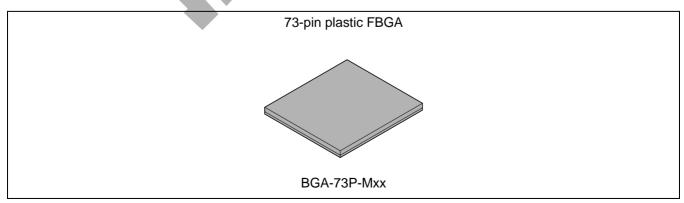
Stacked MCP (Multi-Chip Package) FLASH MEMORY & SRAM cmos

64M (×16) FLASH MEMORY & 4M (×16) STATIC RAM

MB84VD23180FM-70

■ FEATURES

- Power supply voltage of 2.7 V to 3.1 V
- High performance
 70 ns maximum access time (Flash)
 70 ns maximum access time (SRAM)
- Operating Temperature -30 °C to +85 °C
- Package 73-ball BGA


(Continued)

■ PRODUCT LINEUP

	Flash Memory	SRAM
Supply Voltage (V)	$Vccr^* = 3.0 V_{-0.3 V}^{+0.1 V}$	Vccs* = 3.0 V ^{+0.1V} _{-0.3 V}
Max. Address Access Time (ns)	70	70
Max. CE Access Time (ns)	70	70
Max. OE Access Time (ns)	30	35

^{*:} Both Vccf and Vccs must be in recommended operation range when either part is being accessed.

■ PACKAGE

(Continued)

- FLASH MEMORY

• Simultaneous Read/Write operations (Dual Bank)

FlexBank™

Bank A: 8 Mbit $(8 \text{ KB} \times 8 \text{ and } 64 \text{ KB} \times 15)$

Bank B : 24 Mbit (64 KB × 48) Bank C : 24 Mbit (64 KB × 48)

Bank D: 8 Mbit (8 KB \times 8 and 64 KB \times 15)

Two virtual Banks are chosen from the combination of four physical banks (Refer to Table 2, 3)

Host system can program or erase in one bank, and then read immediately and simultaneously from the other bank with zero latency between read and write operations.

Read-while-erase

Read-while-program

• Single 3.0 V read, program, and erase

Minimized system level power requirements

• Minimum 100,000 program/erase cycles

Sector erase architecture

Sixteen 4 Kword and one hundred twenty-six 32 Kword sectors in word.

Any combination of sectors can be concurrently erased. It also supports full chip erase.

• Hidden ROM (Hi-ROM) region

256 byte of Hi-ROM, accessible through a new "Hi-ROM Enable" command sequence

Factory serialized and protected to provide a secure electronic serial number (ESN)

WP/ACC input pin

At V_{IL} , allows protection of "outermost" 2×8 Kbytes on both ends of boot sectors, regardless of sector protection/unprotection status

At VIH, allows removal of boot sector protection

At VACC, increases program performance

Embedded Erase[™] Algorithms

Automatically preprograms and erases the chip or any sector

Embedded Program[™] Algorithms

Automatically writes and verifies data at specified address

• Data Polling and Toggle Bit feature for detection of program or erase cycle completion

Ready/Busy output (RY/BY)

Hardware method for detection of program or erase cycle completion

Automatic sleep mode

When addresses remain stable, the device automatically switches itself to low power mode.

• Low Vccf write inhibit ≤ 2.5 V

Program Suspend/Resume

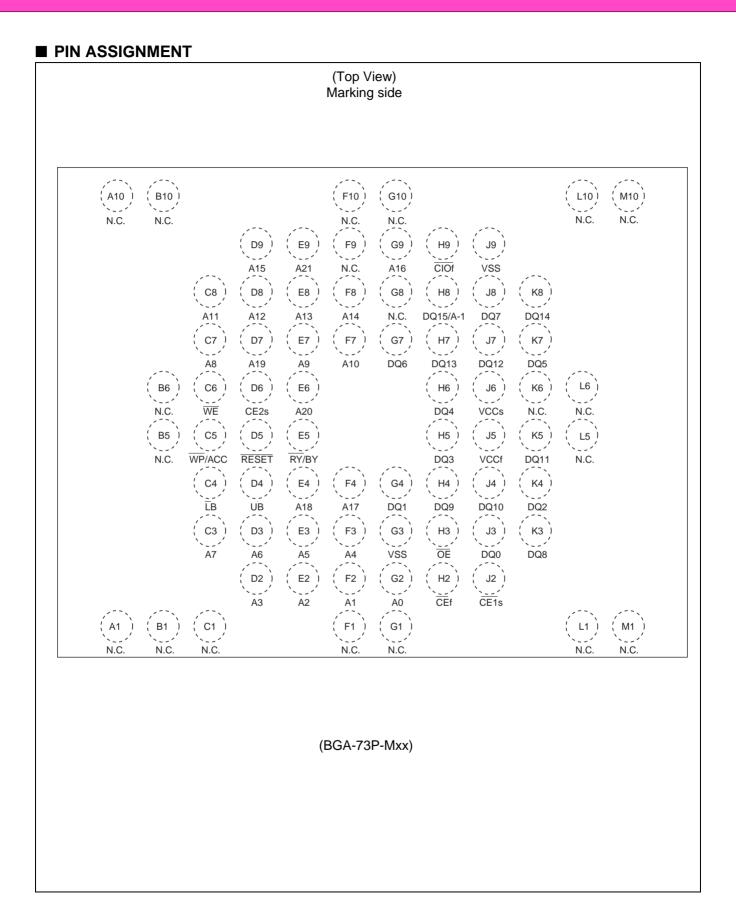
Suspends the program operation to allow a read in another byte

Erase Suspend/Resume

Suspends the erase operation to allow a read data and/or program in another sector within the same device

Please refer to "MBM29DL64DF" data sheet in detailed function

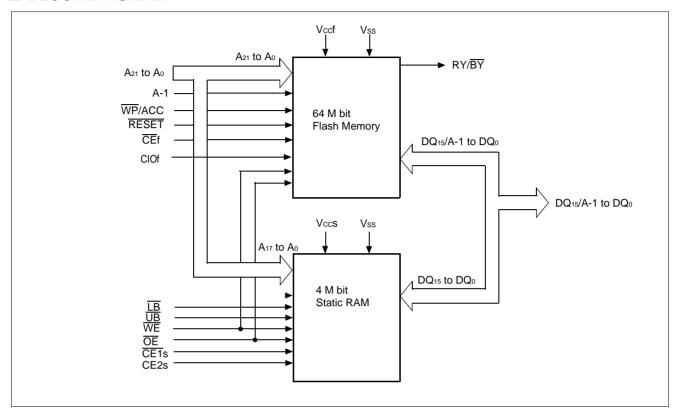
(Continued)


- SRAM

• Power dissipation

Operating: 40 mA Max. Standby: 10 μA Max.

- Power down features using CE1s and CE2s
- Data retention supply voltage: 1.5 V to 3.1 V
- CE1s and CE2s Chip Select


^{*:} Embedded Erase™ and Embedded Program™ are trademarks of Advanced Micro Devices, Inc.

■ PIN DESCRIPTION

Pin name	Input/ Output	Description	
A ₁₇ to A ₀	I	Address Inputs (Common)	
A ₂₁ to A ₁₈ , A ₋₁	I	Address Inputs (Flash)	
DQ ₁₅ to DQ ₀	I/O	Data Inputs/Outputs (Common)	
CEf	I	Chip Enable (Flash)	
CE1s	I	Chip Enable (SRAM)	
CE2s	I	Chip Enable (SRAM)	
ŌĒ	I	Output Enable (Common)	
WE	I	Write Enable (Common)	
RY/BY	0	Ready/Busy Output (Flash) Open Drain Output	
ŪB	I	Upper Byte Control (SRAM)	
LB	I	Lower Byte Control (SRAM)	
CIOf	I	I/O Configulation (Flash) CIOf = Vccf is Word mode (×16), CIOf = Vss is Byte mode (×8)	
RESET	I	Hardware Reset Pin/Sector Protection Unlock (Flash)	
WP/ACC	I	Write Protect / Acceleration (Flash)	
N.C.	_	No Internal Connection	
Vss	Power	Device Ground (Common)	
Vccf	Power	Device Power Supply (Flash)	
Vccs	Power	Device Power Supply (SRAM)	

■ BLOCK DIAGRAM

■ DEVICE BUS OPERATIONS

Table 1. 1 User Bus Operations (Flash=Word mode; CIOf=Vccf)

Operation (1), (3)	CEf	CE1s	CE2s	ΟE	WE	LB	ŪB	DQ7 to DQ0	DQ ₁₅ to DQ ₈	RESET	WP/ ACC (5)				
Full Standby	Н	Н	Х	Х	Х	Х	Х	HIGH-Z	HIGH-Z	Н	Х				
T dii Otanaby	11	X	L		<	^	^	TIIOTI-Z	111011-2	11	^				
	Н	L	H	Ι	Н	Χ	Χ	HIGH-Z	HIGH-Z						
Output Disable	- 1 1	L	11	Χ	Х	Ι	Ι	HIGH-Z	HIGH-Z	Н	Х				
Output Disable	L	Н	Х	Н	Н	Х	Х	HIGH-Z	HIGH-Z	''					
	_	X	L	П			X	1110112	1110112						
Read from Flash	L	Н	Χ		LH	Х	Х	Dоuт	D _о	Н	Х				
(2)	_	X	L	J	11	^			D 001	11	^				
Write to Flash L	L	Н	Χ	Н	L	Х	X	Din	Din	Н	Х				
Wille to Flash	_	Х	L			^	^				^				
								L	L	D оит	D оит				
Read from SRAM	Н	L	Н	Н	Н	Н	Н	L	Н	Н	L	HIGH-Z	D оит	Н	Х
						L	Н	D оит	HIGH-Z						
						L	L	Din	Din						
Write to SRAM	Н	L	Н	Χ	L	Н	L	HIGH-Z	Din	Н	Х				
						L	Н	Din	HIGH-Z						
Temporary Sector Group Unprotection(4)	Х	Х	Х	Х	Х	Х	Х	Х	Х	VID	Х				
Flash Hardware	Flash Hardware		Х	V	V	V	V	UICU 7	UICU 7	1	_				
Reset	Х	Х	L	Х	Х	X	Х	HIGH-Z	HIGH-Z	L	Х				
Boot Block Sector Write Protection	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L				

Table 2. 1 User Bus Operations (Flash=Byte mode; CIOf=Vss)

Operation (1), (3)	CEf	CE1s	CE2s	DQ 15/ A -1	ŌĒ	WE	LB (6)	UB (6)	DQ ₀ to DQ ₇	DQ ₈ to DQ ₁₄	RESET	WP/ ACC (5)
Full Standby	Н	Н	Χ	X	Х	Х	Х	Х	HIGH-Z	HIGH-Z	Н	Х
1 dii Otariday	• • •	X	L	Α	^		X		1110112	1110112		
	Н	L	Н	X	Н	Н	Χ	Χ	HIGH-Z	HIGH-Z		
Output Disable	11	_	11	X	Χ	Х	Ι	Н	HIGH-Z	HIGH-Z	H	Х
Output Disable	L	Н	Χ	A ₋₁	Н	Н	Χ	Х	HIGH-Z	HIGH-Z	11	^
	_	Χ	L	Λ-1	11	- 11	^		111011-2	TIIGIT-Z		
Read from Flash	L	Н	Χ	A ₋₁	L	Н	Χ	Х	D оит	X	Н	Х
(2)	L	Χ	L	A -1	_		^		D 001	Λ		^
Write to Flash	L	Н	X	A ₋₁	Н	L	Х	Х	Din	Х	Н	Х
Write to Flash	_	Χ	L	Λ-1	''	_	^		DIN	Λ		^
Read from SRAM	Н	L	Н	X	L	Н	Χ	Χ	D оит	HIGH-Z	Н	Χ
Write to SRAM	Н	L	Н	X	Х	L	Χ	Χ	Din	HIGH-Z	Н	Χ
Temporary Sector Group Unprotection(4)	Х	Х	Х	X	Х	X	X	Х	X	X	VID	Х
Flash Hardware	Х	Н	Χ	X	Х	Х	Х	Х	HIGH-Z	HIGH-Z		Х
Reset	^	Х	L	^	^	^	^	^	пібп-2	півн-2	L	^
Boot Block Sector Write Protection	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L

Legend: $L = V_{IL}$, $H = V_{IH}$, $X = V_{IL}$ or V_{IH} . See DC Characteristics for voltage levels.

Notes:

- 1. Other operations except for indicated this column are inhibited.
- 2. $\overline{\text{WE}}$ can be V_{IL} if $\overline{\text{OE}}$ is V_{IL} , $\overline{\text{OE}}$ at V_{IH} initiates the write operations.
- 3. Do not apply $\overline{CEf} = V_{IL}$, $\overline{CE1s} = V_{IL}$ and $CE2s = V_{IH}$ at a time.
- 4. It is also used for the extended sector group protections.
- 5. Protect of 2 of 8 Kbytes on both ends of each boot sector.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit		
Farameter	Symbol	Min.	Max.	Onit	
Storage Temperature	Tstg	– 55	+125	°C	
Ambient Temperature with Power Applied	Та	-30	+85	°C	
Voltage with Respect to Ground All pins	VIN, VOUT	-0.3	Vccf +0.3	V	
except RESET,WP/ACC *1	VIN, VOUI	-0.3	Vccs +0.3	V	
Vccf/Vccs Supply *1	Vccf, Vccs	-0.3	+3.3	V	
RESET *2	Vin	-0.5	+ 13.0	V	
WP/ACC *3	Vin	-0.5	+10.5	V	

^{*1} Minimum DC voltage on input or I/O pins is –0.3 V. During voltage transitions, input or I/O pins may undershoot Vss to –2.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is Vccf + 0.3 V or Vccs + 0.3 V. During voltage transitions, input or I/O pins may overshoot to Vccf + 2.0 V or Vccs + 2.0 V for periods of up to 20 ns.

- *2: Minimum DC input voltage on RESET pin is -0.5 V. During voltage transitions, RESET pins may undershoot Vss to -2.0 V for periods of up to 20 ns. Voltage difference between input and supply voltage (VIN-Vccf or Vccs) does not exceed +9.0 V. Maximum DC input voltage on RESET pins is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns.
- *3: Minimum DC input voltage on WP/ACC pin is –0.5 V. During voltage transitions, WP/ACC pin may undershoot Vss to –2.0 V for periods of up to 20 ns. Maximum DC input voltage on WP/ACC pin is +10.5 V which may overshoot to +12.0 V for periods of up to 20 ns, when Vccf is applied.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit	
Farameter	Symbol	Min.	Max.	Offic
Ambient Temperature	Та	-30	+85	°C
Vccf/Vccs Supply Voltages	Vccf, Vccs	+2.7	+3.1	V

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

Note: Operating ranges define those limits between which the functionality of the device is guaranteed.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

Parameter	Cumbal	Co	nditions			Value		Unit
Parameter	Symbol	Co	nations		Min.	Тур.	Max.	Unit
Input Leakage Current	Iu	VIN = Vss to Vccf, Vccs			-1.0	_	+1.0	μΑ
Output Leakage Current	ILO	Vout = Vss to Vccf,	Vccs		-1.0	_	+1.0	μΑ
RESET Inputs Leakage Current	Ішт	Vccf = Vccf Max., \ RESET = 12.5 V	/ccs = Vccs Max.	,	_	_	35	μΑ
Acc Input Leakage Current	ILIA	Vccf = Vccf Max., \ WP/ACC = Vacc M		,	_	_	20	mA
			tcycle = 5 MHz	Word		_	18	mA
Flash Vcc Active Current	Icc ₁ f	Œf = Vı∟,	tcycle = 1 MHz	Word	_	_	4	
(Read) *1	ICCII	OE = VIH	tcycle = 5 MHz	Byte	_	_	16	mA
			tcycle = 1 MHz	Byte	_	_	4	mA
Flash Vcc Active Current (Program/Erase) *2	Icc2f	$\overline{CE}f = V_{IL}, \overline{OE} = V_{I}$	н		_	_	35	mA
Flash Vcc Active Current	lcc3f	$\overline{CE}f = V_{IL}, \overline{OE} = V_{I}$		Word	_	_	53	mA
(Read-While-Program) *5	ICC3I	CEI = VIL, OE = VI	CET = VIL, OE = VIH			_	51	mA
Flash Vcc Active Current (Read-While-Erase) *5	Icc4f	$\overline{CEf} = V_{IL}, \overline{OE} = V_{IH}$ Word Byte				_ 	53 51	mA mA
Flash Vcc Active Current (Erase-Suspend-Program)	lccsf	$\overline{CE}f = V_{IL}, \overline{OE} = V_{I}$	$\overline{CEf} = V_{IL}, \overline{OE} = V_{IH}$			_	40	mA
SRAM Vcc Active Current	Icc1S	$\frac{\text{Vccs} = \text{Vccs Max.,}}{\text{CE1s} = \text{V}_{\text{IL}}},$ $\text{CE2s} = \text{V}_{\text{IH}}$	tcycle =10 MHz		_	_	40	mA
		CE1 s = 0.2 V,	tcycle = 10 MHz		_	_	40	mA
SRAM Vcc Active Current	Icc2S	CE2s = Vccs - 0.2 V	tcycle = 1 MHz		_	_	8	mA
Flash Vcc Standby Current	I _{SB1} f	Vccf = Vccf Max., $\overline{0}$ RESET = Vccf ± 0 WP/ACC = Vccf± (.3 V,	V	_	1	5	μА
Flash Vcc Standby Current (RESET)	I _{SB2} f	Vccf = Vccf Max., I WP/ACC = Vccf±		.3 V,	_	1	5	μΑ
Flash Vcc Current (Automatic Sleep Mode) *3	Isвзf	Vccf = Vccf Max., \(\overline{CE} f = Vss \pm 0.3 \) V \(\overline{RESET} = Vccf \pm 0.3 \) V, \(\overline{VP} / ACC = Vccf \pm 0.3 \) V or Vss \pm 0.3 V			_	1	5	μΑ
SRAM Vcc Standby Current	I _{SB1} S	<u>CE1s > Vccs - 0.2 V, CE2s > Vccs - 0.2 V</u> LB = <u>UB > Vccs-0.2 V or ≤ 0.2V</u>			_	_	10	μА
SRAM Vcc Standby Current	I _{SB2} S	CE2s < 0.2 V	<u>CE1</u> s ≥ Vccs − 0.2 V or ≤ 0.2V,			_	10	μА

Parameter	Symbol	Conditions			Value		Unit
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Offic
Input Low Level	VIL	_		-0.3	_	0.5	V
Input High Level	VIH	_		2.4	_	Vcc+0.3	>
Voltage for Sector Protection, and Temporary Sector Unpro- tection (RESET) *4	VID	_		11.5	12	12.5	V
Voltage for Program Acceleration (WP/ACC) *4	Vacc	_	_		9.0	9.5	٧
Output Low Voltage Level	Vol	Vccf = Vccf Min., loL=4.0 mA	Flash	_	_	0.45	V
Output Low Voltage Level	VOL	Vccs = Vccs Min., loL=1.0 mA	SRAM	_	_	0.4	V
Output High Voltage Level Vo		Vccf = Vccf Min., IoH=-0.1 mA	Flash	0.85× Vccf	_	_	٧
		Vccs = Vccs Min., IoH=-0.5 mA	SRAM	2.2	_	_	V
Flash Low Vccf Lock-Out Voltage	VLKO	_	_		2.4	2.5	٧

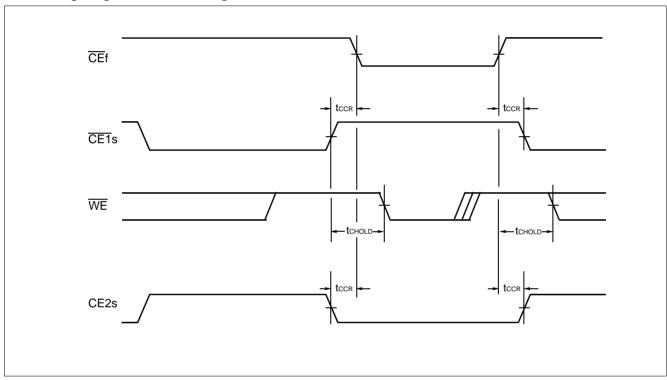
^{*1:} The Icc current listed includes both the DC operating current and the frequency dependent component.

^{*2:} lcc active while Embedded Algorithm (program or erase) is in progress.

^{*3:} Automatic sleep mode enables the low power mode when address remains stable for 150 ns.

^{*4:} Applicable for only Vccf applying.

^{*5:} Embedded Alogorithm (program or erase) is in progress. (@5 MHz)


^{*6:} Vcc indicates lower of Vccf or Vccs.

2. AC Characteristics

• CE Timing

Parameter	Syn	nbol	Condition	Va	Unit		
Farameter	JEDEC	Standard	Condition	Min.	Max.	Oilit	
CE Recover Time	_	tccr	_	0	_	ns	
CE Hold Time	_	t chold	_	3	_	ns	

• Timing Diagram for alternating SRAM to Flash

■ FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY

- Sixteen 4K words, and one hundred twenty-six 32 K words.
- Individual-sector, multiple-sector, or bulk-erase capability.

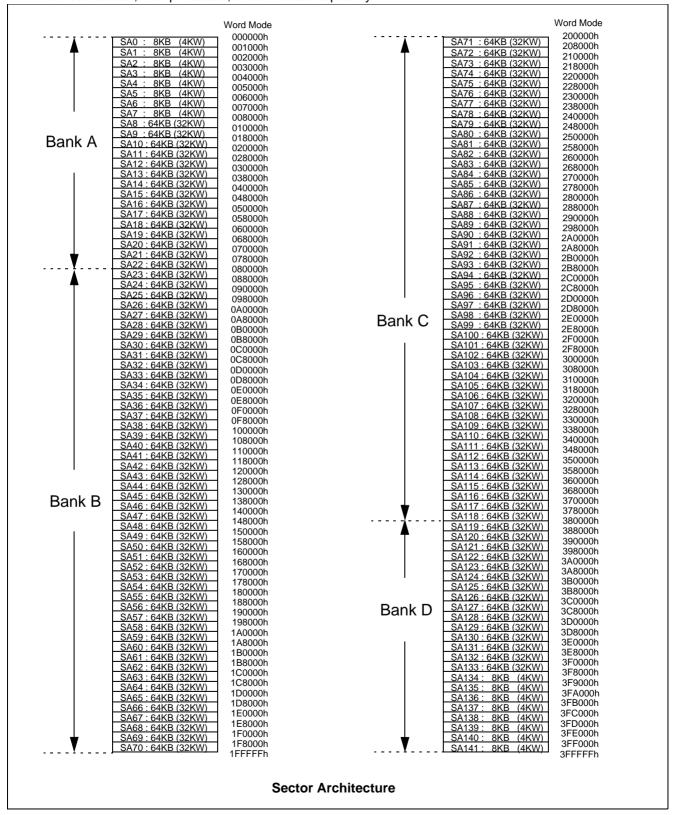


Table 1 FlexBank™ Architecture

Bank				Bank 2
Splits	Volume	Combination	Volume	Combination
1	8 Mbit	Bank A	56 Mbit	Remainder (Bank B, C, D)
2	24 Mbit	Bank B	40 Mbit	Remainder (Bank A, C, D)
3	24 Mbit	Bank C	40 Mbit	Remainder (Bank A, B, D)
4	8 Mbit	Bank D	56 Mbit	Remainder (Bank A, B, C)

Table 2 Example of Virtual Banks Combination

Bank		Ba	nk 1		Ва	ank 2
Splits	Volume	Combination	Sector Size	Volume	Combination	Sector Size
					Bank B	
			8 × 8 Kbyte/4 Kword		+	8×8 Kbyte/4 Kword
1	8 Mbit	Bank A	+	56 Mbit	Bank C	+
			15 × 64 Kbyte/32 Kword		+	111 × 64 Kbyte/32 Kword
					Bank D	
		Bank A	16 × 8 Kbyte/4 Kword		Bank B	
2	16 Mbit	+	+	48 Mbit	+	96 × 64 Kbyte/32 Kword
		Bank D	30 × 64 Kbyte/32 Kword		Bank C	
					Bank A	
					+	16 × 8 Kbyte/4 Kword
3	24 Mbit	Bank B	48 × 64 Kbyte/32 Kword	40 Mbit	Bank C	+
					+	78 × 64 Kbyte/32 Kword
					Bank D	
		Bank A	8 × 8 Kbyte/4 Kword		Bank C	8 × 8 Kbyte/4 Kword
4	32 Mbit	+	+	32 Mbit	+	+
		Bank B	63 × 64 Kbyte/32 Kword		Bank D	63 × 64 Kbyte/32 Kword

Note: When multiple sector erase over several banks is operated, the system cannot read out of the bank to which a sector being erased belongs. For example, suppose that erasing is taking place at both Bank A and Bank B, neither Bank A nor Bank B is read out (they would output the sequence flag once they were selected.)

Meanwhile the system would get to read from either Bank C or Bank D.

Table 3 Simultaneous Operation

Case	Bank 1 Status	Bank 2 Status			
1	Read mode	Read mode			
2	Read mode	Autoselect mode			
3	Read mode	Program mode			
4	Read mode	Erase mode *			
5	Autoselect mode	Read mode			
6	Program mode	Read mode			
7	Erase mode *	Read mode			

^{*:} By writing erase suspend command on the bank address of sector being erased, the erase operation gets suspended so that it enables reading from or programming the remaining sectors.

Note: Bank 1 and Bank 2 are divided for the sake of convenience at Simultaneous Operation. Actually, the Bank consists of 4 banks, Bank A, Bank B, BankC and Bank D. Bank Address (BA) meant to specify each of the Banks.

Table 4 Sector Address Tables

					S	ector /	Addres	SS				Address Range
Bank	Sector	Ban	k Add	ress								Word Mode
		A 21	A ₂₀	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	word wode
	SA0	0	0	0	0	0	0	0	0	0	0	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	0	0	1	001000h to 001FFFh
	SA2	0	0	0	0	0	0	0	0	1	0	002000h to 002FFFh
	SA3	0	0	0	0	0	0	0	0	1	1	003000h to 003FFFh
	SA4	0	0	0	0	0	0	0	1	0	0	004000h to 004FFFh
	SA5	0	0	0	0	0	0	0	1	0	1	005000h to 005FFFh
	SA6	0	0	0	0	0	0	0	1	1	0	006000h to 006FFFh
	SA7	0	0	0	0	0	0	0	1	1	1	007000h to 007FFFh
	SA8	0	0	0	0	0	0	1	Х	Х	Χ	008000h to 00FFFFh
	SA9	0	0	0	0	0	1	0	Х	Х	X	010000h to 017FFFh
	SA10	0	0	0	0	0	1	1	Х	Х	Х	018000h to 01FFFFh
Bank A	SA11	0	0	0	0	1	0	0	Х	Х	Х	020000h to 027FFFh
	SA12	0	0	0	0	1	0	1	Х	Х	X	028000h to 02FFFFh
	SA13	0	0	0	0	1	1	0	Х	Х	Х	030000h to 037FFFh
	SA14	0	0	0	0	1	1	1	Х	Х	Х	038000h to 03FFFFh
	SA15	0	0	0	1	0	0	0	Х	Х	Х	040000h to 047FFFh
	SA16	0	0	0	1	0	0	1	Х	Х	Х	048000h to 04FFFFh
	SA17	0	0	0	1	0	1	0	Х	Х	Х	050000h to 057FFFh
	SA18	0	0	0	1	0	1	1	Х	Х	Х	058000h to 05FFFFh
	SA19	0	0	0	1	1	0	0	Х	Х	Х	060000h to 067FFFh
	SA20	0	0	0	1	1	0	1	Х	Х	Х	068000h to 06FFFFh
	SA21	0	0	0	1	1	1	0	Х	Х	Х	070000h to 077FFFh
	SA22	0	0	0	1	1	1	1	Х	Х	X	078000h to 07FFFFh

(Continued)

					S	ector A	Addres	SS				Address Range	
Bank	Sector	Ban	k Add	ress									
		A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	Word Mode	
	SA23	0	0	1	0	0	0	0	Х	Х	Х	080000h to 087FFFh	
	SA24	0	0	1	0	0	0	1	Х	Х	Х	088000h to 08FFFFh	
	SA25	0	0	1	0	0	1	0	Х	Х	Х	090000h to 097FFFh	
	SA26	0	0	1	0	0	1	1	Χ	Χ	Х	098000h to 09FFFFh	
	SA27	0	0	1	0	1	0	0	Х	Х	Х	0A0000h to 0A7FFFh	
	SA28	0	0	1	0	1	0	1	Х	Х	Х	0A8000h to 0AFFFFh	
	SA29	0	0	1	0	1	1	0	Х	Х	Х	0B0000h to 0B7FFFh	
	SA30	0	0	1	0	1	1	1	Х	Х	Х	0B8000h to 0BFFFFI	
	SA31	0	0	1	1	0	0	0	Х	Х	Х	0C0000h to 0C7FFFI	
	SA32	0	0	1	1	0	0	1	Χ	Χ	Х	0C8000h to 0CFFFFI	
	SA33	0	0	1	1	0	1	0	Χ	Χ	Х	0D0000h to 0D7FFFI	
	SA34	0	0	1	1	0	1	1	Χ	Χ	Х	0D8000h to 0DFFFFI	
	SA35	0	0	1	1	1	0	0	Х	Х	Х	0E0000h to 0E7FFFh	
	SA36	0	0	1	1	1	0	1	Х	Х	Х	0E8000h to 0EFFFFh	
	SA37	0	0	1	1	1	1	0	Х	Х	Х	0F0000h to 0F7FFFh	
	SA38	0	0	1	1	1	1	1	Х	Х	Х	0F8000h to 0FFFFFh	
	SA39	0	1	0	0	0	0	0	Х	Х	Х	100000h to 107FFFh	
	SA40	0	1	0	0	0	0	1	Х	Х	Х	108000h to 10FFFFh	
	SA41	0	1	0	0	0	1	0	Х	Х	Х	110000h to 117FFFh	
	SA42	0	1	0	0	0	1	1	Х	Х	Х	118000h to 11FFFFh	
	SA43	0	1	0	0	1	0	0	Х	Х	Х	120000h to 127FFFh	
	SA44	0	1	0	0	1	0	1	Х	Х	Х	128000h to 12FFFFh	
	SA45	0	1	0	0	1	1	0	Х	Х	Х	130000h to 137FFFh	
) I- D	SA46	0	1	0	0	1	1	1	Х	Х	Х	138000h to 13FFFFh	
Bank B	SA47	0	1	0	1	0	0	0	Х	Х	Х	140000h to 147FFFh	
	SA48	0	1	0	1	0	0	1	Х	Х	Х	148000h to 14FFFFh	
	SA49	0	1	0	1	0	1	0	Х	Х	Х	150000h to 157FFFh	
	SA50	0	1	0	1	0	1	1	Х	Х	Х	158000h to 15FFFFh	
	SA51	0	1	0	1	1	0	0	Х	Х	Х	160000h to 167FFFh	
	SA52	0	1	0	1	1	0	1	Х	Х	Х	168000h to 16FFFFh	
	SA53	0	1	0	1	1	1	0	Х	Х	Х	170000h to 177FFFh	
	SA54	0	1	0	1	1	1	1	Х	Х	Х	178000h to 17FFFFh	
	SA55	0	1	1	0	0	0	0	Х	Х	Х	180000h to 187FFFh	
	SA56	0	1	1	0	0	0	1	Х	Х	Х	188000h to 18FFFFh	
	SA57	0	1	1	0	0	1	0	X	X	X	190000h to 197FFFh	
	SA58	0	1	1	0	0	1	1	X	X	X	198000h to 19FFFFh	
	SA59	0	1	1	0	1	0	0	Х	Х	Х	1A0000h to 1A7FFFh	
	SA60	0	1	1	0	1	0	1	X	X	X	1A8000h to 1AFFFFh	
	SA61	0	1	1	0	1	1	0	X	X	X	1B0000h to 1B7FFFh	
	SA62	0	1	1	0	1	1	1	X	X	X	1B8000h to 1BFFFFh	
	SA63	0	1	1	1	0	0	0	X	X	X	1C0000h to 1C7FFFI	
	SA64	0	1	1	1	0	0	1	X	X	X	1C8000h to 1CFFFF	
	SA65	0	1	1	1	0	1	0	X	X	X	1D0000h to 1D7FFFh	
	SA66	0	1	1	1	0	1	1	X	X	X	1D8000h to 1DFFFFI	
	SA67	0	1	1	1	1	0	0	X	X	X	1E0000h to 1E7FFFh	
	SA68	0	1	1	1	1	0	1	X	X	X	1E8000h to 1EFFFFh	
	SA69	0	1	1	1	1	1	0	X	X	X	1F0000h to 1F7FFFh	
	SA70	0	1	1	1	1	1	1	X	X	X	1F8000h to 1FFFFFh	

(Continued)

					Address Range							
Bank	Sector	Ban	k Add	ress								Word Mode
		A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	Word Mode
	SA71	1	0	0	0	0	0	0	Х	Х	Х	200000h to 207FFFh
	SA72	1	0	0	0	0	0	1	Х	Х	Х	208000h to 20FFFFh
	SA73	1	0	0	0	0	1	0	Х	Х	Х	210000h to 217FFFh
	SA74	1	0	0	0	0	1	1	Х	Х	Х	218000h to 21FFFFh
	SA75	1	0	0	0	1	0	0	Х	Х	Х	220000h to 227FFFh
	SA76	1	0	0	0	1	0	1	Х	Х	Х	228000h to 22FFFFh
	SA77	1	0	0	0	1	1	0	Х	Х	Х	230000h to 237FFFh
	SA78	1	0	0	0	1	1	1	Х	Х	Х	238000h to 23FFFFh
	SA79	1	0	0	1	0	0	0	Х	Х	Х	240000h to 247FFFh
	SA80	1	0	0	1	0	0	1	Х	Х	Х	248000h to 24FFFFh
	SA81	1	0	0	1	0	1	0	Х	Х	Х	250000h to 257FFFh
	SA82	1	0	0	1	0	1	1	Х	Х	Х	258000h to 25FFFFh
	SA83	1	0	0	1	1	0	0	Х	Х	Х	260000h to 267FFFh
	SA84	1	0	0	1	1	0	1	Х	Х	Х	268000h to 26FFFFh
	SA85	1	0	0	1	1	1	0	Х	Х	Х	270000h to 277FFFh
	SA86	1	0	0	1	1	1	1	Х	Х	Х	278000h to 27FFFFh
	SA87	1	0	1	0	0	0	0	Х	Х	Х	280000h to 287FFFh
	SA88	1	0	1	0	0	0	1	Х	Х	Х	288000h to 28FFFFh
	SA89	1	0	1	0	0	1	0	Х	Х	Х	290000h to 297FFFh
	SA90	1	0	1	0	0	1	1	X	X	X	298000h to 29FFFFh
	SA91	1	0	1	0	1	0	0	X	X	X	2A0000h to 2A7FFFh
	SA92	1	0	1	0	1	0	1	X	X	X	2A8000h to 2AFFFFh
	SA93	1	0	1	0	1	1	0	X	X	X	2B0000h to 2B7FFFh
	SA94	1	0	1	0	1	1	1	X	X	X	2B8000h to 2BFFFFh
Bank C	SA95	1	0	1	1	0	0	0	X	X	X	2C0000h to 2C7FFFh
	SA96	1	0	1	1	0	0	1	X	X	X	2C8000h to 2CFFFFh
	SA97	1	0	1	1	0	1	0	X	X	X	2D0000h to 2D7FFFh
	SA98	1	0	1	1	0	1	1	X	X	X	2D8000h to 2DFFFFh
	SA99	1	0	1	1	1	0	0	X	X	X	2E0000h to 2E7FFFh
	SA100	1	0	1	1	1	0	1	X	X	X	2E8000h to 2EFFFFh
	SA101	1	0	1	1	1	1	0	X	X	X	2F0000h to 2F7FFFh
	SA101	1	0	1	1	1	1	1	X	X	X	2F8000h to 2FFFFFh
	SA103	1	1	0	0	0	0	0	X	X	X	300000h to 307FFFh
	SA104	1	1	0	0	0	0	1	X	X	X	308000h to 30FFFFh
	SA104 SA105	1	1	0	0	0	1	0	X	X	X	310000h to 317FFFh
	SA105	1	1	0	0	0	1	1	X	X	X	318000h to 31FFFFh
		1	1	0	0	1	0	0				320000h to 327FFFh
	SA107 SA108	1	1	0	0	1	0	1	X	X	X	328000h to 32FFFFh
	SA100	1	1	0	0	1	1	0	X	X	X	330000h to 337FFFh
	SA109 SA110	1	1	0	0	1	1	1	X	X	X	338000h to 33FFFFh
		1				0			X		X	
	SA111 SA112	1	1	0	1	0	0	0	X	X	X	340000h to 347FFFh 348000h to 34FFFFh
			1		1							
	SA113	1	1	0	1	0	1	0	X	X	X	350000h to 357FFFh
	SA114	1	1	0	1	0	1	1	X	X	X	358000h to 35FFFFh
	SA115	1	1	0	1	1	0	0	X	X	X	360000h to 367FFFh
	SA116	1	1	0	1	1	0	1	X	X	X	368000h to 36FFFFh
	SA117	1	1	0	1	1	1	0	X	X	X	370000h to 377FFFh 378000h to 37FFFFh

					S	ector /	Addres	SS				Address Range
Bank	Sector	Ban	k Add	ress								Moral Mode
		A 21	A 20	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	Word Mode
	SA119	1	1	1	0	0	0	0	Х	Х	Х	380000h to 387FFFh
	SA120	1	1	1	0	0	0	1	Х	Х	Х	388000h to 38FFFFh
	SA121	1	1	1	0	0	1	0	Х	Х	Х	390000h to 397FFFh
	SA122	1	1	1	0	0	1	1	Х	Х	Х	398000h to 39FFFFh
	SA123	1	1	1	0	1	0	0	Х	Х	Х	3A0000h to 3A7FFFh
	SA124	1	1	1	0	1	0	1	Х	Х	Х	3A8000h to 3AFFFFh
	SA125	1	1	1	0	1	1	0	Х	Х	Х	3B0000h to 3B7FFFh
	SA126	1	1	1	0	1	1	1	Х	Х	Х	3B8000h to 3BFFFFh
	SA127	1	1	1	1	0	0	0	Х	Х	Х	3C0000h to 3C7FFFh
	SA128	1	1	1	1	0	0	1	Х	Х	Х	3C8000h to 3CFFFFh
	SA129	1	1	1	1	0	1	0	Х	Х	Х	3D0000h to 3D7FFFh
Bank D	SA130	1	1	1	1	0	1	1	Х	Х	Х	3D8000h to 3DFFFFh
	SA131	1	1	1	1	1	0	0	Х	Х	Х	3E0000h to 3E7FFFh
	SA132	1	1	1	1	1	0	1	Х	Х	Х	3E8000h to 3EFFFFh
	SA133	1	1	1	1	1	1	0	Х	Х	Х	3F0000h to 3F7FFFh
	SA134	1	1	1	1	1	1	1	0	0	0	3F8000h to 3F8FFFh
	SA135	1	1	1	1	1	1	1	0	0	1	3F9000h to 3F9FFFh
	SA136	1	1	1	1	1	1	1	0	1	0	3FA000h to 3FAFFFh
	SA137	1	1	1	1	1	1	1	0	1	1	3FB000h to 3FBFFFh
	SA138	1	1	1	1	1	1	1	1	0	0	3FC000h to 3FCFFFh
	SA139	1	1	1	1	1	1	1	1	0	1	3FD000h to 3FDFFFh
	SA140	1	1	1	1	1	1	1	1	1	0	3FE000h to 3FEFFFh
	SA141	1	1	1	1	1	1	1	1	1	1	3FF000h to 3FFFFFh

Table 5 Sector Group Addresses

Sector Group	A 21	A ₂₀	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	Sectors
SGA0	0	0	0	0	0	0	0	0	0	0	SA0
SGA1	0	0	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	0	0	1	1	1	SA7
						0	1				
SGA8	0	0	0	0	0	1	0	Х	Х	Х	SA8 to SA10
SGA9	0	0	0	0	1	Х	Х	Х	Х	Х	SA11 to SA14
SGA10	0	0	0	1	0	Х	Х	Х	Х	Х	SA15 to SA18
SGA11	0	0	0	1	1	Х	Х	Х	Х	Х	SA19 to SA22
SGA12	0	0	1	0	0	Х	Х	Х	Х	Х	SA23 to SA26
SGA13	0	0	1	0	1	Х	Х	Х	Х	Х	SA27 to SA30
SGA14	0	0	1	1	0	Х	Х	Х	Х	Х	SA31 to SA34
SGA15	0	0	1	1	1	Х	Х	Х	Х	Х	SA35 to SA38
SGA16	0	1	0	0	0	Х	Х	Х	Х	Х	SA39 to SA42
SGA17	0	1	0	0	1	Х	Х	Х	Х	Х	SA43 to SA46
SGA18	0	1	0	1	0	Х	Х	Х	Х	Х	SA47 to SA50
SGA19	0	1	0	1	1	Х	Х	Х	Х	Х	SA51 to SA54
SGA20	0	1	1	0	0	Х	Х	Х	Х	Х	SA55 to SA58
SGA21	0	1	1	0	1	Х	Х	Х	Х	Х	SA59 to SA62
SGA22	0	1	1	1	0	Х	Х	Х	Х	Х	SA63 to SA66
SGA23	0	1	1	1	1	Х	Х	Х	Х	Х	SA67 to SA70
SGA24	1	0	0	0	0	Х	Х	Х	Х	Х	SA71 to SA74
SGA25	1	0	0	0	1	Х	Х	Х	X	Х	SA75 to SA78
SGA26	1	0	0	1	0	Х	Х	Х	X	Х	SA79 to SA82
SGA27	1	0	0	1	1	Х	Х	Х	Х	Х	SA83 to SA86
SGA28	1	0	1	0	0	Х	X	Х	Х	Х	SA87 to SA90
SGA29	1	0	1	0	1	Х	X	Х	Х	Х	SA91 to SA94
SGA30	1	0	1	1	0	Х	X	Х	Х	Х	SA95 to SA98
SGA31	1	0	1	1	1	Х	X	Х	Х	Х	SA99 to SA102
SGA32	1	1	0	0	0	Х	X	Х	Х	Х	SA103 to SA106
SGA33	1	1	0	0	1	Х	X	Х	X	Х	SA107 to SA110
SGA34	1	1	0	1	0	Х	X	Х	Х	Х	SA111 to SA114
SGA35	1	1	0	1	1	Х	X	Х	Х	Х	SA115 to SA118
SGA36	1	1	1	0	0	X	X	Х	X	Х	SA119 to SA122
SGA37	1	1	1	0	1	X	X	Х	X	Х	SA123 to SA126
SGA38	1	1	1	1	0	Х	X	Х	Х	Х	SA127 to SA130
						0	0				
SGA39	1	1	1	1	1	0	1	Х	Х	X	SA131 to SA133
						1	0				
SGA40	1	1	1	1	1	1	1	0	0	0	SA134
SGA41	1	1	1	1	1	1	1	0	0	1	SA135
SGA42	1	1	1	1	1	1	1	0	1	0	SA136
SGA43	1	1	1	1	1	1	1	0	1	1	SA137
SGA44	1	1	1	1	1	1	1	1	0	0	SA138
SGA45	1	1	1	1	1	1	1	1	0	1	SA139
SGA46	1	1	1	1	1	1	1	1	1	0	SA140
SGA47	1	1	1	1	1	1	1	1	1	1	SA141

Table 6 Sector Group Protection Verify Autoselect Codes Table

Туре		A ₂₁ to A ₁₂	A 6	Аз	A 2	A 1	Ao	A -1*1	Code (HEX)
Manufacture's Code	9	BA*3	VIL	VıL	VIL	VIL	VIL	VIL	04h
Device Code	Byte	BA*3	VIL	VIL	VIL	VIL	ViH	VIL	7Eh
Device Code	Word	DA.	VIL	VIL	VIL	VIL	VIH	Х	227Eh
	Byte	BA*3	VIL	ViH	VIH	VIH	VIL	VIL	02h
Extended Device	Word	DA.	VIL	VIH	VIII	VIH	VIL	Х	2202h
Code*4	Byte	BA*3	VIL	ViH	ViH	VIH	ViH	VIL	01h
	Word	DA.	VIL	VIH	VIH	VIH	VIH	Х	2201h
Sector Group Prote	ction	Sector Group Addresses	VIL	VIL	VıL	Vıн	VIL	VIL	01h*2
Protect Device	Byte	BA	VIL	1/	V/	V	V	VIL	01h
Code*5	Word	ВΑ	VIL	VIL	Vıl	Vін	ViH	Х	0001h

^{*1 :} A-1 is for Byte mode.

^{*2 :} Outputs 01h at protected sector group addresses and outputs 00h at unprotected sector group addresses.

^{*3:} When V_{ID} is applied to A₉, both Bank 1 and Bank 2 are put into Autoselect mode, which makes simultaneous operation unable to be executed. Consequently, specifying the bank address is not required. However, the bank address needs to be indicated when Autoselect mode is read out at command mode, because then it enables to activate simultaneous operation.

^{*4 :} At WORD mode, a read cycle at address (BA) 01h (at BYTE mode, (BA) 02h) outputs device code. When 227Eh (at BYTE mode, 7Eh) is output, it indicates that two additional codes, called Extended Device Codes, will be required. Therefore the system may continue reading out these Extended Device Codes at the address of (BA) 0Eh (at BYTE mode, (BA) 1Ch), as well as at (BA) 0Fh (at BYTE mode, (BA) 1Eh).

^{*5:} Boot Block Sector Protect Status.

Table 7 Flash Memory Command Definitions

Comma		Bus Write Cy-	First Write (Second Write (Third Write (Fourth Read/ Cyc	Write	Fifth Write (Sixth Write (
Sequen	ice	cles Req' d	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data
Read/ Reset *1	Word Byte	1	XXXh	F0h	_	_	_	_	_	_	_	_	_	_
Read/	Word	0	555h	A A I-	2AAh		555h	E01-	DΛ					
Reset*1	Byte	3	AAAh	AAh	555h	55h	AAAh	F0h	RA	RD		_	_	_
Autoselect	Word	3	555h	AAh	2AAh	55h	(BA) 555h	90h						
Autoseiect	Byte	3	AAAh	AAII	555h	5511	(BA) AAAh	9011	_	_	_	_	_	_
Program	Word Byte	4	555h AAAh	AAh	2AAh 555h	55h	555h AAAh	A0h	PA	PD	_	_	_	_
Program Suspend	1	1	BA	B0h	_	_	_		_	_	_	_	_	_
Program Re	esume	1	BA	30h		_		_	_	_	_	_		_
Chip Erase	Word Byte	6	555h AAAh	AAh	2AAh 555h	55h	555h AAAh	80h	555h AAAh	AAh	2AAh 555h	55h	555h AAAh	10h
0 1	Word		555h		2AAh		555h		555h		2AAh		7/7/11	
Sector Erase	Byte	6	AAAh	AAh	555h	55h	AAAh	80h	AAAh	AAh	555h	55h	SA	30h
Erase Susp		1	BA	B0h										
Erase Resu		1	BA	30h										
	Word	'	555h	3011	2AAh		555h							
Set to Fast Mode	Byte	3	AAAh	AAh	555h	55h	AAAh	20h	_		_		_	_
Fast	Word	0	VVVL	A 0.b	DΛ	DD								
Program *2	Byte	2	XXXh	A0h	PA	PD	_		_		_		_	
Resetfrom	Word					*6								
Fast Mode *2	Byte	2	BA	90h	XXXh	F0h	_	_	_	_	_		_	_
Extended Sector	Word													
Group Protection	Byte	4	XXXh	60h	SPA	60h	SPA	40h	SPA	SD	_	_	_	_
Query *4	Word	1	(BA) 55h	98h		_		_	_	_	_	_	_	_
	Byte	·	(BA) AAh	3311										

- *1: This command is valid during Fast Mode.
- *2: This command is valid while $\overline{RESET} = V_{ID}$.
- *3: This command is valid during Hi-ROM mode.
- *4: The data "00h" is also acceptable.
- Notes: 1. Address bits A_{21} to $A_{11} = X =$ "H" or "L" for all address commands except or Program Address (PA), Sector Address (SA), and Bank Address (BA), and Sector Group Address (SPA).
 - 2. Bus operations are defined in DEVICE BUS OPERATION.
 - 3. RA =Address of the memory location to be read
 - PA = Address of the memory location to be programmed Addresses are latched on the falling edge of the write pulse.
 - SA = Address of the sector to be erased. The combination of A_{21} , A_{20} , A_{19} , A_{18} , A_{17} , A_{16} , A_{15} , A_{14} , A_{13} , and A_{12} will uniquely select any sector.
 - BA = Bank Address (A₂₁, A₂₀, A₁₉)
 - 4. RD = Data read from location RA during read operation.
 - PD = Data to be programmed at location PA. Data is latched on the falling edge of write pulse.
 - 5. SPA =Sector group address to be protected. Set sector group address and $(A_6, A_3, A_2, A_1, A_0) = (0, 0, 0, 1, 0)$.
 - SD = Sector group protection verify data. Output 01h at protected sector group addresses and output 00h at unprotected sector group addresses.
 - 6. HRA = Address of the Hi-ROM area: 000000h to 00007Fh
 - 7. HRBA = Bank Address of the Hi-ROM area $(A_{21} = A_{20} = A_{19} = V_{IL})$
 - 8. The system should generate the following address patterns: 555h or 2AAh to addresses A₁₀ to A₀
 - 9. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
 - 10. The command combinations not described in this table are illegal.

■ ELECTRICAL CHARACTERISTICS (AC Characteristics)

• Read Only Operations Characteristics (Flash)

Parameter	Syn	nbol	Condition	Value	(Note)	Unit
Farameter	JEDEC	Standard	Condition	Min.	Max.	Ullit
Read Cycle Time	t avav	t RC	_	70	_	ns
Address to Output Delay	tavqv	tacc	CEf = V _{IL} OE = V _{IL}	_	70	ns
Chip Enable to Output Delay	t ELQV	tcef	OE = V _I L	_	70	ns
Output Enable to Output Delay	t GLQV	t oe	_	_	30	ns
Chip Enable to Output High-Z	t ehqz	t DF	_	_	25	ns
Output Enable to Output High-Z	t GHQZ	t DF	_	_	25	ns
Output Hold Time From Addresses, CEf or OE, Whichever Occurs First	taxqx	tон	_	0	_	ns
CEf to BYTE Switching Low or High	_	telfl telfh	_	_	20	μs
RESET Pin Low to Read Mode	_	t READY	_	_	20	μs

Note: Test Conditions-Output Load:1 TTL gate and 30 pF

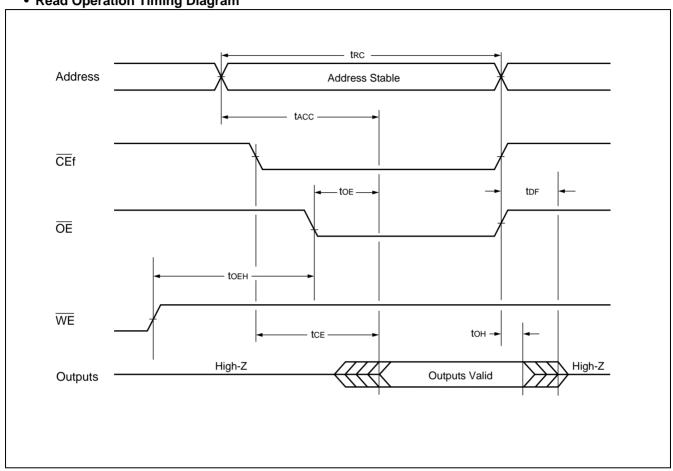
Input rise and fall times: 5 ns Input pulse levels: 0.0 V to Vccf Timing measurement reference level

Input: 0.5×Vccf Output: 0.5×Vccf

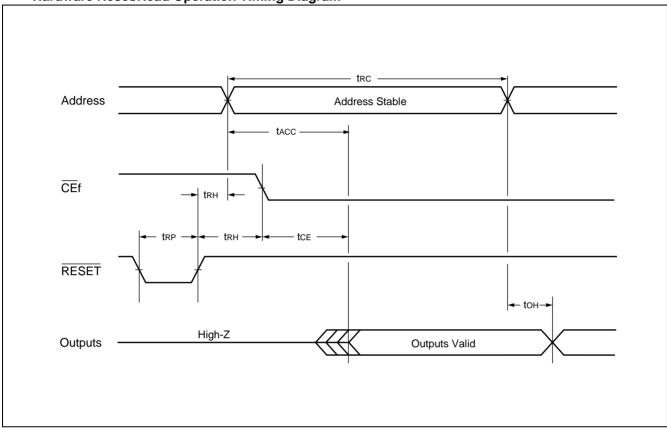
• Write/Erase/Program Operations (Flash)

	Parameter		Sy	mbol		Value		Unit
	Parameter		JEDEC	Standard	Min.	Тур.	Max.	
Write Cycle Tim	е		t avav	twc	70	_	_	ns
Address Setup	Time		t avwl	tas	0	_		ns
Address Setup Polling	Fime to OE Low During	g Toggle Bit	_	taso	12	_	_	ns
Address Hold T	ime		twlax	t ah	45	_	_	ns
Address Hold T Toggle Bit Pollir	ime from CEf or OE H	igh During	_	t aht	0	_	_	ns
Data Setup Tim	е		t DVWH	tos	30			ns
Data Hold Time			twhox	t DH	0		_	ns
Output	Read				0	_	_	ns
Enable Hold Time	Toggle and Data Pol	lling	_	tоен	10	_		ns
CEf High During	Toggle Bit Polling		_	t CEPH	20	_	_	ns
OE High During	Toggle Bit Polling		_	tоерн	20	_		ns
Read Recover 7	Time Before Write		t GHWL	t ghwL	0	_		ns
Read Recover 7	Time Before Write		t GHEL	t GHEL	0		_	ns
CEf Setup Time			t ELWL	tcs	0			ns
WE Setup Time			twlel	tws	0			ns
CEf Hold Time			twheh	tсн	0		_	ns
WE Hold Time			t EHWH	twн	0			ns
Write Pulse Wid	lth		t wLwH	t wp	35			ns
CEf Pulse Width	า		t eleh	t cp	35			ns
Write Pulse Wid	lth High		t whwl	t wph	25			ns
CEf Pulse Width	n High		t ehel	t cpH	25	_		ns
Programming O	neration	Byte	t whwh1	t whwh1	_	4	_	μs
1 Togramming O	peration	Word	CVVHVVHI	tvvnvvni		6	_	μs
Sector Erase O	ector Erase Operation *1		t whwh2	t whwh2		0.5	_	s
Vccf Setup Time)			tvcs	50		_	μs
Rise Time to V _{ID} *2				tvidr	500	_	_	ns
Rise Time to V _{ACC} *3			_	tvaccr	500	_	_	ns
Voltage Transition Time *2			_	t vlht	4		_	μs
Write Pulse Wid	lth *2			twpp	100			μs

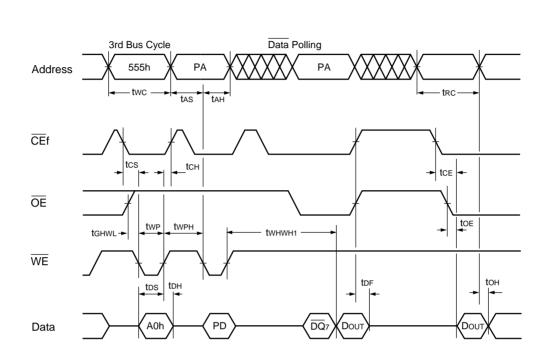
Parameter	Sy	mbol		Value		Unit
Farameter	JEDEC	Standard	Min.	Тур.	Max.	
OE Setup Time to WE Active *2	_	toesp	4		_	μs
CEf Setup Time to WE Active *2	_	tcsp	4		_	μs
Recover Time from RY/BY	_	t rb	0		_	ns
RESET Pulse Width	_	t RP	500		_	ns
RESET High Level Period Before Read	_	t RH	200	_	_	ns
BYTE Switching Low to Output High-Z	_	t FLQZ	_		30	ns
BYTE Switching High to Output Active	_	t FHQV	_		70	ns
Program/Erase Valid to RY/BY Delay	_	t BUSY	_		90	ns
Delay Time from Embedded Output Enable	_	t EOE	_		70	ns
Erase Time-out Time	_	t TOW	50		_	μs
Erase Suspend Transition Time	_	t spd	_	_	20	μs


^{*1:} This does not include preprogramming time.

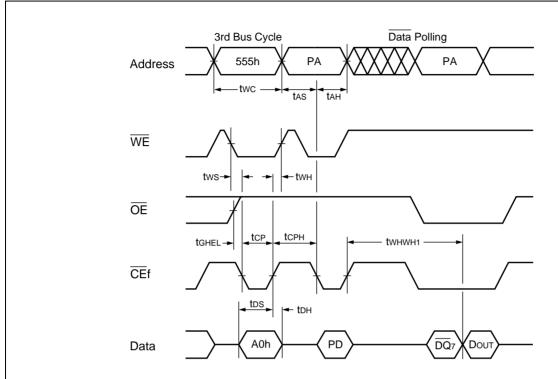
^{*2:} This timing is for Sector Group Protection operation.


^{*3:} This timing is for Accelerated Program operation.

■ TIMING DIAGRAM

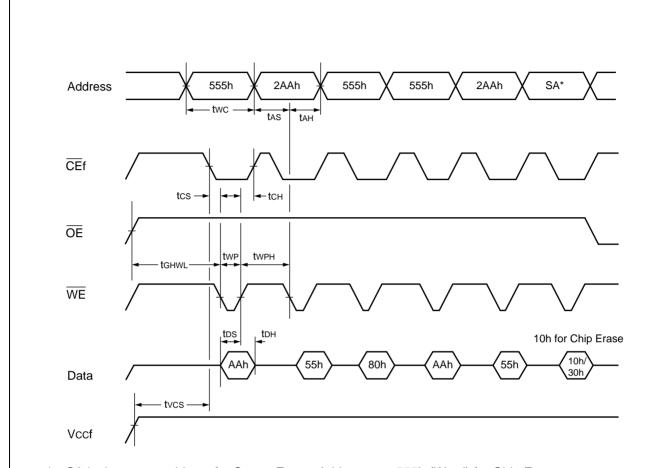

• Read Operation Timing Diagram

• Hardware Reset/Read Operation Timing Diagram


• Alternate WE Controlled Program Operation Timing Diagram

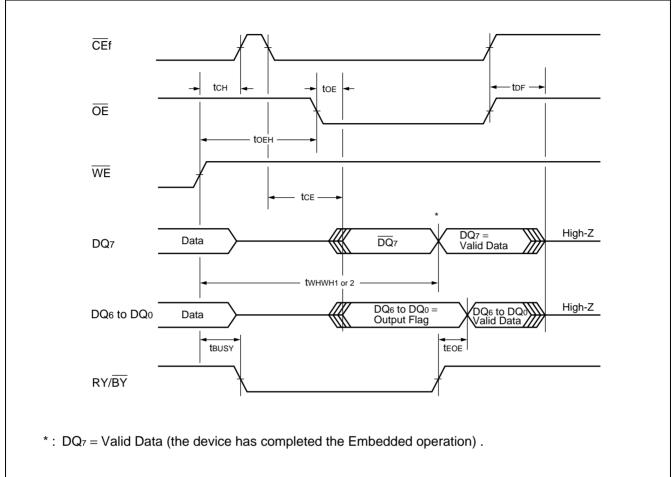
Notes: • PA is address of the memory location to be programmed.

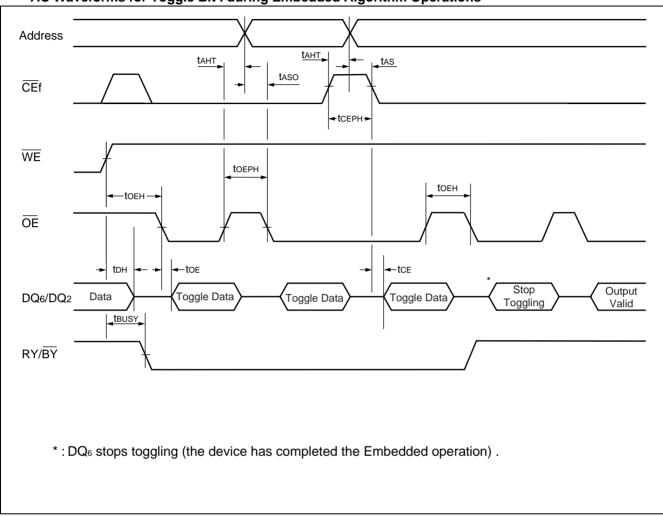
- PD is data to be programmed at word address.
- $\overline{DQ_7}$ is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates the last two bus cycles out of four bus cycle sequence.
- These waveforms are for the × 16 mode.



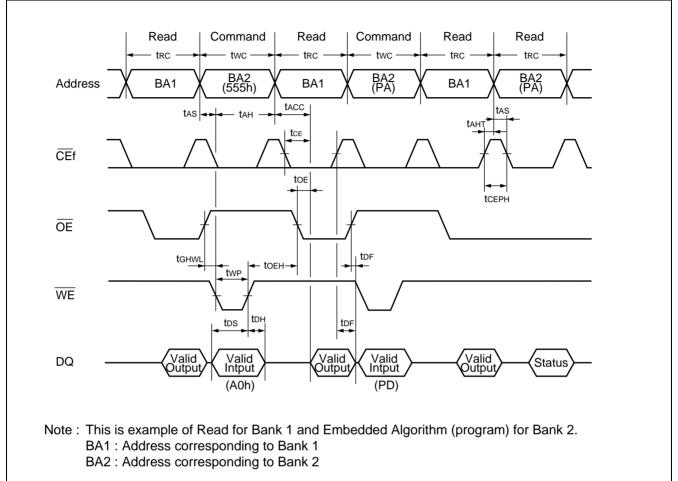
Notes: • PA is address of the memory location to be programmed.

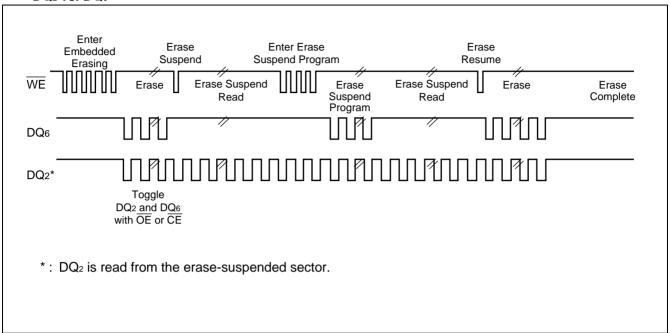
- PD is data to be programmed at word address.
- \overline{DQ}_7 is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates the last two bus cycles out of four bus cycle sequence.
- These waveforms are for the × 16 mode.

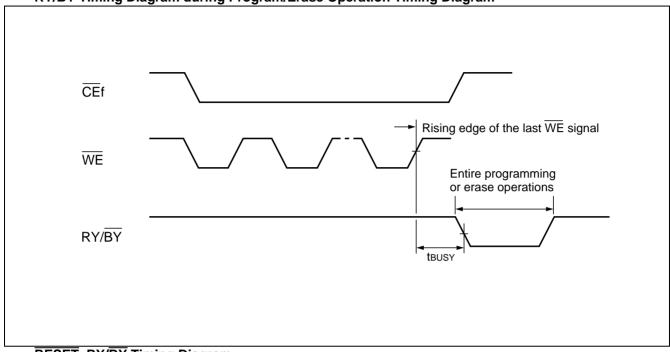

• Chip/Sector Erase Operation Timing Diagram

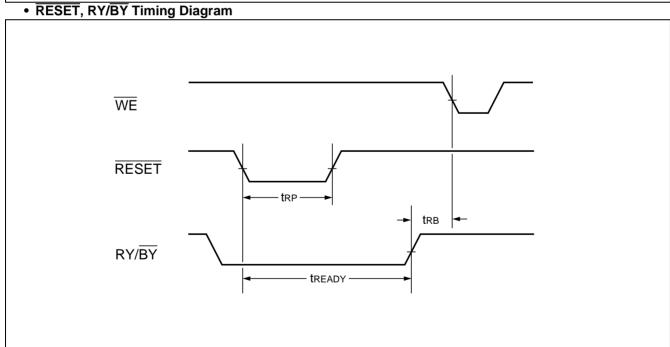

*: SA is the sector address for Sector Erase. Addresses = 555h (Word) for Chip Erase.

Note : These waveforms are for the \times 16 mode.

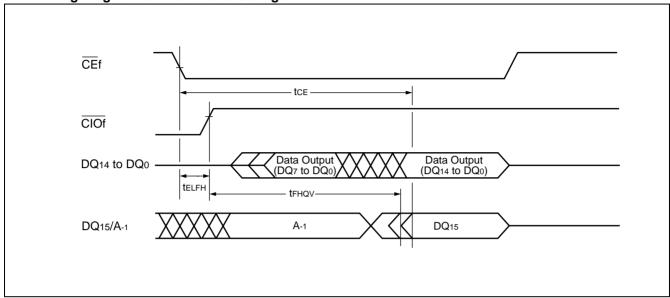

• Data Polling during Embedded Algorithm Operation Timing Diagram


• AC Waveforms for Toggle Bit I during Embedded Algorithm Operations

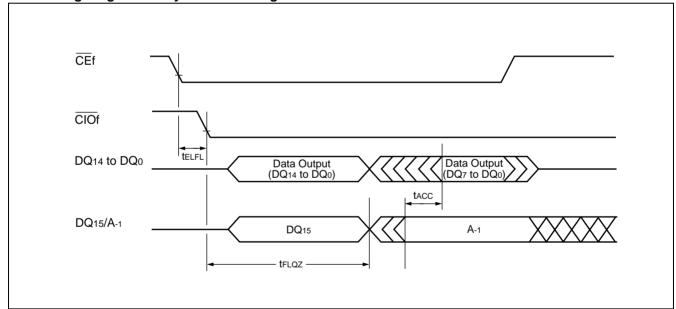

• Bank-to-Bank Read/Write Timing Diagram

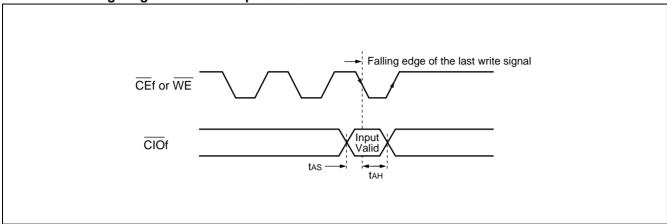


• DQ₂ vs. DQ₆



• RY/BY Timing Diagram during Program/Erase Operation Timing Diagram




• Timing Diagram for Word Mode Configuration

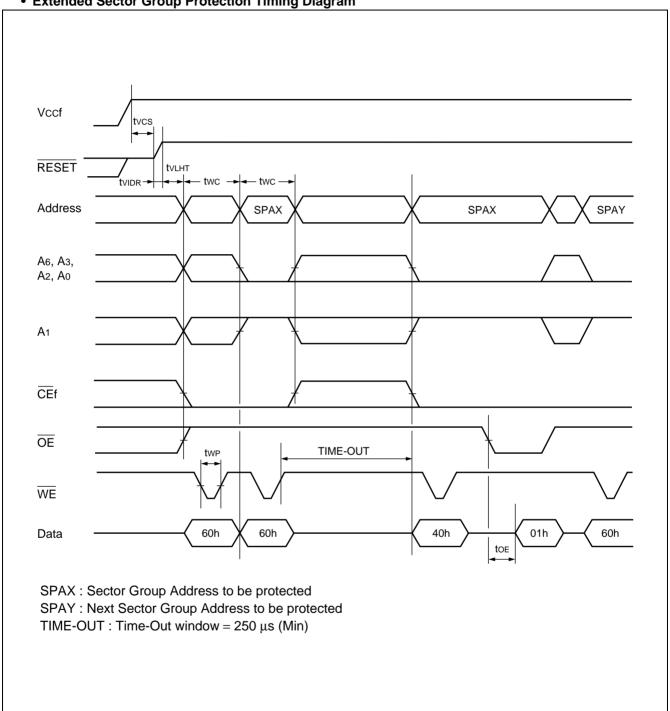
• Timing Diagram for Byte Mode Configuration

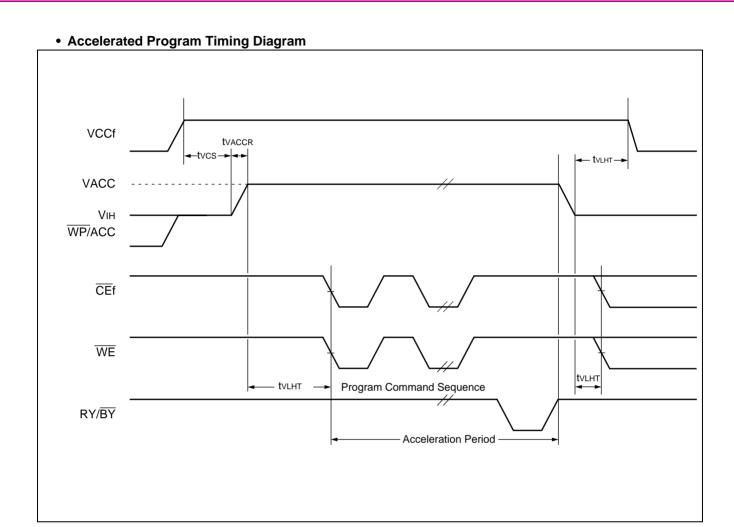
• BYTE Timing Diagram for Write Operations

WE

RY/BY

64M Flash for MCP


Vccf
ViD
ViD
ViH
RESET
CEf


Program or Erase Command Sequence

Unprotection Period

t∨LHT

• Extended Sector Group Protection Timing Diagram

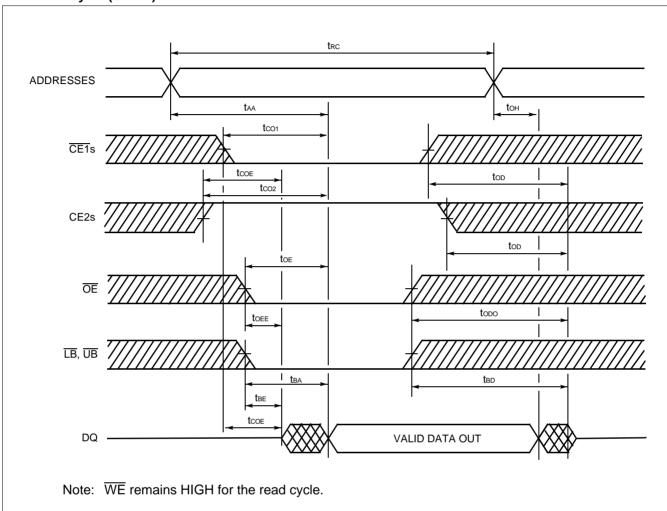
■ ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comments	
Parameter	Min	Тур	Max	Onn	Comments	
Sector Erase Time	_	0.5	2.0	S	Excludes programming time prior to erasure	
Word Programming Time	_	6.0	100	μs	Excludes system-level	
Byte Programming Time	_	4.0	80	μs	overhead	
Chip Programming Time	_	_	200	S	Excludes system-level overhead	
Program/Erase Cycle	100,000	_	_	cycle	_	

Notes: : Typical Erase conditions $T_A = +25$ °C, $V_{CC} = 2.9$ V

Typical Program conditions T_A = + 25 °C, Vcc = 2.9 V, Data = Checker

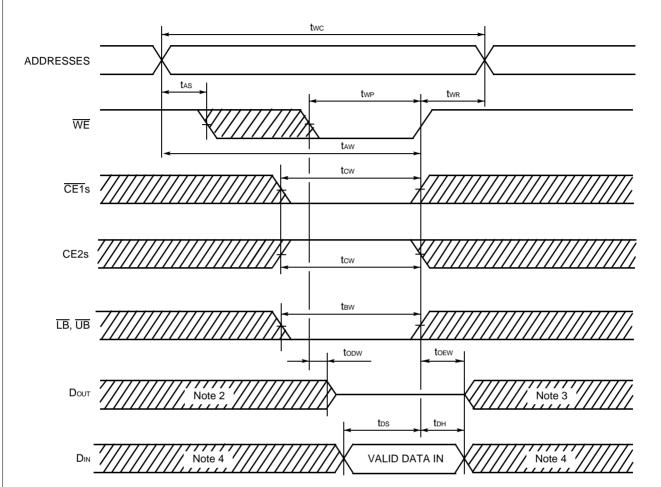
• Read Cycle (SRAM)


Parameter	Symbol	Va	Unit	
Farameter	Syllibol	Min.	Max.	Unit
Read Cycle Time	t RC	70	_	ns
Address Access Time	t AA	_	70	ns
Chip Enable (CE1s) Access Time	tco1	_	70	ns
Chip Enable (CE2s) Access Time	tco2	_	70	ns
Output Enable Access Time	t oe	_	35	ns
LB, UB to Output Valid	t BA	_	70	ns
Chip Enable (CE1s Low and CE2s High) to Output Active	tcoe	5	_	ns
Output Enable Low to Output Active	toee	0	_	ns
UB, LB Enable Low to Output Active	t BE	0	_	ns
Chip Enable (CE1s High or CE2s Low) to Output High-Z	top	_	25	ns
Output Enable High to Output High-Z	todo	_	25	ns
UB, LB Output Enable to Output High-Z	t BD	_	25	ns
Output Data Hold Time	tон	10	_	ns

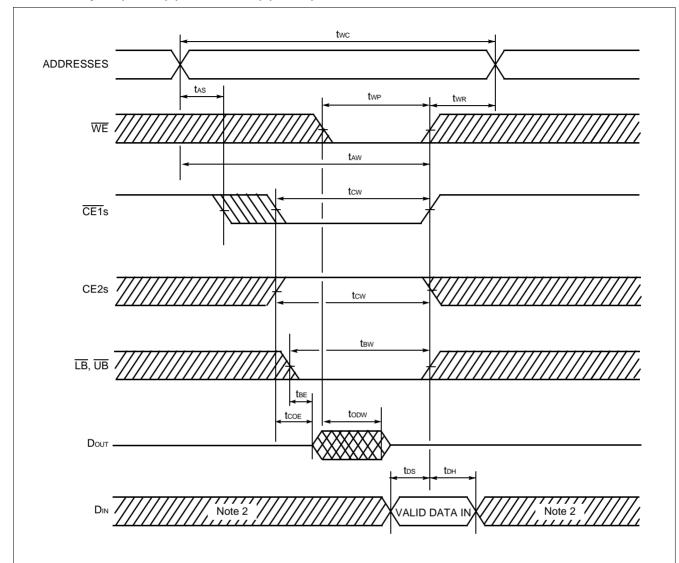
Note: Test Conditions-Output Load:1 TTL gate and 30 pF

Input rise and fall times: 5 ns Input pulse levels: 0.0 V to Vccs Timing measurement reference level

Input: 0.5×Vccs
Output: 0.5×Vccs

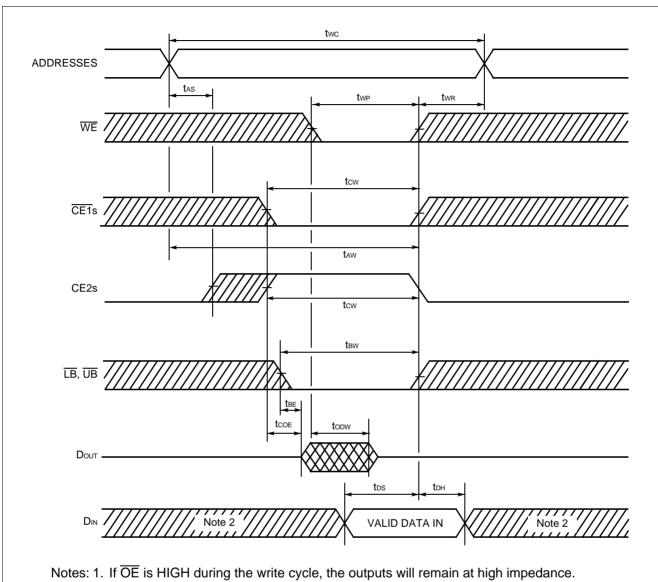

• Read Cycle (SRAM)

• Write Cycle (SRAM)

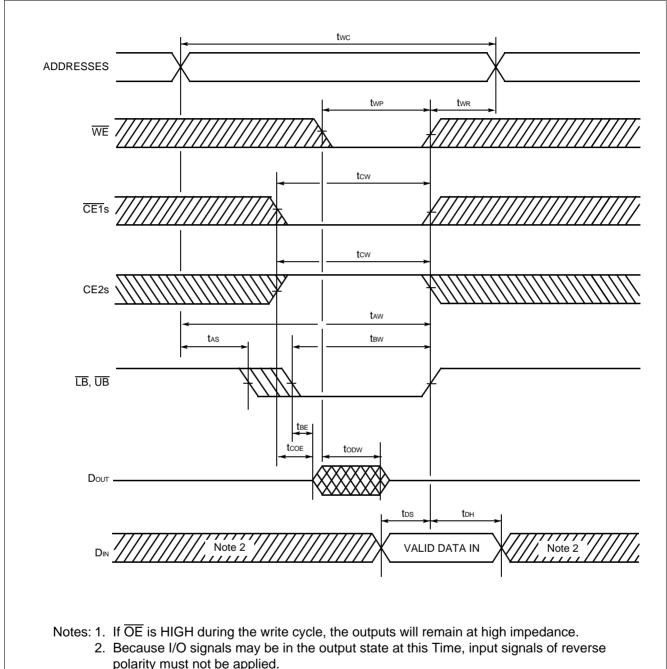

Parameter	Symbol	Va	Unit		
Farameter	Symbol	Min	Max	Offic	
Write Cycle Time	t wc	70	_	ns	
Write Pulse Width	t wp	50	_	ns	
Chip Enable to End of Write	tcw	55	_	ns	
Address valid to End of Write	taw	55	_	ns	
UB, LB to End of Write	t _{BW}	55	_	ns	
Address Setup Time	t AS	0	_	ns	
Write Recovery Time	t wr	0	_	ns	
WE Low to Output High-Z	todw	_	25	ns	
WE High to Output Active	t oew	0	_	ns	
Data Setup Time	t DS	30	_	ns	
Data Hold Time	t DH	0	_	ns	

• Write Cycle (Note 1) (WE control) (SRAM)

- Note 1. If \overline{OE} is HIGH during the write cycle, the outputs will remain at high impedance.
 - 2. If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output will remain at high impedance.
 - 3. If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output will remain at high impedance.
 - 4. Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied.


• Write Cycle (Note 1) (CE1s control) (SRAM)

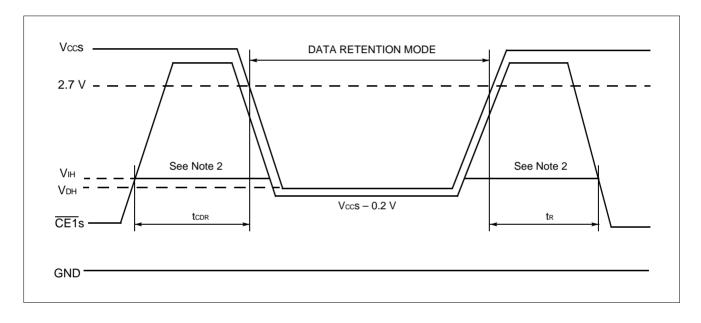
Notes: 1. If $\overline{\mathsf{OE}}$ is HIGH during the write cycle, the outputs will remain at high impedance.


2. Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied.

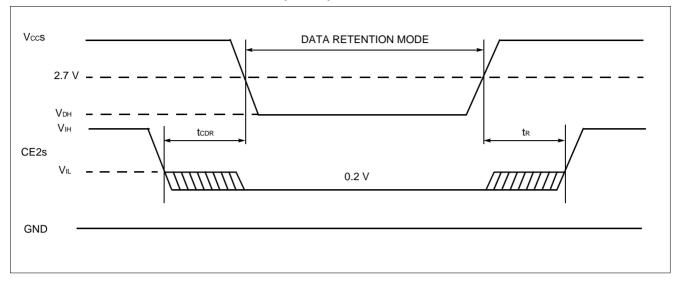
• Write Cycle (Note 1) (CE2s Control) (SRAM)

2. Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied.

• Write Cycle (Note 1) (LB, UB Control) (SRAM)


polarity must not be applied.

■ DATA RETENTION CHARACTERISTICS (SRAM)


Parameter		Symbol	Value			Unit
			Min.	Тур.	Max.	Offic
Data Retention Supply Voltage		V_{DH}	1.5	_	3.1	V
Standby Current	$V_{DH} = 3.0 \text{ V}$	I _{DDS2}	_	_	10	μΑ
Chip Deselect to Data Retention Mode Time		t cdr	0	_	_	ns
Recovery Time		t R	t RC	_		ns

Note tRC: Read cycle time

• CE1s Controlled Data Retention Mode (Note 1)

• CE2s Controlled Data Retention Mode (Note 3)

Notes: 1. In CE1s controlled data retention mode, input level of CE2s should be fixed Vccs to Vccs–0.2 V or Vss to 0.2 V during data retention mode. Other input and input/output pins can be used between –0.3 V to Vccs+0.3 V.

- 2. When CE1s is operating at the V_{IH} Min. level, the standby current is given by I_{SB1}s during the transition of V_{CCS} from V_{CCS} MAX to V_{IH} Min. level.
- 3. In CE2s controlled data retention mode, input and input/output pins can be used between –0.3 V to Vccs+0.3V.

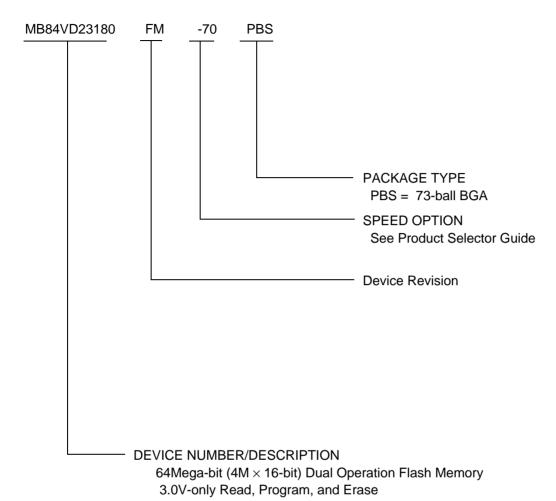
MB84VD23180FM-70

■ PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0	11	14	pF
Соит	Output Capacitance	Vout = 0	12	16	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	14	16	pF
C _{IN3}	WP/ACC Pin Capacitance	Vin = 0	21.5	26	pF

Note: Test conditions Ta = 25°C, f = 1.0 MHz

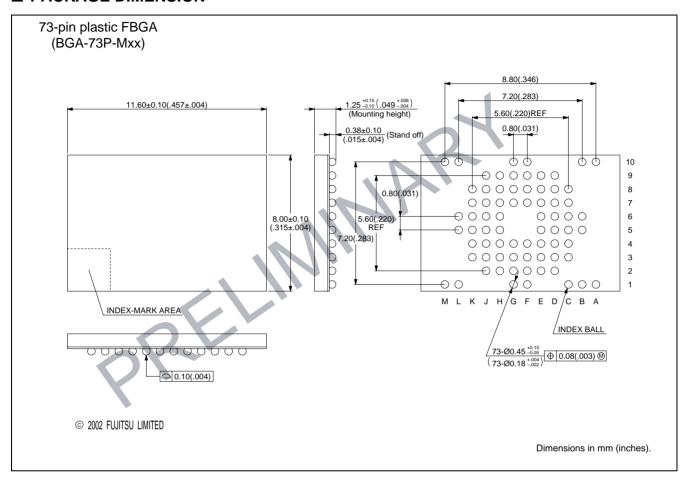
■ HANDLING OF PACKAGE


Please handle this package carefully since the sides of packages are acute angle.

■ CAUTION

- 1) The high voltage (V_{ID}) can not apply to address pins and control pins except RESET. Therefore, it can not use autoselect and sector protect function by applying the high voltage (V_{ID}) to specific pins.
- 2) For the sector protection, since the high voltage (V_{ID}) can be applied to the RESET, it can be protected the sector useing "Extended sector protect" command.

MB84VD23180FM-70


■ ORDERING INFORMATION

4Mega-bit(256K × 16-bit) SRAM

MB84VD23180FM-70

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division

Electronic Devices

Shinjuku Dai-Ichi Seimei Bldg. 7-1,

Nishishinjuku 2-chome, Shinjuku-ku,

Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC.

3545 North First Street,

San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center

Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH

Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD.

#05-08, 151 Lorong Chuan,

New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sq/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong,

Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0209

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.