Stacked MCP (Multi-Chip Package) FLASH MEMORY \& SRAM CMOS

16M ($\times 8 / \times 16$) FLASH MEMORY \& $4 M(\times 8 / \times 16)$ STATIC RAM

MB84VD2118XA-85/MB84VD2119XA-85

■ FEATURES

- Power supply voltage of 2.7 V to 3.6 V
- High performance

85 ns maximum access time

- Operating Temperature
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package 69-ball FBGA, 56-pin TSOP(I)
(Continued)
■ PRODUCT LINE UP

		Flash Memory	SRAM
Ordering Part No.	$\mathrm{Vccf}^{*}, \mathrm{~V}_{\mathrm{ccs}}{ }^{*}=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.6 \mathrm{~V}}$	MB84VD2118XA-85/MB84VD2119XA-85	
Max. Address Access Time (ns)	85	85	
Max. $\overline{\mathrm{CE}}$ Access Time (ns)	85	85	
Max. $\overline{\mathrm{OE}}$ Access Time (ns)	35	45	

*: Both $\mathrm{V}_{\mathrm{ccf}}$ and $\mathrm{V}_{\mathrm{ccs}}$ must be in recommended operation range when either part is being accessed.
PACKAGES
69-ball plastic FBGA

MB84VD2118XA-85/MB84VD2119XA-85

(Continued)

1. FLASH MEMORY

- Simultaneous Read/Write operations (dual bank)

Multiple devices available with different bank sizes (Refer to "PIN DESCRIPTION")
Host system can program or erase in one bank, then immediately and simultaneously read from the other bank Zero latency between read and write operations
Read-while-erase
Read-while-program

- Minimum 100,000 write/erase cycles
- Sector erase architecture

Eight 4 K words and thirty one 32 K words.
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- Boot Code Sector Architecture

MB84VD2118XA : Top sector
MB84VD2119XA : Bottom sector

- Embedded Erase ${ }^{\text {TM* }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM* }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready-Busy output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic sleep mode

When addresses remain stable, automatically switch themselves to low power mode.

- Low Vccf write inhibit $\leq 2.5 \mathrm{~V}$
- Hidden ROM (Hi-ROM) region

64 K byte of $\mathrm{Hi}-\mathrm{ROM}$, accessible through a new "Hi-ROM Enable" command sequence
Factory serialized and protected to provide a secure electronic serial number (ESN)

- WP/ACC input pin

At VIL, allows protection of boot sectors, regardless of sector protection/unprotection status
(MB84VD2118XA : SA37, SA38 MB84VD2119XA : SA0, SA1)
At V_{I}, allows removal of boot sector protection
At $V_{A c c}$, program time will reduce by 40%.

- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

- Please refer to "MBM29DL16XTD/BD" data sheet in detailed function

2. SRAM

- Power dissipation

Operating : 40 mA Max.
Standby : $7 \mu \mathrm{~A}$ Max.

- Power down features using CE1s and CE2s
- Data retention supply voltage : 1.5 V to 3.6 V
- CE1s and CE2s Chip Select
- Byte data control : $\overline{\mathrm{LBs}}\left(\mathrm{DQ}_{0}\right.$ to $\left.\mathrm{DQ}_{7}\right)$, $\overline{\mathrm{UBs}}\left(\mathrm{DQ}_{8}\right.$ to $\left.\mathrm{DQ}_{15}\right)$

[^0]
MB84VD2118XA-85/MB84VD2119XA-85

- PIN ASSIGNMENTS

(Top View)

(BGA-69P-M02)

MB84VD2118XA-85/MB84VD2119XA-85

(Top View)

(FPT-56P-M04)

MB84VD2118XA-85/MB84VD2119XA-85

PIN DESCRIPTION

Pin name	Function	Input/Output
A_{0} to A_{17}	Address Inputs (Common)	I
$\mathrm{A}_{-1}, \mathrm{~A}_{18}, \mathrm{~A}_{19}$	Address Input (Flash)	1
SA	Address Input (SRAM)	1
DQ ${ }_{0}$ to DQ15	Data Inputs/Outputs (Common)	I/O
$\overline{\mathrm{CEf}}$	Chip Enable (Flash)	I
$\overline{\mathrm{CE1}}$	Chip Enable (SRAM)	1
CE2s	Chip Enable (SRAM)	1
$\overline{\mathrm{OE}}$	Output Enable (Common)	1
$\overline{\text { WE }}$	Write Enable (Common)	1
$\mathrm{RY} / \overline{\overline{B Y}}$	Ready/Busy Outputs (Flash) Open Drain Output	0
$\overline{\text { UBs }}$	Upper Byte Control (SRAM)	1
$\overline{\mathrm{LB}}$	Lower Byte Control (SRAM)	I
CIOf	I/O Configuration (Flash) $\mathrm{CIOf}=\mathrm{V}$ cof is Word mode $(\times 16), \mathrm{CIOf}=\mathrm{Vss}$ is Byte mode $(\times 8)$	1
ClOs	I/O Configuration (SRAM) $\mathrm{CIOs}=\mathrm{Vccs}$ is Word mode $(\times 16), \mathrm{ClOs}=\mathrm{Vss}$ is Byte mode $(\times 8)$	1
$\overline{\text { RESET }}$	Hardware Reset Pin/Sector Protection Unlock (Flash)	1
$\overline{\text { WP/ACC }}$	Write Protect / Acceleration (Flash)	I
N.C.	No Internal Connection	-
Vss	Device Ground (Common)	Power
Vccf	Device Power Supply (Flash)	Power
V cos	Device Power Supply (SRAM)	Power

MB84VD2118XA-85/MB84VD2119XA-85

BLOCK DIAGRAM

- DEVICE BUS OPERATIONS

Table 2.1 User Bus Operations (Flash = Word mode; CIOf = Vccf, SRAM = Word mode; CIOs = Vccs)

Operation *1,*3	CEf	CE1s	CE2s	OE	WE	SA *6	$\overline{\text { LBs }}$	$\overline{\text { UBs }}$	$\begin{gathered} \mathrm{DQ}_{0} \text { to } \\ \mathrm{DQ} \mathbf{Q}_{7} \end{gathered}$	$\begin{gathered} \hline \mathrm{DQ}_{8} \text { to } \\ \mathrm{DQ}_{15} \end{gathered}$	RESET	$\begin{gathered} \overline{\mathrm{WP}} / \\ \mathrm{ACC} * 5 \end{gathered}$
Full Standby	H	H	X	X	X	X	X	X	High-Z	High-Z	H	X
		X	L									
Output Disable	H	L	H	H	H	X	X	X	High-Z	High-Z	H	X
				X	X	X	H	H	High-Z	High-Z		
	L	H	X	H	H	X	X	X	High-Z	High-Z		
		X	L									
Read from Flash *2	L	H	X	L	H	X	X	X	Dout	Dout	H	X
		X	L									
Write to Flash	L	H	X	H	L	X	X	X	Din	Din	H	X
		X	L									
Read from SRAM	H	L	H	L	H	X	L	L	Dout	Dout	H	X
							H	L	High-Z	Dout		
							L	H	Dout	High-Z		
Write to SRAM	H	L	H	X	L	X	L	L	Din	Din	H	X
							H	L	High-Z	Din		
							L	H	Din	High-Z		
Temporary Sector Group Unprotection *4	X	X	X	X	X	X	X	X	X	X	VIo	X
Flash Hardware Reset	X	H	X	X	X	X	X	X	High-Z	High-Z	L	X
		X	L									
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	L

Legend: $L^{=} \mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\boldsymbol{I}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\boldsymbol{I}}$. See "ELECTRICAL CHARACTERISTICS 1. DC Characteristics" for voltage levels.
*1: Other operations except for indicated this column are inhibited.
*2: $\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{H} initiates the write operations.
*3: Do not apply $\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{CE}} 1 \mathrm{~s}=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{H}}$ at a time .
*4: It is also used for the extended sector group protections.
*5: $\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\text {ı }}$; protection of boot sectors.
$\overline{W P} / A C C=\mathrm{V}_{\mathrm{H}}$; removal of boot sectors protection.
$\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathrm{ACC}}(9 \mathrm{~V})$; Program time will reduce by 40%.
*6: SA; Don't care or Open.

MB84VD2118XA-85/MB84VD2119XA-85

Table 2.2 User Bus Operations (Flash = Word mode; CIOf = Vccf, SRAM = Byte mode; CIOs = Vss)

Operation *1,*3	$\overline{\text { CEf }}$	$\overline{\mathrm{CE}}$'s	CE2s	OE	WE	SA	$\overline{\text { LBs }}$ *6	$\overline{\text { UBs }}$ *	DQ_{0} to DQ7	DQ_{8} to DQ15	RESET	$\begin{gathered} \overline{\mathrm{WPP}} / \\ \mathbf{A C C}^{* 5} \end{gathered}$
Full Standby	H	H	X	X	X	X	X	X	High-Z	High-Z	H	X
		X	L									
Output Disable	H	L	H	H	H	X	X	X	High-Z	High-Z	H	X
				X	X	X	H	H	High-Z	High-Z		
	L	H	X	H	H	X	X	X	High-Z	High-Z		
		X	L									
Read from Flash *2	L	H	X	L	H	X	X	X	Dout	Dout	H	X
		X	L									
Write to Flash	L	H	X	H	L	X	X	X	Din	Din	H	X
		X	L									
Read from SRAM	H	L	H	L	H	SA	X	X	Dout	High-Z	H	X
Write to SRAM	H	L	H	X	L	SA	X	X	Din	High-Z	H	X
Temporary Sector Group Unprotection *4	X	X	X	X	X	X	X	X	X	X	VID	X
Flash Hardware Reset	X	H	X	X	X	X	X	X	High-Z	High-Z	L	X
		X	L									
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{L}}, \mathrm{H}=\mathrm{V}_{\mathrm{H}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or V_{H}. See "ELECTRICAL CHARACTERISTICS 1. DC Characteristics" for voltage levels.
*1: Other operations except for indicated this column are inhibited.
*2: $\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}}$ at V_{H} initiates the write operations.
*3: Do not apply $\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{CE}} \mathrm{s} \mathrm{s}=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{IH}}$ at a time .
*4: It is also used for the extended sector group protections.
*5: $\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\text {ı }}$; protection of boot sectors.
$\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\text {н }}$; removal of boot sectors protection.
WP/ACC = V $\mathrm{V}_{\mathrm{AcC}}(9 \mathrm{~V})$; Program time will reduce by 40%.
*6: $\overline{\mathrm{LB}}$, $\overline{\mathrm{UB}}$; Don't care or Open.

MB84VD2118XA-85/MB84VD2119XA-85

Table 2.3 User Bus Operations (Flash = Byte mode; CIOf = Vss, SRAM = Byte mode; CIOs=Vss)

Operation *1,*3	CEf	CE1s	CE2s	$\begin{array}{\|c} \hline \mathbf{D Q}_{1 / 1} \\ \mathbf{A}^{2} \end{array}$	$\overline{\mathrm{OE}}$	WE	SA	$\overline{\mathrm{LBs}}$ * 6	$\overline{\text { UBs }}$ *	$\begin{gathered} \mathrm{DQ}_{0} \text { to } \\ \mathrm{DQ}_{7} \end{gathered}$	$\begin{gathered} \mathrm{DQ}_{8} \text { to } \\ \mathrm{DQ}_{14} \end{gathered}$	RESET	$\begin{gathered} \overline{\mathrm{WPP}} / \\ \text { ACC }^{* 5} \end{gathered}$
Full Standby	H	H	X	X	X	X	X	X	X	High-Z	High-Z	H	X
		X	L										
Output Disable	H	L	H	X	H	H	X	X	X	High-Z	High-Z	H	X
				X	X	X	X	H	H	High-Z	High-Z		
	L	H	X	A-1	H	H	X	X	X	High-Z	High-Z		
		X	L										
Read from Flash *2	L	H	X	A-1	L	H	X	X	X	Dout	X	H	X
		X	L										
Write to Flash	L	H	X	A-1	H	L	X	X	X	Din	X	H	X
		X	L										
Read from SRAM	H	L	H	X	L	H	SA	X	X	Dout	High-Z	H	X
Write to SRAM	H	L	H	X	X	L	SA	X	X	Din	High-Z	H	X
Temporary Sector Group Unprotection *4	X	X	X	X	X	X	X	X	X	X	X	VIo	X
Flash		H	X										
Hardware Reset	X	X	L	X	X	X	X	X	X	High-Z	High-Z	L	X
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	X	L

Legend: L = V voltage levels.
*1: Other operations except for indicated this column are inhibited.
*2: $\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
*3: Do not apply $\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{CE}}$ s $=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{IH}}$ at a time .
*4: It is also used for the extended sector group protections.
*5: $\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathrm{IL}}$; protection of boot sectors.
$\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathrm{H}}$; removal of boot sectors protection.
$\bar{W} / A C C=V_{A c c}(9 \mathrm{~V}) ;$ Program time will reduce by 40%.
*6: $\overline{\mathrm{LB}}$, $\overline{\mathrm{UB}}$; Don't care or Open.

MB84VD2118XA-85/MB84VD2119XA-85

FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY

- Eight 4 K words, and thirty one 32 K words.
- Individual-sector, multiple-sector, or bulk-erase capability.

MB84VD2118XA-85/MB84VD2119XA-85

- Eight 4 K words, and thirty one 32 K words.
- Individual-sector, multiple-sector, or bulk-erase capability.

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.1 Sector Address Tables (MB84VD21181)

Bank	Sector	Sector Address								Address Range (Byte mode)	Address Range (Word mode)
		Bank Address									
		A_{19}	A_{18}	A_{17}	A16	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 2	SA0	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	X	X	0A0000h to OAFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	0C0000h to 0CFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	0D0000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	0E0000h to OEFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
	SA16	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to 0BFFFFh
	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
Bank 1	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	OFA000h to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	OFB000h to 0FBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	0FC000h to 0FCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	0FD000h to 0FDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	OFE000h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FE000h to 1FFFFFh	OFF000h to OFFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.2 Sector Address Tables (MB84VD21191)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A_{18}	A17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 1	SAO	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00E000h to 00FFFFh	007000h to 007FFFh
Bank 2	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA11	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA15	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	X	0A0000h to 0AFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	0B0000h to 0BFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	0C0000h to 0CFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	0D0000h to 0DFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	0E0000h to 0EFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	0F0000h to 0FFFFFh	078000h to 07FFFFh
	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	OB0000h to 0B7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	OB8000h to OBFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFFh	0F8000h to 0FFFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.3 Sector Address Tables (MB84VD21182)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A_{18}	A_{17}	A16	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 2	SA0	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	X	X	0A0000h to OAFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	0C0000h to 0CFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	0D0000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	0E0000h to OEFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
	SA16	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	OB0000h to 0B7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to 0BFFFFh
	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
Bank 1	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	OF0000h to 0F7FFFh
	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	OFA000h to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	OFB000h to 0FBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	0FC000h to 0FCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	0FD000h to 0FDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	OFE000h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FE000h to 1FFFFFh	OFF000h to OFFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.4 Sector Address Tables (MB84VD21192)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A18	A_{17}	A_{16}	A_{15}	A14	A_{13}	A_{12}		
Bank 1	SAO	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00E000h to 00FFFFh	007000h to 007FFFh
	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
Bank 2	SA11	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA15	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	X	0A0000h to OAFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	0B0000h to OBFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	0C0000h to 0CFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	0D0000h to ODFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	0E0000h to OEFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	0F0000h to OFFFFFh	078000h to 07FFFFh
	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to 0BFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to ODFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFFh	0F8000h to OFFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.5 Sector Address Tables (MB84VD21183)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A_{18}	A17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 2	SA0	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	X	X	0A0000h to 0AFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	0C0000h to OCFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	0D0000h to 0DFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	0E0000h to 0EFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	X	X	0F0000h to OFFFFFh	078000h to 07FFFFh
	SA16	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to 0BFFFFh
Bank 1	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	0FA000h to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	0FB000h to OFBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	0FC000h to 0FCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	0FD000h to 0FDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	0FE000h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FE000h to 1FFFFFh	0FF000h to OFFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.6 Sector Address Tables (MB84VD21193)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A18	A_{17}	A_{16}	A_{15}	A14	A_{13}	A_{12}		
Bank 1	SAO	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00E000h to 00FFFFh	007000h to 007FFFh
	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA11	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
Bank 2	SA15	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	X	0A0000h to OAFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	0B0000h to OBFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	0C0000h to 0CFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	0D0000h to ODFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	0E0000h to 0EFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	0F0000h to OFFFFFh	078000h to 07FFFFh
	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to 0BFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to ODFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFFh	0F8000h to OFFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.7 Sector Address Tables (MB84VD21184)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A18	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 2	SA0	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	X	X	0A0000h to OAFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	0C0000h to OCFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	0D0000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	0E0000h to OEFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
Bank 1	SA16	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	OB0000h to 0B7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	OB8000h to OBFFFFh
	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	OFA000h to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	OFB000h to OFBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	0FC000h to OFCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	OFD000h to OFDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	OFE000h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FE000h to 1FFFFFh	OFFO00h to OFFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 3.8 Sector Address Tables (MB84VD21194)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A_{18}	A17	A_{16}	A_{15}	A14	A_{13}	A_{12}		
Bank 1	SAO	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00E000h to 00FFFFh	007000h to 007FFFh
	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA11	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA15	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	X	0A0000h to 0AFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	0B0000h to 0BFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	0C0000h to OCFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	OD0000h to ODFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	0E0000h to 0EFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
Bank 2	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	OB0000h to 0B7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	OB8000h to 0BFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFF\%	0F8000h to 0FFFFFh

MB84VD2118XA-85/MB84VD2119XA-85

Table 4.1 Sector Group Address (MB84VD2118XA) (Top Boot Block)

Sector Group	A19	A18	A17	A_{16}	A15	A_{14}	A_{13}	A_{12}	Sectors
SGA0	0	0	0	0	0	X	X	X	SA0
SGA1	0	0	0	0	1	X	X	X	SA1 to SA3
	0	0	0	1	0	X	X	X	
	0	0	0	1	1	X	X	X	
SGA2	0	0	1	X	X	X	X	X	SA4 to SA7
SGA3	0	1	0	X	X	X	X	X	SA8 to SA11
SGA4	0	1	1	X	X	X	X	X	SA12 to SA15
SGA5	1	0	0	X	X	X	X	X	SA16 to SA19
SGA6	1	0	1	X	X	X	X	X	SA20 to SA23
SGA7	1	1	0	X	X	X	X	X	SA24 to SA27
SGA8	1	1	1	0	0	X	X	X	SA28 to SA30
	1	1	1	0	1	X	X	X	
	1	1	1	1	0	X	X	X	
SGA9	1	1	1	1	1	0	0	0	SA31
SGA10	1	1	1	1	1	0	0	1	SA32
SGA11	1	1	1	1	1	0	1	0	SA33
SGA12	1	1	1	1	1	0	1	1	SA34
SGA13	1	1	1	1	1	1	0	0	SA35
SGA14	1	1	1	1	1	1	0	1	SA36
SGA15	1	1	1	1	1	1	1	0	SA37
SGA16	1	1	1	1	1	1	1	1	SA38

MB84VD2118XA-85/MB84VD2119XA-85

Table 4.2 Sector Group Address (MB84VD2119XA) (Bottom Boot Block)

Sector Group	\mathbf{A}_{19}	\mathbf{A}_{18}	\mathbf{A}_{17}	\mathbf{A}_{16}	\mathbf{A}_{15}	\mathbf{A}_{14}	\mathbf{A}_{13}	\mathbf{A}_{12}	Sectors
SGA0	0	0	0	0	0	0	0	0	SA0
SGA1	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	1	1	1	SA7
SGA8	0	0	0	0	1	X	X	X	
	0	0	0	1	0	X	X	X	
	0	0	0	1	1	X	X	X	
	0	0	1	X	X	X	X	X	SA11 to SA14
SGA10	0	1	0	X	X	X	X	X	SA15 to SA18
SGA11	0	1	1	X	X	X	X	X	SA19 to SA22
SGA12	1	0	0	X	X	X	X	X	SA23 to SA26
SGA13	1	0	1	X	X	X	X	X	SA27 to SA30
SGA14	1	1	0	X	X	X	X	X	SA31 to SA34
SGA15	1	1	1	0	0	X	X	X	
	1	1	1	0	1	X	X	X	
	1	1	1	1	0	X	X	X	
SGA16	1	1	1	1	1	X	X	X	SA38

MB84VD2118XA-85/MB84VD2119XA-85

Table 5 Flash Memory Autoselect Codes

Type			A_{12} to A_{19}	A_{6}	A_{1}	A	A.1 ${ }^{* 1}$	Code (hEX)
Manufacturer's Code			X	VIL	VIL	VIL	VIL	04h
Device Code	MB84VD21181A	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	36h
		Word					X	2236h
	MB84VD21191A	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	39h
		Word					X	2239h
	MB84VD21182A	Byte	X	VIL	VIL	V H	VIL	2Dh
		Word					X	222Dh
	MB84VD21192A	Byte	X	VIL	VIL	VIH	VIL	2Eh
		Word					X	222Eh
	MB84VD21183A	Byte	X	VIL	VIL	VIH	VIL	28h
		Word					X	2228h
	MB84VD21193A	Byte	X	VIL	VIL	VIH	VIL	2Bh
		Word					X	222Bh
	MB84VD21184A	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	33h
		Word					X	2233h
	MB84VD21194A	Byte	X	VIL	VIL	VIH	VIL	35h
		Word					X	2235h
Sector Group protect			Sector Group Address	VIL	VIH	VII	VIL	01h*2

*1 : A. 1 is for Byte mode.
*2 : Output 01h at protected sector address and output 00h at unprotected sector address.

MB84VD2118XA-85/MB84VD2119XA-85

Table 6 Flash Memory Command Definitions

Command Sequence		Bus Write Cycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle		
		Addr.	Data												
Read/Reset *1			1	XXXh	F0h	-	-	-	-	-	-	-	-	-	-
Read/Reset *1	Word	3	555h	AAh	2AAh	55h	555h	F0h	RA	RD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Autoselect	Word	3	555h	AAh	2AAh	55h	$\begin{aligned} & \text { (BA) } \\ & 555 \mathrm{~h} \end{aligned}$	90h	-	-	-	-	-	-	
	Byte		AAAh		555h		(BA) AAAh								
Program	Word	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Chip Erase	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h	
	Byte		AAAh		555h		AAAh		AAAh		555h		AAAh		
Sector Erase	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h	
	Byte		AAAh		555h		AAAh		AAAh		555h				
Sector Erase Suspend		1	BA	B0h	-	-	-	-	-	-	-	-	-	-	
Sector Erase Resume		1	BA	30h	-	-	-	-	-	-	-	-	-	-	
Set to Fast Mode	Word	3	555h	AAh	2AAh	55h	555h	20h	-	-	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Fast Program *2	Word	2	XXXh	AOh	PA	PD	-	-	-	-	-	-	-	-	
	Byte														
Reset from Fast Mode *2	Word	2	BA	90h	XXXh	F0h *6	-	-	-	-	-	-	-	-	
	Byte														
Extended Sector Group Protection *3	Word	4	XXXh	60h	SPA	60h	SPA	40h	SPA	SD	-	-	-	-	
	Byte														
Query *4	Word	1	55h	98h	-	-	-	-	-	-	-	-	-	-	
	Byte		AAh												
Hi-ROM Entry	Word	3	555h	AAh	2AAh	55h	555h	88h	-	-	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Hi-ROM Program *5	Word	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
$\underset{* 5}{\mathrm{Hi}-\mathrm{ROM} \text { Erase }}$	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	HRA	30h	
	Byte		AAAh		555h		AAAh		AAAh		555h				
Hi-ROM Exit *5	Word	4	555h	AAh	2AAh	55h	$\begin{aligned} & \text { (HRBA) } \\ & 555 \mathrm{~h} \end{aligned}$	90h	XXXh	00h	-	-	-	-	
	Byte		AAAh		555h		(HRBA) AAAh								

MB84VD2118XA-85/MB84VD2119XA-85

*1: Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
*2: This command is valid while Fast Mode.
*3: This command is valid while $\overline{\text { RESET }}=\mathrm{V}_{10}$.
*4: The valid Address is A_{0} to A_{6}.
*5: This command is valid while Hi-ROM mode.
*6: The data "00h" is also acceptable.
Address bits A_{12} to $\mathrm{A}_{19}=\mathrm{X}=$ " H " or " L " for all address commands except for Program Address (PA) , Sector Address (SA) , and Bank Address (BA) .
Bus operations are defined in Table 2 "User Bus Operations".
RA = Address of the memory location to be read.
PA = Address of the memory location to be programmed.
Addresses are latched on the falling edge of the write pulse.
$S A=$ Address of the sector to be erased. The combination of $A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12} will uniquely select any sector.
$\mathrm{BA}=$ Bank address (A_{15} to A_{19})
SPA $=$ Sector group address to be protected. Set sector group address (SGA) and ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$.
HRA = Address of the Hidden-ROM area.
SPA $=$ Sector group address to be protected. Set sector group address (SGA) and ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$.
HRA = Address of the Hidden-ROM area.
MB84VD2118XA (Top Boot Type) Word mode: 0F8000h to 0FFFFFh
Byte mode: 1F0000h to 1FFFFFh
MB84VD2119XA (Bottom Boot Type) Word mode: 000000h to 007FFFh
Byte mode: 000000 h to 00FFFFh
HRBA = Bank addrss of the Hidden-ROM area.
MB84VD2118XA (Top Boot Type) : $\mathrm{A}_{15}=\mathrm{A}_{16}=\mathrm{A}_{17}=\mathrm{A}_{18}=\mathrm{A}_{19}=\mathrm{A}_{20}=1$
MB84VD2119XA (Bottom Boot Type) : $\mathrm{A}_{15}=\mathrm{A}_{16}=\mathrm{A}_{17}=\mathrm{A}_{18}=\mathrm{A}_{19}=\mathrm{A}_{20}=0$
RD = Data read from location RA during read operation.
PD = Data to be programmed at location PA.
SD = Sector protection verify data. Output 01h at protected sector addresses and output 00h at unprotected sector addresses.
The system should generate the following address patterns;
Word mode : 555h or 2AAh to addresses A_{0} to A_{10}
Byte mode : AAAh or 555 h to addresses A_{-1} and A_{0} to A_{10}

MB84VD2118XA-85/MB84VD2119XA-85

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min.	Max.	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	TA	-25	+85	${ }^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except RESET and WP/ACC *1	Vin, Vout	-0.3	Vccf +0.4	V
			Vccs +0.4	
Vccf/Vccs Supply *1	Vccf, Vccs	-0.3	+4.0	V
$\overline{\mathrm{RESET}}$ *2	Vin	-0.5	+13.0	V
$\overline{\text { WP/ACC }}$ * ${ }^{\text {a }}$	Vin	-0.5	+10.5	V

*1: Minimum DC voltage on input or I/O pins is -0.3 V . During voltage transitions, input or I / O pins may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input or I/O pins is V ccf +0.4 V or V ccs +0.4 V . During voltage transitions, input or I/O pins may overshoot to $\mathrm{Vccf}+2.0 \mathrm{~V}$ or $\mathrm{V} c \mathrm{~S}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
*2: Minimum DC input voltage on RESET pin is -0.5 V . During voltage transitions, $\overline{\text { RESET }}$ pin may undershoot Vss to -2.0 V for periods of up to 20 ns .
Voltage difference between input and supply voltage (VIN-Vccf or Vccs) does not exceed 9.0 V .
Maximum DC input voltage on RESET pin is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns .
*3: Minimum DC input voltage on $\overline{W P} / A C C$ pin is -0.5 V . During voltage transitions, $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on WP/ACC pin is +10.5 V which may overshoot to +12.0 V for periods of up to 20 ns , when V ccf is applied.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value		
			Min.	Max.	
Ambient Temperature	T_{A}	-25	+85	${ }^{\circ} \mathrm{C}$	
Vccf/Vccs Supply Voltages	V ccf, V ccs	+2.7	+3.6	V	

Note: Operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB84VD2118XA-85/MB84VD2119XA-85

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

Parameter	Symbol	Test Conditions			Value			Unit
					Min.	Typ.	Max.	
Input Leakage Current	ILI	$\mathrm{V}_{\text {ın }}=\mathrm{V}_{\text {ss }}$ to V ccf, $\mathrm{V}_{\text {ccs }}$			-1.0	-	+1.0	$\mu \mathrm{A}$
Output Leakage Current	ILo	Vout $=\mathrm{V}_{\text {ss }}$ to V ccf, V ccs			-1.0	-	+1.0	$\mu \mathrm{A}$
RESET Inputs Leakage Current	ILit	V ccf $=\mathrm{V}$ cof $\mathrm{Max}, \overline{\mathrm{RESET}}=12.5 \mathrm{~V}$			-	-	35	$\mu \mathrm{A}$
ACC Input Leakage Current	ILIA	V ccf $=\mathrm{V}$ cof Max, $\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\text {Acc }} \mathrm{Max}$			-	-	20	mA
Flash Vcc Active Current (Read) *1	lccif	$\begin{aligned} & \overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	teycle $=5 \mathrm{MHz}$	Byte	-	-	13	mA
			tcycle $=5 \mathrm{MHz}$	Word	-	-	15	
			teycle $=1 \mathrm{MHz}$	Byte	-	-	7	mA
			teycle $=1 \mathrm{MHz}$	Word	-	-	7	
Flash Vcc Active Current (Program/Erase) *2	Icczf	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$			-	-	35	mA
Flash Vcc Active Current (Read-While-Program) *5	Icc3f	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{I}}$		Byte	-	-	48	mA
				Word	-	-	50	
Flash Vcc Active Current (Read-While-Erase) *5	Icc4f	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		Byte	-	-	48	mA
				Word	-	-	50	
Flash Vcc Active Current (Erase-Suspend-Program)	Iccsf	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$			-	-	35	mA
SRAM Vcc Active Current	Icc1s	$\begin{aligned} & \mathrm{V} \mathrm{ccs}=\mathrm{V}_{\mathrm{ccs}} \mathrm{Max} ., \\ & \mathrm{CE} 1 \mathrm{~s}=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{H}} \end{aligned}$	tcycle $=10 \mathrm{MHz}$		-	-	40	mA
SRAM V cc Active Current	Icc2S	$\begin{aligned} & \overline{\mathrm{CE}} \mathrm{~s}=0.2 \mathrm{~V}, \\ & \mathrm{CE} 2 \mathrm{~s}=\mathrm{V} \mathrm{ccs}- \\ & 0.2 \mathrm{~V}, \end{aligned}$	tcycle $=10 \mathrm{MHz}$		-	-	40	mA
			tcycle $=1 \mathrm{MHz}$		-	-	8	mA
Flash Vcc Standby Current	Isbif	$\begin{aligned} & \mathrm{V}_{\text {ccf }}=\mathrm{V}_{\text {cff }} \operatorname{Max} ., \overline{\mathrm{CEf}}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{V} \operatorname{ccf} \pm 0.3 \mathrm{~V}, \\ & \overline{\mathrm{WP} / A C C}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V} \end{aligned}$			-	1	5	$\mu \mathrm{A}$
Flash Vcc Standby Current (RESET)	Isb2f	$\begin{aligned} & \mathrm{V} \text { ccf }=\mathrm{V}_{\mathrm{ccf}} \mathrm{Max.} \text {., } \overline{\mathrm{RESET}}=\mathrm{V}_{\mathrm{ss}} \pm 0.3 \mathrm{~V} \\ & \mathrm{WP} / \mathrm{ACC}=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V} \end{aligned}$			-	1	5	$\mu \mathrm{A}$
Flash Vcc Current (Automatic Sleep Mode)*3	Isb3f	$\begin{aligned} & \text { Vccf }=\mathrm{V} \text { ccf } \operatorname{Max.} \text {., } \overline{\mathrm{CEf}}=\mathrm{V} \text { ss } \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V}, \\ & \overline{\mathrm{WP} / A C C}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V} \\ & \mathrm{~V} \text { in }=\mathrm{Vccf} \pm 0.3 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$			-	1	5	$\mu \mathrm{A}$
SRAM Vcc Standby Current	ISB1S	$\begin{aligned} & \overline{\mathrm{CE} 1 \mathrm{~s}} \geq \mathrm{V} \mathrm{ccs}-0.2 \mathrm{~V}, \\ & \mathrm{CE} 2 \mathrm{~s} \geq \mathrm{V} \mathrm{ccs}-0.2 \mathrm{~V} \end{aligned}$			-	0.2	7	$\mu \mathrm{A}$
SRAM Vcc Standby Current	ISB2S	CE2s $\leq 0.2 \mathrm{~V}$			-	0.2	7	$\mu \mathrm{A}$

(Continued)
(Continued)

Parameter	Symbol	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Input Low Level	VIL	-	-0.3	-	0.5	V
Input High Level	VIH	-	2.4	-	$\begin{aligned} & \mathrm{V} \mathrm{cc}+ \\ & 0.3 * 6 \end{aligned}$	V
Voltage for Sector Protection, and Temporary Sector Unprotection ($\overline{\text { RESET }})$ *4	VID	-	11.5	-	12.5	V
Voltage for Program Acceleration (WP/ACC) *4	$V_{\text {Acc }}$	-	8.5	9.0	9.5	V
Output Low Voltage Level	VoL	$\begin{aligned} & \text { Vccf }=V_{\text {ccf }} \text { Min., } V_{\text {ccs }}=V_{\text {ccs }} \text { Min., } \\ & \text { loL }=1.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V
Output High Voltage Level	Vон	$\begin{aligned} & \mathrm{V}_{\mathrm{ccf}}=\mathrm{V}_{\mathrm{ccf}} \mathrm{Min} ., \mathrm{V} \mathrm{ccs}=\mathrm{V}_{\mathrm{ccs}} \mathrm{Min} ., \\ & \mathrm{loH}=-0.5 \mathrm{~mA} \end{aligned}$	2.4	-	-	V
Flash Low Vccf Lock-Out Voltage	Vıкo	-	2.3	-	2.5	V

*1: The Icc current listed includes both the DC operating current and the frequency dependent component.
*2: Icc active while Embedded Algorithm (program or erase) is in progress.
*3: Automatic sleep mode enables the low power mode when address remain stable for 150 ns .
*4: Applicable for only V ccf applying.
*5: Embedded Alogorithm (program or erase) is in progress. (@5MHz)
*6: Vcc indicates lower of V ccf or V ccs.

MB84VD2118XA-85/MB84VD2119XA-85

2. AC Characteristics

- CE Timing

Parameter	Symbol		Test Setup	Value	Unit
	JEDEC	Standard		Min.	
$\overline{\mathrm{CE}}$ Recover Time	-	tccr	-	0	ns

- Timing Diagram for alternating SRAM to Flash

- Read Only Operations Characteristics (Flash)

Parameter	Symbol		Test Setup	Value (Note)		Unit
	JEDEC	Standard		Min.	Max.	
Read Cycle Time	tavav	trc	-	85	-	ns
Address to Output Delay	tavav	tacc	$\begin{aligned} & \overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	85	ns
Chip Enable to Output Delay	telov	tcef	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	85	ns
Output Enable to Output Delay	tglov	toe	-	-	35	ns
Chip Enable to Output High-Z	tehaz	tbF	-	-	30	ns
Output Enable to Output High-Z	tahaz	tof	-	-	30	ns
Output Hold Time From Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	taxax	toн	-	0	-	ns
RESET Pin Low to Read Mode	-	tready	-	-	20	$\mu \mathrm{S}$

Note : Test Conditions - Output Load: 1 TTL gate and 30 pF
Input rise and fall times : 5 ns
Input pulse levels : 0.0 V to 3.0 V
Timing measurement reference level
Input: 1.5 V
Output: 1.5 V

MB84VD2118XA-85/MB84VD2119XA-85

- Read Cycle (Flash)

Address

MB84VD2118XA-85/MB84VD2119XA-85

Parameter		Symbol		Value			Unit
		JEDEC	Standard	Min.	Typ.	Max.	
Write Cycle Time		tavav	twc	85	-	-	ns
Address Setup Time ($\overline{\mathrm{WE}}$ to Addr.)		tavwL	tAs	0	-	-	ns
Address Setup Time to $\overline{\mathrm{CEf}}$ Low During Toggle Bit Polling		-	taso	15	-	-	ns
Address Hold Time ($\overline{\mathrm{WE}}$ to Addr.)		twlax	taH	45	-	-	ns
Address Hold Time from $\overline{\mathrm{CE}} \mathrm{f}$ or $\overline{\mathrm{OE}}$ High During Toggle Bit Polling		-	tант	0	-	-	ns
Data Setup Time		tovwh	tos	35	-	-	ns
Data Hold Time		twhox	toh	0	-	-	ns
Output Enable Setup Time		-	toes	0	-	-	ns
Output Enable Hold Time	Read	-	tоен	0	-	-	ns
	Toggle and $\overline{\text { Data }}$ Polling			10	-	-	ns
$\overline{\text { CEf High During Toggle Bit Polling }}$		-	tcepr	20	-	-	ns
$\overline{\text { OE High During Toggle Bit Polling }}$		-	toEph	20	-	-	ns
Read Recover Time Before Write ($\overline{\mathrm{OE}}$ to $\overline{\mathrm{CE}}$)		tghel	tghel	0	-	-	ns
Read Recover Time Before Write ($\overline{\mathrm{OE}}$ to $\overline{\mathrm{WE}}$)		tahwL	tghwL	0	-	-	ns
		twLeL	tws	0	-	-	ns
$\overline{\mathrm{CEf}}$ Setup Time ($\overline{\mathrm{WE}}$ to $\overline{\mathrm{CE}}$)		teLwL	tos	0	-	-	ns
$\overline{\text { WE Hold Time (} \overline{\mathrm{CE}} \mathrm{f} \text { to } \overline{\mathrm{WE}})}$		terwh	twh	0	-	-	ns
$\overline{\mathrm{CE}} \mathrm{f}$ Hold Time ($\overline{\mathrm{WE}}$ to $\overline{\mathrm{CE}}$)		twher	tch	0	-	-	ns
Write Pulse Width		twLwh	twp	35	-	-	ns
$\overline{\text { CEf Pulse Width }}$		teler	tcp	35	-	-	ns
Write Pulse Width High		twhwL	twpH	30	-	-	ns
$\overline{\text { CEf Pulse Width High }}$		teheL	tcPH	30	-	-	ns
Byte Programming Operation		twhwhr	twhwhr	-	8	-	$\mu \mathrm{s}$
Word Programming Operation				-	16	-	$\mu \mathrm{s}$
Sector Erase Operation *1		twHWH2	twHwH2	-	1	-	s

(Continued)

MB84VD2118XA-85/MB84VD2119XA-85

(Continued)

Parameter	Symbol		Value			Unit
	JEDEC	Standard	Min.	Typ.	Max.	
Vcof Setup Time	-	tves	50	-	-	$\mu \mathrm{s}$
Voltage Transition Time *2	-	tvLht	4	-	-	$\mu \mathrm{s}$
Rise Time to $\mathrm{V}_{10}{ }^{* 2}$	-	tvior	500	-	-	ns
Rise Time to $\mathrm{V}_{\text {Acc }}$	-	tvaccr	500	-	-	ns
Recover Time from RY//]Y	-	$\mathrm{t}_{\text {RB }}$	0	-	-	ns
RESET Pulse Width	-	trp	500	-	-	ns
Delay Time from Embedded Output Enable	-	teoe	-	-	85	ns
$\overline{\text { RESET }}$ Hold Time Before Read	-	trH	200	-	-	ns
Program/Erase Valid to RY/ $\overline{\mathrm{BY}}$ Delay	-	tBusY	-	-	90	ns
Erase Time-out Time *3	-	trow	50	-	-	$\mu \mathrm{s}$
Erase Suspend Transition Time *4	-	tspD	-	-	20	$\mu \mathrm{s}$

*1: This does not include the preprogramming time.
*2: This timing is for Sector Protection Operation.
*3: The time between writes must be less than "trow" otherwise that command will not be accepted and erasure will start. A time-out or "trow" from the rising edge of last $\overline{\mathrm{CE}} \mathrm{f}$ or $\overline{\mathrm{WE}}$ whichever happens first will initiate the execution of the Sector Erase command (s).
*4: When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of "tspo" to suspend the erase operation.

MB84VD2118XA-85/MB84VD2119XA-85

- Write Cycle (WE control) (Flash)

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.
6. These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

MB84VD2118XA-85/MB84VD2119XA-85

- Write Cycle (CEf control) (Flash)

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{D Q}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.
6. These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

MB84VD2118XA-85/MB84VD2119XA-85

- AC Waveforms Chip/Sector Erase Operations (Flash)

*: SA is the sector address for Sector Erase. Address $=555 \mathrm{~h}$ for Chip Erase.

Note : These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

MB84VD2118XA-85/MB84VD2119XA-85

- AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash)

MB84VD2118XA-85/MB84VD2119XA-85

- AC Waveforms for Toggle Bit during Embedded Algorithm Operations (Flash)

*: DQ6 stops toggling (The device has completed the Embedded operation) .

MB84VD2118XA-85/MB84VD2119XA-85

- Back-to-back Read/Write Timing Diagram (Flash)

Note : This is example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.
BA1 : Address of Bank 1.
BA2 : Address of Bank 2.

MB84VD2118XA-85/MB84VD2119XA-85

- RY/ $\overline{\mathrm{BY}}$ Timing Diagram during Write/Erase Operations (Flash)

- $\overline{\mathrm{RESET}}, \mathrm{RY} / \overline{\mathrm{BY}}$ Timing Diagram (Flash)

MB84VD2118XA-85/MB84VD2119XA-85

- Temporary Sector Unprotection (Flash)

MB84VD2118XA-85/MB84VD2119XA-85

- Extended Sector Protection (Flash)

SGAx : Sector Group Address to be protected
SGAy : Next Group Sector Address to be protected
TIME-OUT : Time-Out window $=250 \mu \mathrm{~s}$ (Min.)

MB84VD2118XA-85/MB84VD2119XA-85

- Accelerated Program (Flash)

- Read Cycle (SRAM)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Read Cycle Time	trc	85	-	ns
Address Access Time	$t_{A A}$	-	85	ns
Chip Enable ($\overline{\mathrm{CE} 1 \mathrm{~s})}$ Access Time	tcoi	-	85	ns
Chip Enable (CE2s) Access Time	tco2	-	85	ns
Output Enable Access Time	toe	-	45	ns
$\overline{\overline{L B}}$ s, $\overline{\text { UB }}$ s to Output Valid	tba	-	85	ns
Chip Enable ($\overline{\mathrm{CE}}$ 1s Low and CE2s High) to Output Active	tooe	5	-	ns
Output Enable Low to Output Active	toee	0	-	ns
$\overline{\mathrm{UB}}$ s, $\overline{\text { LB }}$ s Enable Low to Output Active	tbe	0	-	ns
Chip Enable ($\overline{\mathrm{CE}}$ 1s High or CE2s Low) to Output High-Z	tod	-	35	ns
Output Enable High to Output High-Z	tooo	-	35	ns
$\overline{\overline{U B}}$, $\overline{\text { LB }}$ s Output Enable to Output High-Z	tbo	-	50	ns
Output Data Hold Time	tor	10	-	ns

Note: Test conditions: Output Load: 1 TTL gate and 30 pF Input rise and fall times: 5 ns Input pulse levels: 0.0 V to V cos
Timing measurement reference level
Input: $0.5 \times \mathrm{Vccs}$
Output: $0.5 \times \mathrm{Vccs}$

MB84VD2118XA-85/MB84VD2119XA-85

- Read Cycle (Note) (SRAM)

Note : $\overline{\mathrm{WE}}$ remains " H " for the read cycle.

MB84VD2118XA-85/MB84VD2119XA-85

- Write Cycle (SRAM)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Write Cycle Time	twc	85	-	ns
Write Pulse Width	twp	55	-	ns
Chip Enable to End of Write	tcw	70	-	ns
Address valid to End of Write	taw	70	-	ns
$\overline{\overline{U B}}$ s, $\overline{\mathrm{LB}}$ s to End of Write	tew	55	-	ns
Address Setup Time	tas	0	-	ns
Write Recovery Time	twr	0	-	ns
$\overline{\text { WE Low to Output High-Z }}$	toow	-	35	ns
$\overline{\text { WE }}$ High to Output Active	toew	0	-	ns
Data Setup Time	tos	35	-	ns
Data Hold Time	toh	0	-	ns

MB84VD2118XA-85/MB84VD2119XA-85

- Write Cycle (Note 3) ($\overline{\mathrm{WE}}$ control) (SRAM)

Notes : 1. If $\overline{C E 1}$ s goes "L" (or CE2s goes "H") coincident with or after WE goes "L", the output will remain at High-Z.
2. If $\overline{C E 1}$ s goes "H" (or CE2s goes " L ") coincident with or before $\overline{W E}$ goes " H ", the output will remain at High-Z.
3. If $\overline{\mathrm{OE}}$ is " H " during the write cycle, the outputs will remain at High-Z.
4. Because I/O signals may be in the output state at this time, input signals of reverse polarity must not be applied.

- Write Cycle (Note 1) (CE1s control) (SRAM)

Notes: 1. If $\overline{\mathrm{OE}}$ is "H" during the write cycle, the outputs will remain at High-Z.
2. Because I/O signals may be in the output state at this time, input signals of reverse polarity must not be applied.

MB84VD2118XA-85/MB84VD2119XA-85

- Write Cycle (Note 1) (CE2s Control) (SRAM)

Notes:1. If $\overline{\mathrm{OE}}$ is " H " during the write cycle, the outputs will remain at High-Z.
2. Because I/O signals may be in the output state at this time, input signals of reverse polarity must not be applied.

MB84VD2118XA-85/MB84VD2119XA-85

- Write Cycle (Note 1) (ㄴBs, UBs Control) (SRAM)

Notes: 1. If $\overline{\mathrm{OE}}$ is "H" during the write cycle, the outputs will remain at High-Z.
2. Because I/O signals may be in the output state at this time, input signals of reverse polarity must not be applied.

MB84VD2118XA-85/MB84VD2119XA-85

ERASE AND PROGRAMMING PERFORMANCE (Flash)

Parameter	Limits			Unit	Comment
	Min.	Typ.	Max.		s
Sector Erase Time	-	1	10	Excludes programming time prior to erasure	
Byte Programming Time	-	8	300	$\mu \mathrm{~s}$	Excludes system-level overhead
Word Programming Time	-	16	360	$\mu \mathrm{~s}$	Excludes system-level overhead
Chip Programming Time	-	-	50	s	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	cycle	

DATA RETENTION CHARACTERISTICS (SRAM)

Parameter		Symbol	Value			Unit	
		Min.	Typ.	Max.			
Data Retention Supply Voltage			Vor	1.5	-	3.6	V
Standby Current	$\mathrm{V}_{\text {DH }}=3.0 \mathrm{~V}$	Iods2	-	0.2	7*	$\mu \mathrm{A}$	
Chip Deselect to Data Retention Mode Time		tcor	0	-	-	ns	
Recovery Time		tR	trc	-	-	ns	

${ }^{*}: 4 \mu \mathrm{~A}$ Max. at $\mathrm{T}_{\mathrm{A}} \leq 60^{\circ} \mathrm{C}, 1 \mu \mathrm{~A}$ Max. at $\mathrm{T}_{\mathrm{A}} \leq 40^{\circ} \mathrm{C}$
Note : trc : Read cycle time

- CE1s Controlled Data Retention Mode (Note 1)

- CE2s Controlled Data Retention Mode (Note 3)

Notes : 1. In $\overline{\mathrm{CE} 1}$ s controlled data retention mode, input level of CE2s should be fixed Vccs to Vccs -0.2 V or Vss to 0.2 V during data retention mode. Other input and input/output pins can be used between -0.3 V and $\mathrm{Vccs}+0.3 \mathrm{~V}$.
2. When $\overline{\mathrm{CE}}$ 1s is operating at the $\mathrm{V}_{\mathrm{H}} \mathrm{Min}$. level (2.2 V) , the standby current is given by Isвıs during the transition of V cos from 3.6 to 2.2 V .
3. In CE2s controlled data retention mode, input and input/output pins can be used between -0.3 V and $\mathrm{Vccs}+0.3 \mathrm{~V}$.

- PIN CAPACITANCE

Parameter	Symbol	Test Setup	Value		Unit
			Typ.	Max.	
Input Capacitance	Cin	$\mathrm{V}_{\text {IN }}=0$	11	14	pF
Output Capacitance	Cout	Vout $=0$	12	16	pF
Control Pin Capacitance	CIN2	$\mathrm{V}_{1 \times}=0$	14	16	pF
WP/ACC Pin Capacitance	Cin3	$\mathrm{V}_{\mathrm{IN}}=0$	17	20	pF

Note : Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

HANDLING OF PACKAGE

Please handle this package carefully since the sides of packages are right angle.

CAUTION

1. The high voltage (V_{ID}) can not apply to address pins and control pins except RESET. Therefore, it can not use autoselect and sector protect function by applying the high voltage ($\mathrm{V}_{\text {II }}$) to specific pins.
2. For the sector protection, since the high voltage (VID) can be applied to the RESET, it can be protected the sector using "Extended sector protect" command.

MB84VD2118XA-85/MB84VD2119XA-85

ORDERING INFORMATION

MB84VD2118XA-85/MB84VD2119XA-85

PACKAGE DIMENSIONS

[^1](Continued)

MB84VD2118XA-85/MB84VD2119XA-85

(Continued)
56-pin plastic TSOP (I) (FPT-56P-M04)

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am- 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0104
© FUJITSU LIMITED Printed in Japan

[^0]: *: Embedded Erase ${ }^{\mathrm{TM}}$ and Embedded Program ${ }^{\mathrm{TM}}$ are trademarks of Advanced Micro Devices, Inc.

[^1]: © 1999 FUJTSU LIMTED B69002S-1C-1

