
PE4135

Product Description

The PE4135 is a high linearity, passive Quad MOSFET Mixer for GSM800 & Cellular Base Station Receivers, exhibiting high dynamic range performance over a broad LO drive range of up to 20 dBm. This mixer integrates passive matching networks to provide single-ended interfaces for the RF and LO ports, eliminating the need for external RF baluns or matching networks. The PE4135 is optimized for frequency down-conversion using low-side LO injection for GSM800 & Cellular Base Station application, and is also suitable for up-conversion applications.

The PE4135 is manufactured in Peregrine's patented Ultra-Thin Silicon (UTSi®) CMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Schematic Diagram

High Linearity Quad MOSFET Mixer for GSM800 & Cellular BTS

Features

- Integrated, single-ended RF & LO interfaces
- High linearity: Typical IIP3 at 32dBm 820 – 920 MHz (+17 dBm LO)
- Low conversion loss: 6.8 dB (+17 dBm LO)
- High isolation: Typical LO-IF at 42 dB, LO-RF at 32 dB
- Packaged in a 6-lead 3x3mm MLPM

Figure 2. Package Type

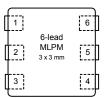
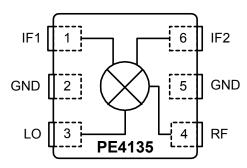


Table 1. Electrical Specifications @ +25°C

Parameter	Minimum	Typical	Maximum	Units
Frequency Range:				
LO	750		850	MHz
RF	820		920	MHz
IF*		70		MHz
Conversion Loss**		6.8	7.3	dB
Isolation:				
LO-RF	30	32		dB
LO-IF	40	42		dB
Input IP3	29	32		dBm
Input 1 dB Compression		21		dBm


^{*}An IF frequency of 70 MHz is a nominal frequency. The IF frequency can be specified by the user as long as the RF and LO frequencies are within the specified maximum and minimum.

^{**}Conversion Loss includes loss of IF transformer (M/A COM ETC1-1-13, nominal loss 0.7 dB at 70 MHz).

Test conditions unless otherwise noted: IF = 70 MHz, LO input drive = 17 dBm, RF input drive = 3 dBm.

Figure 3. Pin Configuration

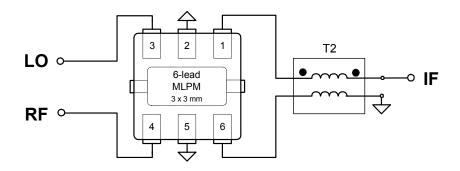
Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	IF1	IF differential output.
2	GND	Ground connections for Mixer. Traces should be physically short and connect immediately to ground plane for best performance. The exposed solder pad must also be soldered to the ground plane for best performance.
3	LO	LO Input.
4	RF	RF Input.
5	GND	Ground connections for Mixer. Traces should be physically short and connect immediately to ground plane for best performance. The exposed solder pad must also be soldered to the ground plane for best performance.
6	IF2	IF differential output.

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
T _{ST}	Storage temperature range	-65	150	°C
T _{OP}	Operating temperature range	-40	85	°C
P _{LO}	LO input power		20	dBm
P_{RF}	RF input power		12	dBm
V_{ESD}	ESD Sensitive Device		250	V

Electrostatic Discharge (ESD) Precautions


When handling this UTSi device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UTSi CMOS devices are immune to latch-up.

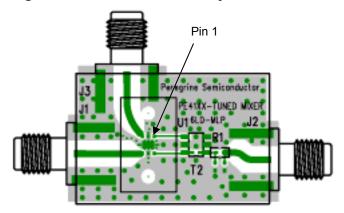


Figure 4. Evaluation Board Schematic Diagram

T2, M/A-Com E-Series RF 1:1 Transformer, 4.5 – 3000 MHz, ETC1-1-13

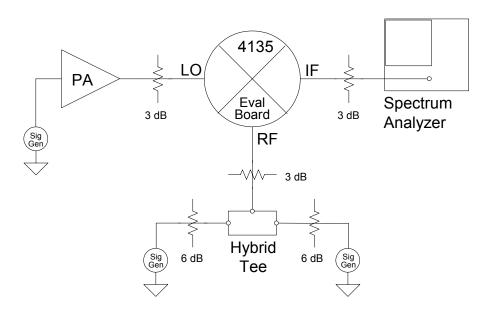

Figure 5. Evaluation Board Layout

Table 4. Bill of Materials

Reference	Value / Description
T2	M/A Com ETK1-1-13
R1	Ω0
U1	PE4135 MLP Mixer
J1, J2, J3	SMA Connector

Figure 6. Evaluation Board Testing Block Diagram, 2-Tone Setup

Typical Performance Data (LO=17 dBm, RF=3 dBm, IF=70 MHz)

Figure 7. Conversion Loss

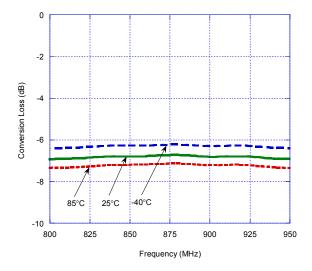


Figure 8. Input 1dB Compression

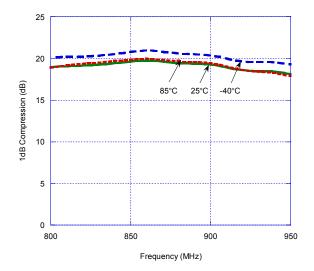


Figure 9. Input IP3 @ -40 °C to 85 °C

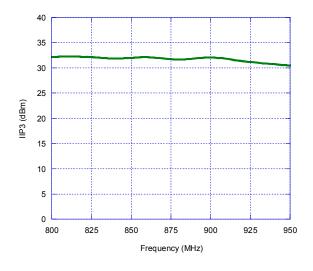
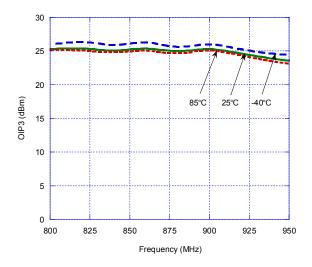



Figure 10. Output IP3

Typical Performance Data (LO=17 dBm, RF=3 dBm, IF=70 MHz)

Figure 11. LO-IF Isolation

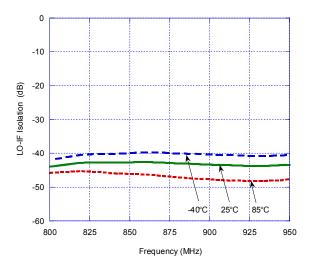


Figure 12. LO-RF Isolation

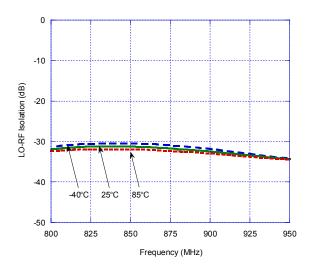


Figure 13. LO Port Return Loss @ 25°C

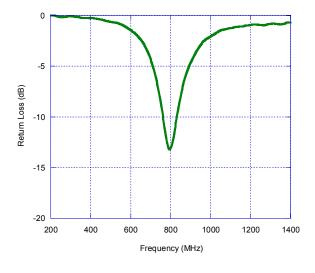
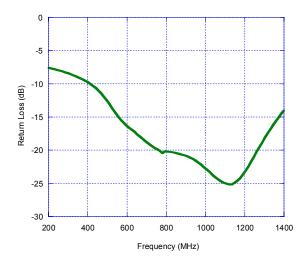



Figure 14. RF Port Return Loss @ 25°C

Typical Performance Data (LO=17 dBm, RF=3 dBm, IF=70 MHz)

Figure 15. Input IP3 Across LO Power

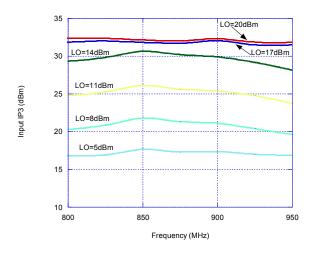
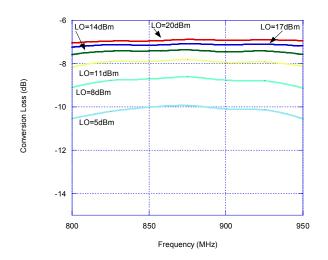



Figure 16. Conversion Loss Across LO Power

Table 5. Spurious Response

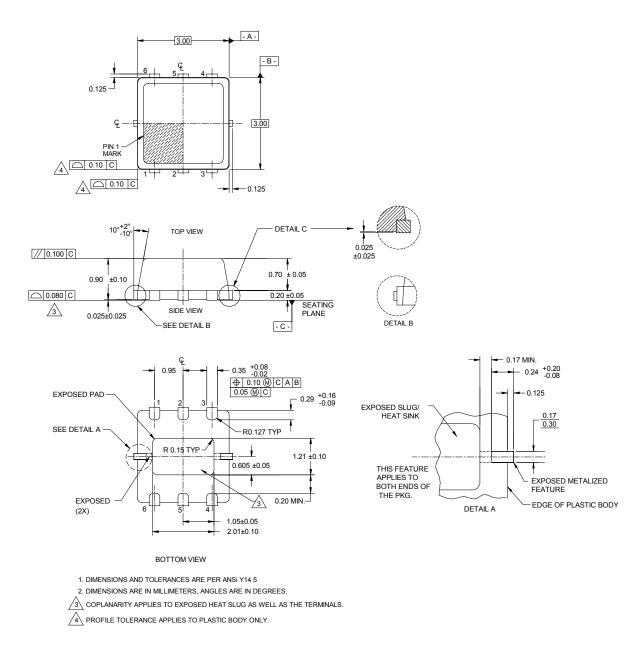
Spurious Response					
	mRF+nLO				
	nLO				
mRF	1	2	3	4	
1	1	29	20	32	
2	50	46	58	50	
3	69	81	70	77	
4	88	85	83	>90	

Normalized to dB below PIF

(RF=870Mhz @ 3dBm, LO=940MHz @ 17dBm)

Table 6. Spurious Response

Spurious Response					
	mRF+nLO				
	nLO				
mRF	1 2 3 4				
1	0	27	12	35	
2	47	53	47	50	
3	66	66	62	67	
4	86	83	>90	>90	


Normalized to dB below PIF

(RF=870Mhz @ 3dBm, LO=940MHz @ 17dBm)

Figure 17. Package Drawing

6-lead MLPM

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
4135-01	4135	PE4135-06MLP3x3-12800F	6-lead 3x3 MLPM	12800 units / Canister
4135-02	4135	PE4135-06MLP3x3-3000C	6-lead 3x3 MLPM	3000 units / T&R
4135-00	4135-EK	PE4135-06MLP3x3-EK	Evaluation Board	1 / Box

Sales Offices

United States

Peregrine Semiconductor Corp.

6175 Nancy Ridge Drive San Diego, CA 92121 Tel 1-858-455-0660 Fax 1-858-455-0770

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F- 92380 Garches Tel 33-1-47-41-91-73 Fax 33-1-47-41-91-73

Japan

Peregrine Semiconductor K.K.

5A-5, 5F Imperial Tower 1-1-1 Uchisaiwaicho, Chiyoda-ku Tokyo 100-0011 Japan Tel: 03-3507-5755

Fax: 03-3507-5601

Australia

Peregrine Semiconductor Australia

8 Herb Elliot Ave. Homebush, NSW 2140 Australia

Tel: 011-61-2-9763-4111 Fax: 011-61-2-9746-1501

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents are pending.

Peregrine, the Peregrine logotype, Peregrine Semiconductor Corp., and UTSi are registered trademarks of Peregrine Semiconductor Corporation. Copyright © 2003 Peregrine Semiconductor Corp. All rights reserved.

File No. 70/0086~02B | UTSi ® CMOS RFIC SOLUTIONS