
PE4235

Product Description

The PE4235 MOSFET RF Switch is designed to cover a broad range of applications from DC through 4.0 GHz. This single-supply reflective switch integrates on-board CMOS control logic driven by a simple, single-pin CMOS or TTL control input. Using a nominal +3-volt power supply, a 1 dB compression point of +15 dBm can be achieved. The PE4235 also exhibits outstanding isolation of better than 40 dB at 1.0 GHz and is offered in a small 3x3mm MLPM package.

The PE4235 MOSFET RF Switch is manufactured in Peregrine's patented Ultra Thin Silicon (UTSi®) CMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Schematic Diagram

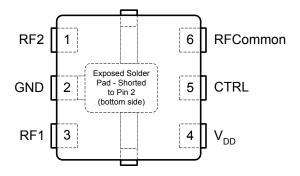
SPDT Low Insertion Loss MOSFET RF Switch

Features

- Single 3.0-volt power supply
- Low insertion loss: 0.40 dB at 1.0 GHz and 0.45 dB at 2.0 GHz
- High isolation of 40 dB at 1.0 GHz, 30 dB at 2.0 GHz
- Typical 1 dB compression point of +15 dBm
- Single-pin CMOS or TTL logic control
- Small 3x3mm MLPM package

Figure 2. Package Type

Table 1. Electrical Specifications @ +25 °C, V_{DD} = 3 V (As measured in a 50 Ω system)


Parameter	Conditions	Minimum	Typical	Maximum	Units
Operating Frequency ¹		DC		4000	MHz
Insertion Loss	1000 MHz 2000 MHz		0.40 0.45	0.50 0.60	dB dB
Isolation – RFCommon to RF1/RF2	1000 MHz 2000 MHz	39 29	40 30		dB dB
Isolation – RF1 to RF2	1000 MHz 2000 MHz	36 28	37 29		dB dB
Return Loss	1000 MHz 2000 MHz	20 17	22 19		dB dB
'ON' Switching Time	CTRL to 0.1 dB final value, 2 GHz		200		ns
'OFF' Switching Time	CTRL to 25 dB isolation, 2 GHz		90		ns
Video Feedthrough ²			2.5		mV _{pp}
Input 1 dB Compression	2000 MHz	13.5	15		dBm
Input IP3	2000 MHz, 5 dBm	32.5	36		dBm

Notes: 1. Device linearity will begin to degrade below 10MHz.

^{2.} The DC transient at the output of any port of the switch when the control voltage is switched from Low to High or High to Low in a 50Ω test set-up, measured with 1ns risetime pulses and 500MHz bandwidth.

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	RF2	RF2 port. ¹
2	GND	Ground Connection. Traces should be physically short and connected to the ground plane. This pin is connected to the exposed solder pad that also must be soldered to the ground plane for best performance.
3	RF1	RF1 port. ¹
4	V_{DD}	Nominal 3 V supply connection.
5	CTRL	CMOS or TTL logic level: High = RFCommon to RF1 signal path Low = RFCommon to RF2 signal path
6	RF Common	Common RF port for switch.1

Note 1: All RF pins must be DC blocked with an external series capacitor or held at 0V_{DC}.

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Conditions N		Max	Units
V_{DD}	Power Supply Voltage	-0.3	4.0	V
Vı	Voltage on any input except for CTRL pin -0.3		V _{DD} + 0.3	V
V_{CTRL}	Voltage on CTRL pin		5	V
T _{ST}	Storage temperature range	-65	150	°C
T _{OP}	Operating temperature range -40		85	°C
P _{IN}	Input power (50Ω)		19	dBm
V_{ESD}	ESD Voltage (Human Body Model)		200	V

Table 4. DC Electrical Specifications

Parameter	Min	Тур	Max	Units
V _{DD} Power Supply Voltage	2.7	3.0	3.3	V
I_{DD} Power Supply Current ($V_{DD} = 3V, V_{CNTL} = 3V$)		250	500	nA
Control Voltage High	$0.7xV_{DD}$			V
Control Voltage Low			$0.3xV_{DD}$	V

Control Logic Input

The control logic input pin (CTRL) is typically driven by a 3-volt CMOS logic level signal. For flexibility to support systems that have 5-volt control logic drivers, the control logic input has been designed to handle a standard 5-volt TTL control signal. This TTL control signal input must not exceed 5-volts or damage to the switch could result.

Table 5. Control Logic Truth Table

Control Voltage	Signal Path	
CTRL = CMOS or TTL High	RFCommon to RF1	
CTRL = CMOS or TTL Low	RFCommon to RF2	

Electrostatic Discharge (ESD) Precautions

When handling this UTSi device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UTSi CMOS devices are immune to latch-up.

Typical Performance Data @ -40 °C to 85 °C (Unless Otherwise Noted)

Figure 4. Insertion Loss - RFC to RF1

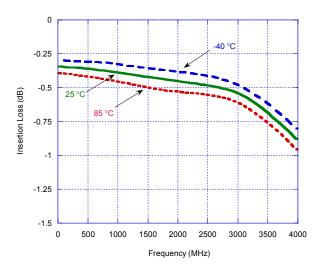


Figure 5. Input 1dB Compression Point & IIP3

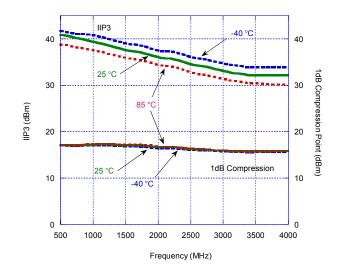


Figure 6. Insertion Loss - RFC to RF2

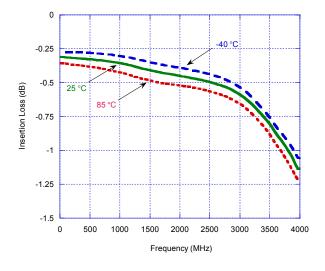
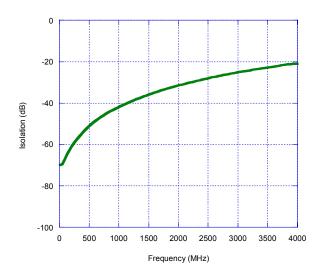



Figure 7. Isolation - RFC to RF1

Typical Performance Data @ -40 °C to 85 °C (Unless Otherwise Noted)

Figure 8. Isolation – RFC to RF2

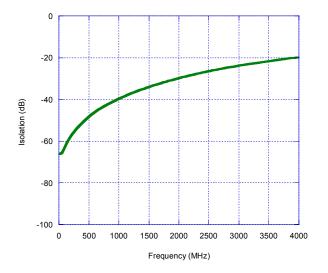


Figure 9. Isolation - RF1 to RF2, RF2 to RF1

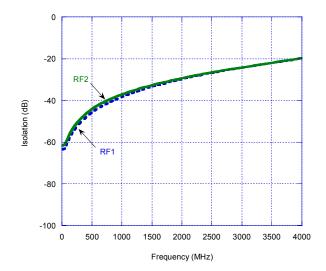


Figure 10. Return Loss - RFC

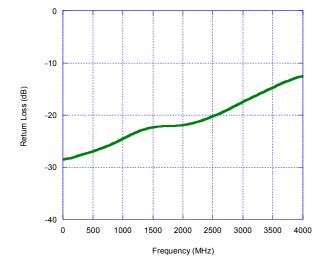
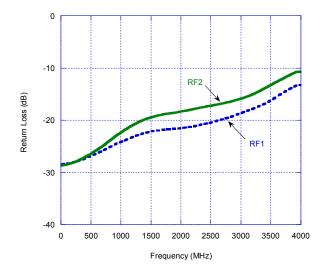
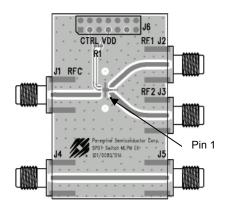



Figure 11. Return Loss - RF1, RF2

Evaluation Kit Information

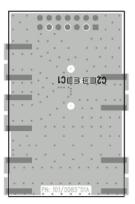
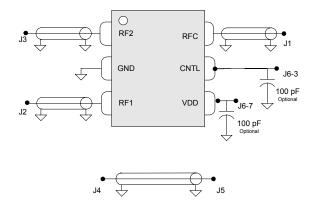

Evaluation Kit

The SPDT Switch Evaluation Kit board was designed to ease customer evaluation of the PE4235 SPDT switch. The RF common port is connected through a 50Ω transmission line to the top left SMA connector, J1. Port 1 and Port 2 are connected through 50Ω transmission lines to the top two SMA connectors on the right side of the board, J2 and J3. A through transmission line connects SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a two metal layer FR4 material with a total thickness of 0.031". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 0.0476", trace gaps of 0.030", dielectric thickness of 0.028", metal thickness of 0.0021" and ϵ_r of 4.4.

J6 provides a means for controlling DC and digital inputs to the device. Starting from the lower left pin, the second pin to the right (J6-3) is connected to the device CNTL input. The fourth pin to the right (J6-7) is connected to the device V_{DD} input. A decoupling capacitor (100 pF) is provided on both CNTL and V_{DD} traces. It is the responsibility of the customer to determine proper supply decoupling for their design application. Removing these components from the evaluation board has not been shown to degrade RF performance.

Figure 12. Evaluation Board Layouts

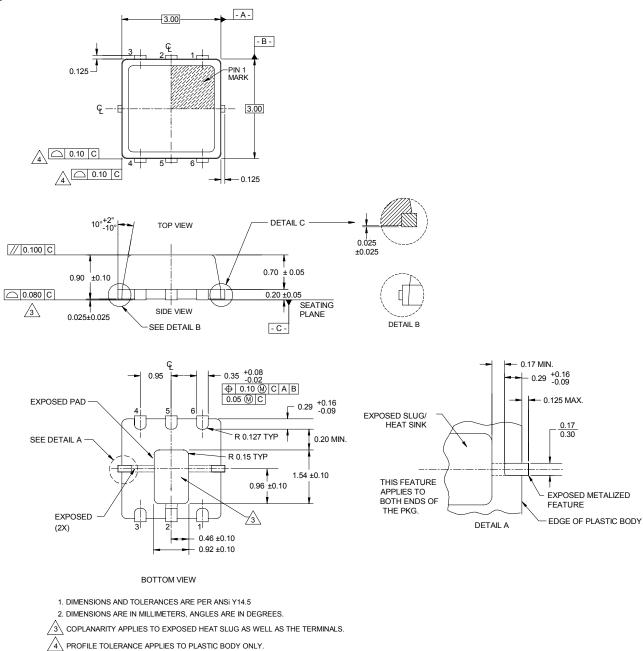

Figure 13. Evaluation Board Schematic

Figure 14. Package Drawing

6-lead MLPM

Table 6. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
4235-01	4235	PE4235-06MLP3x3-12800F	6-lead 3x3mm MLPM	12800 units / Canister
4235-02	4235	PE4235-06MLP3x3-3000C	6-lead 3x3mm MLPM	3000 units / T&R
4235-00	PE4235-EK	PE4235-06MLP3x3-EK	Evaluation Board	1 / Box

File No. 70/0069~01B | UTSi ® CMOS RFIC SOLUTIONS

PEREGRINE SEMICONDUCTOR

Sales Offices

United States

Peregrine Semiconductor Corp.

6175 Nancy Ridge Drive San Diego, CA 92121 Tel 1-858-455-0660 Fax 1-858-455-0770

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F- 92380 Garches Tel 33-1-47-41-91-73 Fax 33-1-47-41-91-73

Japan

Peregrine Semiconductor K.K.

5A-5, 5F Imperial Tower 1-1-1 Uchisaiwaicho, Chiyoda-ku Tokyo 100-0011 Japan Tel: 03-3507-5755

Fax: 03-3507-5601

Australia

Peregrine Semiconductor Australia

8 Herb Elliot Ave. Homebush, NSW 2140 Australia

Tel: 011-61-2-9763-4111 Fax: 011-61-2-9746-1501

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents are pending.

Peregrine, the Peregrine logotype, Peregrine Semiconductor Corp., and UTSi are registered trademarks of Peregrine Semiconductor Corporation.

Copyright © 2003 Peregrine Semiconductor Corp. All rights reserved.