3Stacked MCP (Multi-Chip Package) FLASH & FLASH & FCRAM

CMOS

64M (×16) FLASH MEMORY & 32M (×16) FLASH MEMORY & 64M (×16) Mobile FCRAM ™

MB84VF5F4F5J1-70

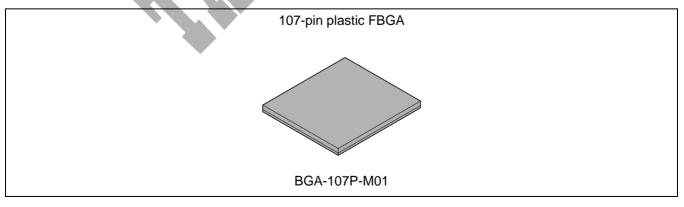
■ FEATURES

• Power supply voltage of 2.7 to 3.1V

• High performance

70 ns maximum access time (Flash_1: 64Mb Falsh) 70 ns maximum access time (Flash_2 : 32Mb Falsh) 65 ns maximum access time (FCRAM : 64Mb FCRAM)

- Operating Temperature -30 °C to +85 °C
- Package 107-ball BGA


(Continued)

■ PRODUCT LINEUP

	Flash_1	Flash_2	FCRAM
Supply Voltage (V)	Vccf_1* = 2.7V to 3.1V	Vccf_2* = 2.7V to 3.1V	Vccr* = 2.7V to 3.1V
Max. Address Access Time (ns)	70	70	65
Max. CE Access Time (ns)	70	70	65
Max. OE Access Time (ns)	30	30	40

Note:*1,All of Vccf_1, Vccf_2, and Vccr must be the same level when either part is being accessed.

PACKAGE

- FLASH MEMORY_1 & _2
- Simultaneous Read/Write Operations (Dual Bank)
- Flash_1 FlexBank™
- Bank A : 8 Mbit (8 KB \times 8 and 64 KB \times 15)
- Bank B : 24 Mbit (64 KB \times 48)
- Bank C : 24 Mbit (64 KB \times 48)
- Bank D : 8 Mbit (8 KB \times 8 and 64 KB \times 15)
- Flash_2 FlexBank[™]
 - Bank A : 4 Mbit (8 KB \times 8 and 64 KB \times 7)
 - Bank B : 12 Mbit (64 KB \times 24)
 - Bank C : 12 Mbit (64 KB \times 24)
 - Bank D : 4 Mbit (64 KB \times 8)
 - Two virtual Banks are chosen from the combination of four physical banks.
 - Host system can program or erase in one bank, and then read immediately and simultaneously from the other bank with zero latency between read and write operations.
 - Read-while-erase
- Read-while-program
- Minimum 100,000 Program/Erase Cycles
- Sector Erase Architecture
 - Sixteen 4 Kword and one hundred twenty-six 32 Kword sectors in word.
 - Any combination of sectors can be concurrently erased. It also supports full chip erase.
- Hidden ROM (Hi-ROM) Region
 - 256 byte of Hi-ROM, accessible through a new "Hi-ROM Enable" command sequence Factory serialized and protected to provide a secure electronic serial number (ESN)
- WP/ACC Input Pin

At V_{L} , allows protection of "outermost" 2×8 Kbytes on both ends of boot sectors, regardless of sector protection/unprotection status

At V_{IH}, allows removal of boot sector protection

At VACC, increases program performance

- Embedded Erase[™] Algorithms Automatically preprograms and erases the chip or any sector
- Embedded Program[™] Algorithms Automatically writes and verifies data at specified address
- Data Polling and Toggle Bit Feature for Detection of Program or Erase Cycle Completion
- Ready/Busy Output (RY/BY_1 or RY/BY_2)
- Hardware method for detection of program or erase cycle completion
- Automatic Sleep Mode When addresses remain stable, the device automatically switches itself to low power mode.
- Low Vccf write inhibit \leq 2.5 V
- Program Suspend/Resume
 Suspends the program operation to allow a read in another byte
- Erase Suspend/Resume Suspends the erase operation to allow a read data and/or program in another sector within the same device
- Please Refer to "MBM29DL64DF" Datasheet in Detailed Function for Flash_1.
- Please Refer to "MBM29DL32BF" Datasheet in Detailed Function for Flash_2.

- FCRAM
- Power Dissipation

Operating : 25mA max. Standby : 200 µA max.

• Power Down Mode

 Sleep
 : 10 μA max.

 NAP
 : 65 μA max.

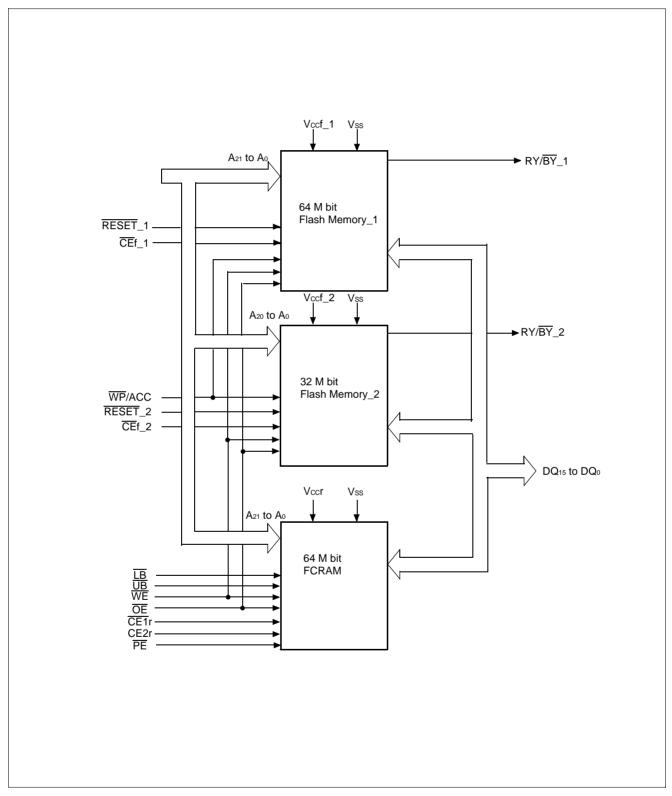
- 16M Partial : 85 µA max.
- Power Down Control by CE2r
- Byte Write Control: LB(DQ7-DQ0), UB(DQ15-DQ8)
- 8 words Address Access Capability

*: FlexBank[™] is a trademark of Fujitsu Limited, Japan.

- *: Embedded Erase[™] and Embedded Program[™] are trademarks of Advanced Micro Devices, Inc.
- *: Mobile FCRAM[™] is a trademark of Fujitsu Limited, Japan.

■ PIN ASSIGNMENT

(Top View) Marking Side


(A10)	(B10)	(C10)	(D10)	(E10)	(F10)	(G10)	(H10)	(J10)	(к10)	(L10)	(M10)
N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.
(A9)	(B9)	(C9)	(D9)	(E9)	(F9)	(G9)	(́ Н9)	(J9)	(к9)	(L9)	(M9)
N.C.	N.C.	N.C.	A15	A21	N.C.	A16	VCCf_1	VSS	N.C.	N.C.	N.C.
	(B8)	(C8)	(D8)	(E8)	(F8)	(G8)	(H8)	(J8)	(K8)	L8 !	
	N.C.	A11	A12	A13	À14		DQ15	DQ7	DQ14	N.C.	
	(B7)	(C7)	(D7)	ί Ε7 Ι	(F7)	(G7)	(H7)	(J7)	(K7)	(L7)	
	`	À8	`′ A19	À9	`′ A10	`、′ DQ6	`′ DQ13	`′ DQ12	`、′ DQ5	`' N.C.	
	(B6)	(C6)	(D6)	ί Ε6 Ι	(F6)	(G6)	(H6)	(J6)	(K6)	(L6)	
	`	WE	CE2r	A20	`′ D.U.	`、′ D.U.	`' DQ4	VCCr	`' N.C.	`、′ N.C.	
	(B5)	(C5)	(D5)	(E5)	(F5)	(G5)	(H5)	(J5)	(K5)	L5	
	CEf 2	WP/ACC	RESET_1	RY/BY 1	D.U.	D.U.	DQ3	VCCf_1	DQ11	VCCf_2	
	(B4)	(C4)	(D4)	(E4)	(F4)	(G4)	(H4)	(J4)	(K4)	L4)	
	RY/BY_2	·	UB	A18	A17	DQ1	DQ9	DQ10	DQ2	VSS	
	(B3)	(C3)	(D3)	(E3)	(F3)	(G3)	(H3)	(13)	(K3)	(L3)	
	VSS	A7	A6	A5	A4	VSS		DQ0	DQ8	RESET_2	
, A2)	(B2)	(C2)	(D2)	(E2)	(F2)	(G2)	(H2)	(J2)	(K2)	(L2)	/ M2)
N.C.	`/	N.C.	A3	A2	A1	`~	` <u>-</u> -/	`	`	N.C.	N.C.
v A1	N.C.	N.C.		Α2 · Ε1)	μ Γ Γ Γ Γ Γ Γ Γ Γ	A0 , G1)	CEf_1	CE1r	N.C.	N.C.	M.C.
		·	· /	``'	·	`	·	·	·	· · · · · ·	·
N.C.		N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.

(BGA-107P-M01)

■ PIN DESCRIPTION

Pin name	Input/ Output	Description
A ₂₀ to A ₀	I	Address Inputs (Common)
A ₂₁	I	Address Inputs (Flash_1 & FCRAM)
DQ ₁₅ to DQ ₀	I/O	Data Inputs/Outputs (Common)
CEf_1	I	Chip Enable (Flash_1)
CEf_2	I	Chip Enable (Flash_2)
CE1r	I	Chip Enable (FCRAM)
CE2r	I	Chip Enable (FCRAM)
OE	I	Output Enable (Common)
WE	I	Write Enable (Common)
RY/BY_1	0	Ready/Busy Output (Flash_1) Open Drain Output
RY/BY_2	0	Ready/Busy Output (Flash_2) Open Drain Output
UB	I	Upper Byte Control (FCRAM)
LB	I	Lower Byte Control (FCRAM)
RESET_1	I	Hardware Reset Pin/Sector Protection Unlock (Flash_1)
RESET_2	I	Hardware Reset Pin/Sector Protection Unlock (Flash_2)
WP/ACC	I	Write Protect / Acceleration (Flash_1& Flash_2)
PE	I	Partial Enable (FCRAM)
N.C.		No Internal Connection
D.U.		Don't Use
Vss	Power	Device Ground (Common)
Vccf_1	Power	Device Power Supply (Flash_1)
Vccf_2	Power	Device Power Supply (Flash_2)
Vccr	Power	Device Power Supply (FCRAM)

BLOCK DIAGRAM

■ DEVICE BUS OPERATIONS

Operation (1), (2)	CEf_1	CEf_2	CE1r	CE2r	OE	WE	LB	UB	PE	A ₂₀ to A ₀	DQ7 to DQ0	DQ15 to DQ8	RESET_1	RESET_2	WP/ ACC (12)
Full Standby	Н	Н	Н	н	Х	Х	Х	Х	Н	Х	High-Z	High-Z	Н	н	Х
Output	Н	Н	L		Н	Н	Х	х		X (10)		Link 7			v
Disable(3)	L	Н	Н	Н	н	н	х	х	Н	x	High-Z	High-Z	Н	Н	Х
	Н	L	Н				~	~							
Read from Flash_1 (4)	L	Н	н	н	L	н	х	х	н	Valid	Dout	Dout	Н	н	х
Read from Flash_2 (4)	н	L	н	н	L	н	х	х	н	Valid	Dout	Dout	Н	н	х
Write to Flash _1	L	Н	Н	Н	Н	L	Х	Х	Н	Valid	Din	Din	Н	Н	Х
Write to Flash_2	Н	L	Н	н	Н	L	Х	Х	Н	Valid	Din	Din	Н	Н	Х
Read from FCRAM(5)	Н	н	L	н	L	н	L (9)	L (9)	н	Valid	Dout	Dout	Н	н	х
							L	L			DIN	Din			
Write to FCRAM	Н	Н	L	н	н	L	Н	L	н	Valid	High-Z	Din	Н	н	х
							L	Н			DIN	High-Z			
Flash_1 Temporary Sector Group Unprotection(6)	х	х	x	x	x	x	х	x	x	x	x	х	Vid	х	x
Flash_ 2 Temporary Sector Group Unprotection(6)	х	х	x	x	x	x	х	х	х	x	x	х	Х	Vid	x
Flash_1 Hardware Reset	Х	Х	Н	н	х	х	х	х	х	х	High-Z	High-Z	L	х	х
Flash_2 Hardware Reset	Х	Х	н	н	х	х	х	х	х	х	High-Z	High-Z	Х	L	х
Flash_1 or 2 Boot Block Sector Write Protection	х	х	х	x	х	x	х	x	x	x	x	х	х	х	L
FCRAM Power Down Program	Н	Н	н	н	х	х	х	х	L	Valid	High-Z	High-Z	Н	н	х
FCRAM No Read (7)	Н	Н	L	н	L	н	Н	н	н	Valid	High-Z	High-Z	Н	н	Х
FCRAM Power Down (8)	Х	Х	х	L	х	х	х	х	х	х	х	Х	Х	х	Х

Legend: $L = V_{IL}$, $H = V_{IH}$, $X = V_{IL}$ or V_{IH} . See DC Characteristics for voltage levels.

- **Notes:** 1. Other operations except for indicated this column are inhibited.
 - 2. Do not apply for a following state two or more on the same time;
 - 1) $\overline{\text{CE}}f_1 = V_{\text{IL}}, 2)\overline{\text{CE}}f_2 = V_{\text{IL}}, 3)$ $\overline{\text{CE}}1r = V_{\text{IL}}$ and $\text{CE}2r = V_{\text{IH}}$
 - 3. FCRAM Output Disable condition should not be kept longer than $1\mu s$.
 - 4. WE can be V_{IL} if \overline{OE} is V_{IL}, \overline{OE} at V_{IH} initiates the write operations.
 - 5. FCRAM LB, UB control at Read operation is not supported.
 - 6. It is also used for the extended sector group protections.
 - 7. The FCRAM Power Down Program can be performed one time after compliance of Power-UP timings and it should not be re-programmed after regular Read or Write.
 - 8. FCRAM Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. IPDr current and data retention depends on the selection of Power Down Program.
 - 9. Either or both $\overline{\text{LB}}$ and $\overline{\text{UB}}$ must be Low for FCRAM Read Operation.
 - 10. Can be either $V{\scriptstyle {\rm I\!L}}$ or $V{\scriptstyle {\rm I\!H}}$ but must be valid before Read or Write.
 - 11. See " FCRAM Power Down Program Key Table " in next page.
 - 12. Protect " outer most " 2x8K bytes (4 words) on both ends of the boot block sectors.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ra	Unit		
Faialletei	Symbol	Min.	Max.	Unit	
Storage Temperature	Tstg	-55	+125	°C	
Ambient Temperature with Power Applied	TA	-30	+85	°C	
Vales a with Deepest to Crowned All size			Vccf_1 +0.3	V	
Voltage with Respect to Ground All pins except RESET_1 or RESET_2,WP/ACC *1	Vin, Vout	-0.3	Vccf_2 +0.3	V	
			Vccr +0.3	V	
Vccf_1/Vccf_2/Vccr Supply *1	Vccf_1,Vccf_2, Vccr	-0.3	+3.3	V	
RESET_1 or RESET_2 *2	Vin	-0.5	+ 13.0	V	
WP/ACC *3	Vin	-0.5	+10.5	V	

*1 Minimum DC voltage on input or I/O pins is -0.3 V. During voltage transitions, input or I/O pins may undershoot Vss to -1.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is Vccf_1 + 0.3 V or Vccf_2 + 0.3 V or Vccr + 0.3 V. During voltage transitions, input or I/O pins may overshoot to Vccf_1 + 2.0 V or Vccf_2 + 2.0 V or Vccr + 1.0 V for periods of up to 20 ns.

- *2: Minimum DC input voltage on RESET_1 or RESET_2 pin is -0.5 V. During voltage transitions RESET_1 or RESET_2 pins may undershoot Vss to -2.0 V for periods of up to 20 ns. Voltage difference between input and supply voltage (VIN-Vccf_1 or Vccf_2) does not exceed +9.0 V. Maximum DC input voltage on RESET_1 or RESET_2 pins is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns.
- *3: Minimum DC input voltage on WP/ACC pin is –0.5 V. During voltage transitions, WP/ACC pin may undershoot Vss to –2.0 V for periods of up to 20 ns. Maximum DC input voltage on WP/ACC pin is +10.5 V which may overshoot to +12.0 V for periods of up to 20 ns, when Vccf_1 or Vccf_2 is applied.
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value		Unit
Falameter	Symbol	Min. Max.		Unit
Ambient Temperature	Та	-30	+85	°C
Vccf_1/Vccf_2/Vccr Supply Voltages	Vccf_1,Vccf_2,Vccr	+2.7	+3.1	V

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

Note: Operating ranges define those limits between which the functionality of the device is guaranteed.

ELECTRICAL CHARACTERISTICS

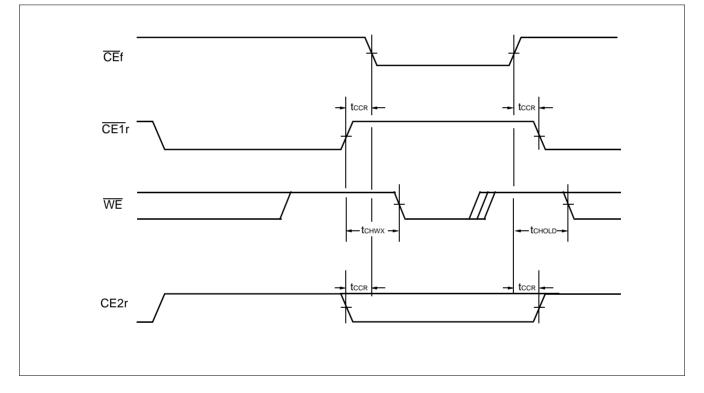
1. DC Characteristics

Paramotor	Sym-	Condition		Unit			
Parameter	bol	Condition	15	Min.	Тур.	Max.	Unit
Input Leakage Current	lu	VIN = Vss to Vccf_1,Vccr	-1.0	—	+1.0	mA	
Output Leakage Current	Ilo	Vout = Vss to Vccf_1,Vccr	-1.0	_	+1.0	mA	
RESET Inputs Leakage Current	Ішт	Vccf = Vccf Max., RESET = 12.5 V			_	35	μA
Flash_1 Vcc Active Current	lcc₁f_1	$\overline{CE}f_1 = V_{IL},$	tcycle =5 MHz		—	18	mA
(Read) *1		OE = VIH	tcycle =1 MHz	_	—	4	mA
Flash_1 Vcc Active Current (Program/Erase) *2	lcc2f_1	$\overline{CE}f_1 = V_{IL}, \overline{OE} = V_{IH}$		_	_	35	mA
Flash_1 Vcc Active Current (Read-While-Program) *5	lcc₃f_1	$\overline{CE}f_1 = V_{IL}, \overline{OE} = V_{IH}$		_	—	53	mA
Flash_1 Vcc Active Current (Read-While-Erase) *5	lcc₄f_1	$\overline{CE}f_1 = V_{IL}, \overline{OE} = V_{IH}$		_	_	53	mA
Flash_1 Vcc Active Current (Erase-Suspend-Program)	lcc₅f_1	$\overline{CE}f_1 = V_{IL}, \overline{OE} = V_{IH}$		_	_	40	mA
Flash_2 Vcc Active Current		$\overline{CE}f_2 = V_{\mathbb{L}},$	tcycle =5 MHz		—	18	
(Read) *1	Icc1f_2	OE = VIH	tcycle =1 MHz	_	_	4	mA
Flash_2 Vcc Active Current (Program/Erase) *2	lcc2f_2	$\overline{CE}_2 = V_{IL}, \overline{OE} = V_{IH}$			_	35	mA
Flash_2 Vcc Active Current (Read-While-Program) *5	lcc3f_2	$\overline{CE}_2 = V_{IL}, \ \overline{OE} = V_{IH}$	$\overline{CE}_2 = V_{IL}, \overline{OE} = V_{IH}$		_	53	mA
Flash_2 Vcc Active Current (Read-While-Erase) *5	lcc₄f_2	$\overline{CE}_2 = V_{IL}, \overline{OE} = V_{IH}$			_	53	mA
Flash_2 Vcc Active Current (Erase-Suspend-Program)	lcc₅f_2	$\overline{CE}_2 = V_{IL}, \overline{OE} = V_{IH}$		_	—	35	mA
WP/ACC Acceleration Program Current	IACC	Vccf = Vccf Max., WP/ACC = Vacc Max.		_	_	20	mA
		$V_{ccr} = V_{ccr} Max.,$	t _{RC} / t _{WC} =min.	_	—	25	
FCRAM Vcc Active Current	lcc1r	$\overline{CE1r} = V_{IL}, CE2r = V_{IH}, V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 0 \text{ mA}$	t _{RC} / t _{WC} =1ms	_	—	3	mA
Flash Vcc Standby Current	lsв₁f	Vccf = Vccf Max., $\overline{CE}f$ = Vccf ± 0.3 V \overline{RESET} = Vccf ± 0.3 V, \overline{WP}/ACC = Vccf± 0.3 V		_	1 *7	5 * ⁷	μΑ
Flash Vcc Standby Current (RESET)	Isb2f	Vccf = Vccf Max., RESET WP/ACC = Vccf± 0.3 V	_	1 *7	5 * ⁷	μA	
Flash Vcc Current (Auto- matic Sleep Mode) *3	lsвзf	$ \begin{array}{l} Vccf = Vccf \ Max., \ \overline{CE}f = Vcf \ Max., \ \overline{CE}f = Vcf \ \overline{RESET} = Vccf \pm 0.3 \ V, \\ \overline{WP}/ACC = Vccf \pm 0.3 \ V, \\ V_{IN} = Vccf \pm 0.3 \ V \ or \ Vss \pm 0.3 \ V \ Vss \pm 0.3 \ V \ Or \ Vss \pm 0.3 \ V \ Vss \pm 0.3 \$		_	1 *7	5 * ⁷	μΑ

Parameter	Sym-	Conditions			Value				
Farameter	bol	Conditions		Min.	Тур.	Max.	Unit		
FCRAM Vcc Standby Current	Isb1 r	$\begin{array}{l} V_{\rm CC}r = V_{\rm CC}r \; Max., \overline{CE1}r \geq V_{\rm CC}r - 0.27\\ CE2r \geq V_{\rm CC}r - 0.2V,\\ V_{\rm IN} \leq 0.2 \; V \; or \; V_{\rm CC}r - 0.2 \; V \end{array}$	_	_	200	μA			
	IPDSr	Vccr = Vccr Max.,	Sleep	_	_	10	μA		
FCRAM Vcc Power Down	Ipdn r	$\begin{array}{l} \hline CE1r \geq Vccr - 0.2V, \\ CE2r \leq 0.2V, \end{array}$	NAP	_	_	65	μA		
Current	Ipd8r	V_{IN} Cycle time = t _{RC} min.	16M Partial	_	_	85	μA		
Input Low Level	Vı∟	_	-0.3	_	0.5	V			
Input High Level	Vін	_	2.2	_	Vcc+ 0.3 *6	V			
Voltage for Sector Protection, and Temporary Sector Un- protection (RESET) *4	Vid	_	11.5		12.5	V			
Voltage for WP/ACC Sector Protection/Unprotection and Program Acceleration *4	VACC	_		8.5	9.0	9.5	V		
Output Low Voltage Level	Volf	Vccf = Vccf Min., Io∟=4.0 mA	Flash			0.45	V		
Oulput Low Voltage Level	Volr	Vccr = Vccr Min., Io∟ =1.0mA	FCRAM			0.4	V		
Output High Voltage Level	Vонf	Vccf = Vccf Min., Iон=-0.1 mA Flash Vccr = Vccr Min., Iон =-0.5mA FCRAM		Vccf– 0.4	_	_	V		
	Vон г			2.2	_		V		
Flash Low Vccf Lock-Out Voltage	Vlko	_		2.3	2.4	2.5	V		

Legend: Flash means Flash_1 or Flash_2, Vccf means Vccf_1 or Vccf_2, Vssf means Vssf_1 or Vssf_2, CEf means CEf_1 or CEf_2, RESET means RESET_1 or RESET_2

*1: The Icc current listed includes both the DC operating current and the frequency dependent component.


- *2: Icc active while Embedded Algorithm (program or erase) is in progress.
- *3: Automatic sleep mode enables the low power mode when address remains stable for 150 ns.
- *4: Applicable for only Vccf applying.
- *5: Embedded Alogorithm (program or erase) is in progress. (@5 MHz)
- *6: Vcc indicates lower of Vccf_1 or Vccf_2 or Vccr.
- *7: Actual Standby Current is twice of what is indicated in the table, due to two Flash memory chips embedment with one device.

2. AC Characteristics

• CE Timing

Parameter	Syn	nbol	Condition	Va	Unit		
Farameter	JEDEC	Standard	Condition	Min.	Max.		
CE Recover Time	—	t CCR		0	—	ns	
CE Hold Time	—	t CHOLD	—	3	—	ns	
CE1r, High to WE Invalid time for Standby Entry	_	tснwx	_	10	_	ns	

• Timing Diagram for alternating RAM to Flash_1 or Flash_2

• Flash_1 Characteristics

Please refer to "64M Flash Memory for MCP" part. In this part, Flash means Flash_1, Vccf means Vccf_1, Vssf means Vssf_1, CEf means CEf_1, RESET means RESET_1

• Flash_2 Characteristics

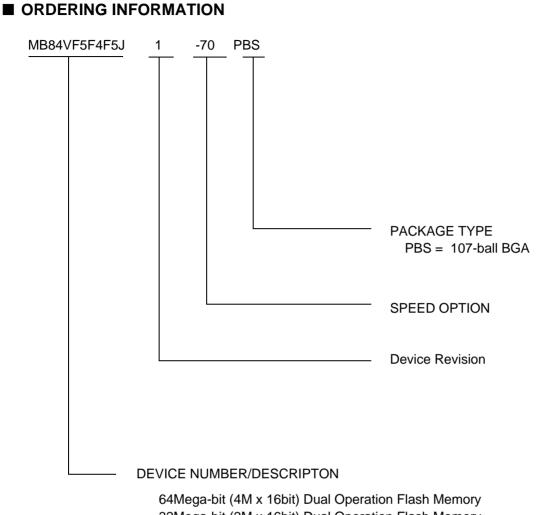
Please refer to "32M Flash Memory for MCP" part. In this part, Flash means Flash_2, Vccf means Vccf_2, Vssf means Vssf_2, CEf means CEf_2, RESET means RESET_2

• FCRAM Characteristics

Please refer to "64M FCRAM for MCP" part.

■ PIN CAPACITANCE

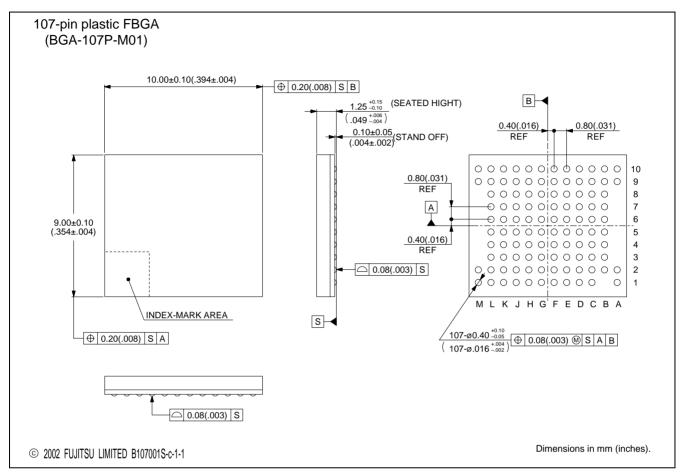
Parameter	Symbol	Condition		Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	CIN	V _{IN} = 0			20.0	pF
Output Capacitance	Соит	Vout = 0	—		25.0	pF
Control Pin Capacitance	CIN2	V _{IN} = 0		_	25.0	pF


Note: Test conditions Ta = 25°C, f = 1.0 MHz

HANDLING OF PACKAGE

Please handle this package carefully since the sides of package create acute angles.

■ CAUTION


- The high voltage (V_{ID}) cannot apply to address pins and control pins except RESET. Exception is when autoselect and sector group protect function are used, then the high voltage (V_{ID}) can be applied to RESET.
- \bullet Without the high voltage $\,(V_{1D})$, sector group protection can be achieved by using "Extended Sector Group Protection" command.

64Mega-bit (4M x 16bit) Dual Operation Flash Memory 32Mega-bit (2M x 16bit) Dual Operation Flash Memory 3.0V-only Read, Program, and Erase

64Mega-bit (4M x 16bit) FCRAM

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0211 © FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.