-2 \pi$ to $+2 \pi$

- Pulses on Dotxirx signals are output to prevent dead zone.
- LD output becomes low when phase error is twu or more.
- LD output becomes high when phase error is twl or less and continues to be so for three cycles or more.
- twu and twl depend on OSCin input frequency as follows.
twu \geq 2/fosc: i.e. twu $\geq 156.3 \mathrm{~ns}$ when foscin $=12.8 \mathrm{MHz}$
$\mathrm{twl}^{\mathrm{tw}} 4 / \mathrm{fosc}$: i.e. $\mathrm{twL} \leq 312.5 \mathrm{~ns}$ when foscin $=12.8 \mathrm{MHz}$

■ TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCin)

Note : TSSOP-20

APPLICATION EXAMPLE

Clock, Data, LE: Schmitt trigger circuit is provided (insert a pull-down or pull-up resistor to prevent oscillation when open-circuited in the input).

Note :TSSOP-20

- PACKAGE DIMENSION

20 pin, Plastic SSOP * : These dimensions do not include resin protrusion.

(C) 1999 FUUTSU LIMTED F200265-2C-2
(Continued)
(Continued)
20 pad, Plastic BCC
(LCC-20P-M05)

