the POSSIBILITIES ARE INFINItE FUTTS

MBF110
 Solid-State Fingerprint Sensor

Orevied

TheF ujitsu M BF 110 Solid-State Fingerprint Sensor is a direct contact, fingerprint acquisition device. It is a high performance, low power, low cost, capacitive sensor with an integrated twodimensional array of metal electrodesin the sensing array. Each metal electrode acts as one plateof a capacitor and the contacting finger acts as the second plate. A passivation layer on the device surface forms the dielectric between these two plates. Ridges and valleys on the finger yield varying capacitor values across the array, which is read to form an image of the fingerprint.

TheM BF 110 is manufactured in standard CM OS technology and is availablein an 80-pin, VSPA 80/1 and LQFP 80/1. The $300 \times$ 300 sensor array hasa $50 \mu \mathrm{~m}$ pitch and yields a 500 -dpi image. The sensor surfaceis protected by a patented, ultra-hard, abrasion and chemical resistant coating.

Features

- Non-optical solid-state device
- 300×300 sensor array, $50 \mu \mathrm{~m}$ pitch
- $1.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$ sensor area
- $500-$ dpi resolution
- Operation from 3 V to 5.5 V
- U Itra-hard protective coating
- Integrated 8-bit flash analog-to-digital converter
- 8-bit microprocessor interface
- Standard CM OS technology
- Low power, less than 200 mW

Packages

80-pin SOP (VSPA)

80-pinTSOP (LQFP)

A block diagram of the M BF 110 is shown in Figure 1. The M BF 110 has an integrated 8-bit flash analog-to-digital converter to digitizethe output of the sensor array. The fingerprint image is transmitted on an 8-bit bi-directional bus interface compatible with most microprocessors.

For SETCUR resistor differences between the M BF 110 seethe Pin Information table.

Applictions

- Database and network access
- Portable finger print acquisition
- A ccess control (home, auto, office, etc.)
- ATM
- Smart cards
- Cellular phone security access

Table of Contents

Chip Operation 1
Special Features 2
MBF 110 P in Information for SOP 80/1 2
M BF 110 Connection Diagram 3
Function Table 4
Register Map 4
Address Register D escriptions 4
RAL (A3-A OAddress 0000) WriteOnly 4
Low Order Row Address Register 4
RAH (A 3-A OAddress 0001) WriteOnly 5
High Order Row Address R egister 5
CAL (A3-A OAddress 0010) Read/Write 5
Low Order Column Address Register 5
CAH (A 3-A OAddress 0011) WriteOnly 6
High Order Column A ddress R egister 6
DTR (A3-A0Address 0100) WriteOnly 6
DischargeTime Register 6
DCR (A3-A0Address 0101) WriteOnly 7
DischargeCurrent Register 7
RSR (A 3-A OAddress 0110) WriteOnly 7
Reserved 7
Row CaptureandA/D ConversionTiming8
A/D Converter 8
Specifications 8
A bsoluteM aximum Ratings 8
Operating Range 8
DC Electrical Characteristics 8
Power Supply Characteristics,
($V_{D D}=5.5 \mathrm{~V}, f_{\text {OSC }}=40 \mathrm{M} \mathrm{Hz}$ Standard Temperature Range) 9
Power Supply Characteristics,
$\left(V_{D D}=3.6 \mathrm{~V}\right.$, Commercial Temperature R ange, $f_{O S C}=20 \mathrm{MHz}$) 9
Read CycleTiming at $V_{D D}=3.0 \mathrm{~V}$, Standard Temperature R ange 10
WriteCycleTiming at $V_{D D}=3.0 \mathrm{~V}$, Standard Temperature R ange. 11
Power Up and Initialization 12
ImageCapture 13

Solid-State Finger roint Sensor

M BF 110-PFW1, SOP (VSPA) - 80 pin Package 14
M BF 110-PFW, TSOP (LQFP) - 80 pin Package 15
M BF 110 Solder Pad L ayout 16
M anufacturing Considerations 17
A rray Pixel Specifications 17
M BF 110 Ordering Information 18

Figure 1. MBF110 Block Diagram

Chip O peration

Thesensor array is composed of 300 rows and 300 columns of sensor plates. A ssociated with each column aretwo sample-and-hold circuits. A fingerprint image is sensed or captured one row at a time. This" row capture" occurs in two phases. In the first phase, the sensor plates of the selected row are precharged to the $V_{D D}$ voltage. During thisprecharge period, an internal signal enablesthefirst set of sample-and-hold circuitsto storethepre-charged platevoltages of the row.

In the second phase, the row of sensor plates is discharged with a current source. Therate at which a cell isdischarged is proportional to the" discharge current."A fter a period of time(refer red to as the "dischargetime"), an internal signal enables the second set of sampleand-hold circuits to store the final plate voltages. The differencebetween thepre-charged and discharged plate voltages is a
measureof thecapacitanceof a sensor cell. After therow capture, the cells within the row are ready to bedigitized.

The sensitivity of thechip is adjusted by changing the discharge current and dischargetime. Thenominal value of thecurrent source is controlled by an external resistor connected between theSETCUR pin and ground. Thecurrent sourceiscontrolled from theD ischarge Current Register (DCR). The discharge time is controlled by the DischargeTimeRegister (DTR).

The sensor array isa row-oriented device. Images are read out one row at a time. TheHigh-Order Row Address Register (RAH) and the Low-Order Row Address Register (RAL) must be programmed to select a row to be captured. Writing to RAL initiates a row capture. The capturetimeisa function of the external clock and the DTR. A fter the discharge cycle, the outputs of the row elements will be stored in analog sample and hold circuits.

Solid-State Fingerprint Sensor

A fter therow captureiscompleted, theHigh-Order ColumnAddress Register (CAH) and Low-Order Column Address Register (CAL) must beprogrammed to select an element within thecaptured row to be digitized. Writing to CAL causes the analog-to-digital (A/D) converter to digitize the differencebetween theoutputs of thetwo sample-and-holds of theselected column cell. Theoutput of theA/D converter is accessed by reading theCAL register.

Rowscan be accessed in any order; however, the selected row must be captured beforethe column cells are read. The column cells within a row can beaccessed in any order.

Special Features

There aretwo programmableopen-drain outputs that can be used for driving LEDs.

TheCLKOUT pin can beenabled to output a squarewave clock of the same frequency as the oscillator clock. CLKOUT can be used to drive external circuitry. W hen ENCLK is high, the clock signal is present at theCLK OUT pin. When ENCLK is low or unconnected, theCLKOUT output is held low.

M BF110 Pin Information for SOP (VSPA) 80/1

Pin Number	Pin Name	Type	Description	Notes
34	A3	Input	Address Inputs	Address signals connected to these pins select a register to read from or write to during data transfer.
35	A2			
36	A1			
37	A0			
38	$\overline{\mathrm{CE1}}$		Chip Enable, Active Low	When $\overline{\mathrm{CE}} 1$ is low and CE2 is high, the chip is selected.
39	CE2		Chip Enable, Active High	When $\overline{\mathrm{CE} 1}$ is low and CE2 is high, the chip is selected.
40	$\overline{\mathrm{RD}}$		Read Enable, Active Low	This pin must be low while $\overline{\mathrm{WR}}$ is high and the chip selected in order to read a register on the chip.
17	$\overline{\mathrm{WR}}$		Write Enable, Active Low	This pin must be low while the chip is selected to write to a register on the chip.
18	D7	Bi-directional	Data Bus	Inputs when $\overline{\mathrm{WR}}$ is low and chip is selected. Outputs when $\overline{\mathrm{RD}}$ is low, $\overline{\mathrm{WR}}$ is high, and chip is selected.
19	D6			
21	D5			
22	D4			
24	D3			
25	D2			
26	D1			
27	D0			
32	CLKOUT	Output	Clock Output	This pin outputs the oscillator clock frequency when ENCLK is high.
31	ENCLK	Input	Enable Clock Output	A high on this pin enables the CLKOUT pin. A low on this pin holds CLKOUT Iow. ENCLK has an internal pull-down resistor.
15	LED1	Open-drain Output	LED driver	This pin can be used to drive an LED.
14	LED2	Open-drain Output		
3	SETCUR	Input	Set Discharge Current	Place an external resistor R1 (200K - 680K ohms) between this pin and ground. Typical: FPS110, R1 = 680K; FPS110B, R1 = 200K; FPS110E, R1 = 200K
2	N/A		Reserved pin	Must be left disconnected.
13	TEST			
20, 33	$V_{D D}$	Power	Digital Power Supply Analog Power Supply	
1	$V_{\text {DDA }}$			

MBF110 Pin Information for SOP (VSPA) 80/1 (Continued)

Pin Number	Pin Name	Type	Description	Notes
16, 23, 28	$V_{S S}$	Ground	Digital ground	
4,5	$V_{S S A}$	(Center)	Analog ground	
29	XTAL1	Input	Input to the On-Chip Oscillator	To use the internal oscillator connect a crystal circuit to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal timing.
30	XTAL2	Output	Output of the On-Chip Oscillator	To use the internal oscillator connect a crystal circuit to this pin. If an external oscillator is used, leave XTAL2 unconnected.
41-80	GNDSHLD	Shield Ground	Connected to Package Top Plate	These pins should connect to chassis ground.
2, 6-12	N/A	N/A		Not connected.

MBF110 Connection Diagram

Solid-State Finger print Sensor

Function Table

$\overline{\text { CE1 }}$	CE2	$\overline{\text { RD }}$	$\overline{\text { WR }}$	Mode	Data Lines
H	X	X	X	De-selected	High-Z
X	L	X	X	De-selected	High-Z
L	H	H	H	Standby	High-Z
L	H	L	H	Read	Data Out
L	H	H	L	Write	Data In

Register Map

A3	A2	A1	A0	Access	Register	Description
0	0	0	0	Write	RAL	Low Order Row Address Register
0	0	0	1	Write	RAH	High Order Row Address Register
0	0	1	0	Read/Write	CAL	Low Order Column Address Register
0	0	1	1	Write	CAH	High Order Column Address Register
0	1	0	0	Write	DTR	Discharge Time Register
0	1	1	0	Write	DCR	Discharge Current Register
0	1	Write	RSR	Reserved		

Address Register Descriptions

Refer to Row Capture and A/D Conversion Timing on page 9 to calculate row captureand A/D conversion times.

RAL (A3-A0 Address 0000) Write O nly

L ow Order Row Address Register

This register and bit 0 of RAH form the 9-bit Row Address Register that selectsthe row to be captured. The 9-bit Row Address Register selectsa row address from 0 through 299. Writing the RAL starts a row capture. Only RAL has to be written if RAH doesn't change, otherwise RAH has to bewritten beforeRAL.
MSB

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0

Bit Number	Bit Name	Function
$[7: 0]$	RA[7:0]	Low eight bits of Row Address Register.

RAH (A3-A0Address 0001) Write Only

High Order Row Address Register

Bit 0 of this register and RAL form the 9 -bit Row Address Register that selects the row to beconverted. The L1 and L2 bitscontrol two open-drain outputsthat can be used to driveLEDs.
MSB

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
L1	L2	-	-	-	-	-	RA8

Bit Number	Bit Name	Function
7	L 1	$\mathrm{L} 1=0, \mathrm{LED} 1$ output low $\mathrm{LL}=1$, LED output high-Z
6	L 2	$\mathrm{L} 2=0, \mathrm{LED} 2$ output low $\mathrm{L2}=1$, LED 2 output high- Z
$[5: 1]$	-	Reserved, write 0 to these bits.
0	RA8	MSB of Row Address

CAL (A3-A0 Address 0010) Read/Write L ow Order Column Address R egister
CAL is a read/writeregister. Writing to this address writes to the low-order 8 bits of the 9-bit Column Address Register. The 9-bit Column A ddress R egister selects a column from 0 through 299. Writing to CAL causes the analog-to-digital (A/D) converter to
begin digitizing its input. Theinput of theA/D converter is selected by bits 7 and 6 of the CAH register. Theuser should wait until the row capture is completed before writing to the CAL.

Reading from this address returns theoutput of theA/D converter. After writing to CAL, the user should wait until A/D conversion completes before reading theA/D converter.
MSB

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0

Bit Number
Bunction
$[7: 0]$

Solid-State Fingerprint Sensor

CAH (A3-AOAddress 0011) Write Only

High O rder Column Address Register

Bit 0 of this register and CAL form the 9 -bit Column Address
Register that selects a cell from the current row for digitizing.
Theuser should wait until the row capture is completed before
writing to CAH.

							LSB
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
R	T	-	-	-	-	-	CA8
Bit Number	Bit Name						
[7:1]	-		0 to thes				
0	CA8		Address				

DTR (A3-A0 Address 0100) Write O nly DischargeTime Register

DCR (A3-A0 Address 0101) Write O nly

Discharge Current Register

MSB

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
F2	F1	TRST	DC4	DC3	DC2	DC1	DC0

Bit Number	Bit Name	Function		
[7:6]	F2, F1	These two bits tell the chip the frequency of the external oscillator or crystal that is connected to the chip.		
		F2	F1	XTAL Input
		0	0	$10-15 \mathrm{MHz}$
		0	1	$15-20 \mathrm{MHz}$
		1	0	$20-30 \mathrm{MHz}$
		1	1	$30-40 \mathrm{MHz}$
5	TRST	Timer Reset. Set this bit to halt and reset the Discharge Timer. Resetting the Discharge Timer is necessary to put the Discharge Timer in a known state after power-up or after returning to Normal mode from Low-power mode (See bit 7 of DTR).		
			rmal	Operation
			and	Discharge Tim
[4:0]	DC[4:0]		Disc	urrent source va

RSR (A3-A0 Address 0110) Write Only

Reserved

The user must initializethis resistor to zero.

MSB
BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 - - - - - - - -
Bit Number
[7:0]

Solid-State Fingerprint Sensor

Row Capture and A / D Conversion Timing

F2	F1	XTAL Input Range	Row Capture Time in OSC Clock Periods	A/D Conversion Time in OSC Clock Periods
0	0	$10-15 \mathrm{MHz}$	$18+n$	13
0	1	$15-20 \mathrm{MHz}$	$24+n$	15
1	0	$20-30 \mathrm{MHz}$	$36+\mathrm{n}$	23
1	1	$30-40 \mathrm{MHz}$	$48+\mathrm{n}$	30

NOTE: n is selected by bits T[6:0] of DTR.

A/D Converter

The integrated 8-bit flash A/D converter is a buffered device. Each write to CAL causes: 1) the result of the previous conversion to be latched and madereadableat CAL, and 2) theA/D converter to start digitizing its current input. Consequently, it takes 301 writes to CAL in order to digitizethe 300 cells of a row.

Specifications*

*All specifications in this document are preliminary and subject to change.

Absolute Maximum R atings

- StorageTemperature: $\quad-65^{\circ}$ to $+150^{\circ} \mathrm{C}$
- DC VoltageA pplied to any Pins: -0.5 V to +7.0 V

Operating Range

Symbol	Parameter	Min	Max	Unit
$V_{D D}$	Digital Supply Voltage	+3.0	+5.5	V
$V_{\text {DDA }}$	Analog Supply Voltage	+3.0	+5.5	V
	Standard Temperature Range	0	60	${ }^{\circ} \mathrm{C}$
$\mathrm{f}_{0} \mathrm{SC}$	$\begin{array}{ll} \text { Oscillator Frequency } \begin{array}{l} V_{D D}=5.0 \mathrm{~V} \\ \\ V_{D D}=3.0 \mathrm{~V} \end{array} \end{array}$	10	40	MHz
		10	20	MHz

DC Electrical Characteristics

Symbol	Parameter	Test Conditions	Min	Max	Unit
V_{OH}	Output High Voltage	$V_{D D}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4	-	V
V OL	Output Low Voltage	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	-	V
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	0.4	V
V_{IH}	Input High Voltage		2.0	$V_{D D}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$V_{D D}=4.5 \mathrm{~V}$	-0.5	0.8	V
VIL	Input Low Voltage	$V_{D D}=3.00$	-0.5	0.6	V
l_{LI}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {in }} \leq 5.5 \mathrm{~V}$	-5.0	5.0	$\mu \mathrm{A}$
lo	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {out }} \leq 5.5 \mathrm{~V}$	-5.0	5.0	$\mu \mathrm{A}$

Power Supply Characteristics

Symbol	Parameter	Test Conditions	Typ		Max		Unit
			LP	STD	LP	STD	
$l_{\text {DD1 }}$	Digital Supply Current	Power down with CLKOUT disabled, (DTR bit $7=1$, ENCLK $=0$)	<1	100	50	100	$\mu \mathrm{A}$
$I_{\text {DD2 }}$		Power down with CLKOUT enabled. (DTR bit $7=1$, ENCLK = 1)	17	20	20	25	mA
$I_{\text {DD3 }}$		Idle with CLKOUT disabled. (DTR bit $7=0$, ENCLK = 0)	8	10	12	15	mA
$I_{\text {DD4 }}$		Idle with CLKOUT enabled. (DTR bit $7=0$, ENCLK = 1)	17	20	20	25	mA
$I_{\text {DD5 }}$		Active A/D conversion with CLKOUT disabled. (DTR bit $7=0$, ENCLK $=0$)	15	20	25	30	mA
$I_{\text {DD6 }}$		Active A/D conversion with CLKOUT enabled. (DTR bit $7=0$, ENCLK $=1$)	25	30	30	35	mA
$I_{\text {DDA }}$	Analog Supply Current	Power down with CLK disabled or enabled. (DTR bit $7=1$)	<10	<100	50	1000	$\mu \mathrm{A}$
		IDLE with CLKOUT disabled or enabled, (DTR bit $7=0$)	15	20	22	25	mA
		Active A/D conversion with CLKOUT disabled or enabled. (DTR bit $7=0$)	18	22	26	30	mA

Note: Analog supply currents are independent of $f_{\text {OSC }}$
Note: XTAL2 \& CLKOUT driving CLOAD $=50 \mathrm{pF}$
Power Supply Characteristics

Symbol	Parameter	Test Conditions	Typ		Max		Unit
			LP	STD	LP	STD	
$I_{\text {DD1 }}$	Digital Supply Current	Power down with CLKOUT disabled. $\left(V_{D D}=\max , f_{O S C}=\max\right.$, DTR bit $7=1$, ENCLK $\left.=0\right)$	<1	<10	50	100	$\mu \mathrm{A}$
$I_{\text {DD2 }}$		Power down with CLKOUT enabled. $\left(V_{D D}=\right.$ max, $f_{\text {OSC }}=$ max, DTR bit $7=1$, ENCLK $=1$)	6	10	10	15	mA
$l_{\text {DD3 }}$		Idle with CLKOUT disabled. $\left(V_{D D}=\right.$ max, $f_{\text {OSC }}=$ max, DTR bit $7=0$, ENCLK $\left.=0\right)$	3	5	6	10	mA
$I_{\text {DD4 }}$		Idle with CLKOUT enabled. $\left(V_{D D}=\right.$ max, f osc $=$ max, DTR bit $7=0$, ENCLK $=1$)	6	10	10	15	mA
$I_{\text {DD5 }}$		Active A/D conversion with CLKOUT disabled. $\left(V_{D D}=\max , f_{O S C}=\max , \operatorname{DTR}\right.$ bit $7=0$, ENCLK $\left.=0\right)$	6	10	10	15	mA
$I_{\text {DD6 }}$		Active A/D conversion with CLKOUT enabled. $\left(V_{D D}=\right.$ max, $f_{\text {OSC }}=$ max, DTR bit $7=0$, ENCLK $=1$)	9	13	13	18	mA
$I_{\text {dDA }}$	Analog Supply Current	Power down with CLK disabled or enabled. $\left(\mathrm{V}_{\mathrm{DDA}}=\max , \mathrm{DTR} \text { bit } 7=1\right)$	<2	<10	50	1000	$\mu \mathrm{A}$
		IDLE with CLKOUT disabled or enabled, (DTR bit $7=0$)	10	15	15	20	mA
		Active A/D conversion with CLKOUT disable or enable. (DTR bit $7=0$)	12	15	18	25	mA

Note: Analog supply currents are independent of fosc Note: XTAL2 \& CLKOUT driving C LOAD $=50 \mathrm{Pf}$

Solid-State FingerprintSensor

Read Cycle Timing at $V_{D D}=3.0 \mathrm{~V}$, Standard Temperature R ange

Parameter	Description	Min	Max	Unit
$t_{\text {AAC }}$	Address valid to data valid.	-	70	ns
$t_{\text {RC }}$	Read Cycle Time	70	-	ns
$t_{\text {ACE1 }}$	$\overline{\mathrm{CE}}$ I low to data valid	-	70	ns
$\mathrm{t}_{\text {ACE2 }}$	CE2 high to data valid	-	70	ns
$t_{\text {DOE }}$	$\overline{\mathrm{RD}}$ low to data valid	-	35	ns
tlZOE	$\overline{\mathrm{RD}}$ low to low Z	5	-	ns
thzoe	$\overline{\mathrm{RD}}$ high to high Z	-	30	ns
tlzCe	$\overline{\mathrm{CE1}}$ low and CE2 high to low Z	5	-	ns
$t_{\text {HZCE }}$	$\overline{\mathrm{CE} 1}$ high to high Z or CE2 low to high Z	-	30	ns
tLZWE	$\overline{\text { WR }}$ high to low Z	5	-	ns
thzWE	$\overline{\text { WR low to high } \mathrm{Z}}$	-	30	ns

Figure 2. Read Cycle Timing

Write Cycle Timing at $V_{D D}=3.0 \mathrm{~V}$, Standard Temperature Range

Parameter	Description	Min	Max	Unit
twc	Write Cycle	70	-	ns
tsce1	$\overline{\mathrm{CE}} 1 \mathrm{low}$ to write end	60	-	ns
tSCE2	CE2 high to write end	60	-	ns
$t_{\text {AW }}$	Address setup to write end	55	-	ns
t_{HA}	Address hold from write end	5	-	ns
$\mathrm{t}_{\text {SA }}$	Address set-up to write start	5	-	ns
$t_{\text {PWE }}$	$\overline{\text { WR Pulse Width }}$	40	-	ns
$t_{\text {SD }}$	Data setup to write end	35	-	ns
$t_{H D}$	Data hold from write end	5	-	ns

Figure 3. Write Cycle Timing

Solid-State Fingerprint Sensor

Power Up and Initialization

Image Capture

Solid-State Fingerprint Sensor

MBF110-PFW1
 SOP (VSPA) - 80 pin Package
 MBF110-PFW1: SOP 80pinAssembly Diagram

MBF110 Dimensions				
Symbol	Description	Min	Nom	Max
N	Pin Count		80	
A	Overall Height		$.102(2.60)$	
A1	Stand Off		$.006(.15)$	
B	Pin Width		$.008(.20)$	
C	Pin Thickness		$.008(.20)$	
D	Tip to tip Dimension	$1.016(25.8)$	$1.025(26.0)$	$1.032(26.2)$
D1	Package Body	$.941(23.9)$	$.945(24.0)$	$.949(24.1)$
E1	Package Body	$.941(23.9)$	$.945(24.0)$	$.949(24.1)$
F	Pin Pitch	$.0187(.47)$	$.0197(.50)$	$.0207(.53)$
L1	Foot length		$.032(.81)$	
Note: Dimensions are in inches (mm)				

MBF110-PFW

TSOP (LQFP)- 80 pin Package

MBF110-PFW: TSOP 80pin Assembly Diagram

Solid-State Fingerprint Sensor

MBF110 Solder Pad Layout

Symbol	Description	Dimension
N	Pin Count	80
A	Tip to Tip Dimension	$1.074(27.30)$
P	Pitch	$.0197(.50)$
L	Pad Length	$.065(1.65)$
W	Pad Width	$.012(.30)$
Note: Dimensions are in inches (mm)		

Manufacturing Considerations

CAUTION: DO NOT USE ANY METAL PICKUP TOOLS WHICH WOULD CONTACT THE SENSOR DEVICE SUR FACE WITHOUT PROTECTIVE LID INSTALLED

- Surface M ount reflow temperature:

Recommended	$220^{\circ} \mathrm{C}$ M ax reflow spike*
MaxTemp	$240^{\circ} \mathrm{C}$

- Avoid any high pressure spray directly to the sensor device surface.
- U se standard handling practices for ESD sensitive devices.
- Refer to F ujitsu PCB A ssembly for Biometric Sensor G uidelines.

Array Pixel Specifications:

Specification	MBF110-LP	MBF110-STD
Max Failed Pixels	10	300
Max Failed Rows	0	1 (see note 1)
Max Failed Columns	0	1 (see note 1)

[^0]
M BF 110 Ordering Information

MBF110 Part Number Description:

FUJITSU MICROELECTRONICS EUROPE GmbH

Am Siebenstein 6-10, 63303 Dreieich-Buchschlag Germany
Tel: (49) 6103-690-0 Fax: (49) 6103-690-122
Web Site: http://www.fme.fujitsu.com

[^0]: Notes: 1) Failing rows or columns that fall on rows ($0-4$) or (295-299) or columns ($0-4$) or (295-299) are allowed to pass for the STD product due to packaging overlap at the edge of the sensor array. Failed rows or columns at the extreme edge of the array do not affect the quality of the acquired fingerprint image.

