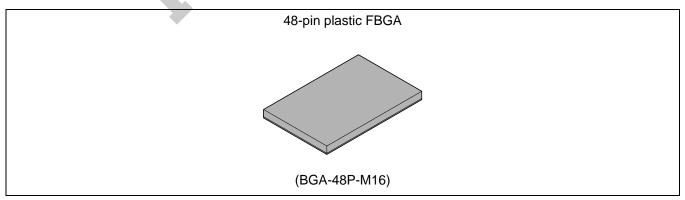
MEMORY Low Power SRAM Interface FCRAM[™] смоs

16 Mbit (1 M word × 16 bit) Mobile Phone Application Specific Memory

MB82D01171A-90/-90L/-90LL

 $\label{eq:cmost} \begin{array}{l} \text{CMOS 1,048,576-WORD} \times \text{16 BIT} \\ \text{Fast Cycle Random Access Memory} \\ \text{with Low Power SRAM Interface} \end{array}$


DESCRIPTION

The Fujitsu MB82D01171A is a CMOS Fast Cycle Random Access Memory (FCRAM) with asynchronous Static Random Access Memory (SRAM) interface containing 16,777,216 storages accessible in a 16-bit format. This MB82D01171A is suited for low power applications such as Cellular Handset and PDA.

PRODUCT LINEUP

Parameter	MB82D01171A					
	90	90L	90LL			
Read Cycle Time (Min.)		90 ns				
Active Current (Max.) (IDDA1)		20 mA				
Standby Current (Max.) (IDDS1)	200 µA Max.	100 μA Max.	70 μA Max.			
Power Down Current (Max.) (IDDP)		10 μA				

PACKAGES

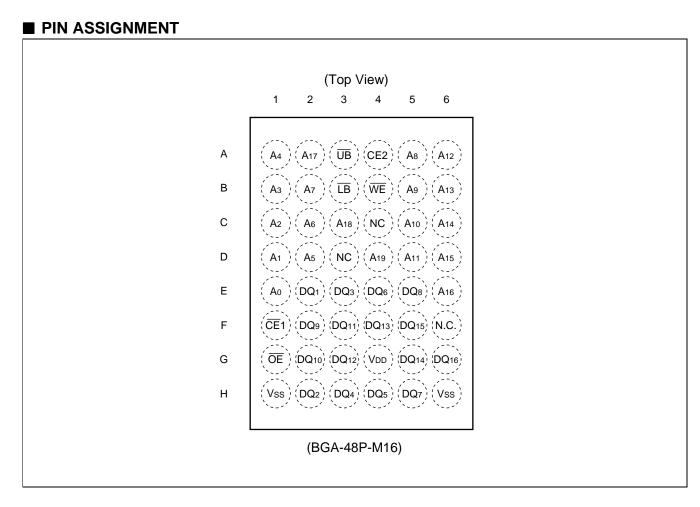
Note: FCRAM is a trademark of Fujitsu Limited, Japan

■ FEATURES

- Asynchronous SRAM Interface
- 1 M \times 16 organization
- Fast Random Cycle Time: tRC = 90 ns
- Low Power Consumption
 - V_{DD} standby current: 90: 200 μA

90L: 100 μA

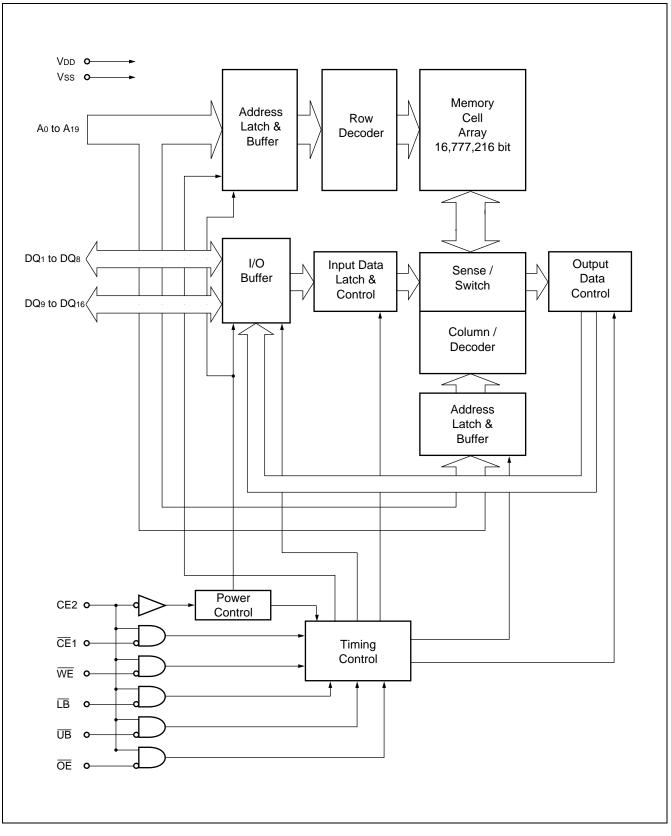
90LL: 70 μA


• Wide Operating Condition

 $V_{DD} = +2.3 \text{ V to } +2.7 \text{ V or}$

+2.7 V to +3.1 V

- $T_{\text{A}} = -25 \ ^{\circ}\text{C}$ to +85 $\ ^{\circ}\text{C}$
- Byte Write Control
- 4 words Address Access Capability
- Power Down Control by CE2
 V_{DD} power down current: 10 μA


MB82D01171A-90/-90L/-90LL

■ PIN DESCRIPTION

Pin Name	Description
A ₀ to A ₁₉	Address Input
CE1	Chip Enable (Low Active)
CE2	Chip Enable (High Active)
WE	Write Enable (Low Active)
ŌĒ	Output Enable (Low Active)
LB	Lower Byte Write Control (Low Active)
UB	Upper Byte Write Control (Low Active)
DQ ₁₋₈	Lower Byte Data Input/Output
DQ9-16	Upper Byte Data Input/Output
Vdd	Power Supply
Vss	Ground
NC	No Connection

BLOCK DIAGRAM

MB82D01171A-90/-90L/-90LL

Mode	CE1	CE2	WE	OE	LB	UB	DQ 1-8	DQ 9-16	DD	Data Retention		
Power Down *2	Х	L	Х	Х	Х	Х	High-Z	High-Z	DDP	No		
Standby (Deselect)	Н		Х	Х	Х	Х	High-Z	High-Z	IDDS			
Output Disable*3				Н	Х	Х	High-Z	High-Z				
Read*4	L	L	Н	L	Х	х	Output Valid	Output Valid				
Write					L	L	Input Valid	Input Valid	Idda	Yes		
Write (Lower Byte)			L	н	L	н	Input Valid	Invalid				
Write (Upper Byte)								Н	L	Invalid	Input Valid	

■ FUNCTION TRUTH TABLE *1

*1 : V = Valid, L = Logic Low, H = Logic High, X = either "L" or "H", High-Z = High Impedance

*2 : Power Down mode can be entered from Standby state and all DQ pins are in High-Z state.

*3 : Output Disable mode should not be kept longer than 1 $\mu s.$

*4 : Byte control at Read mode is not supported.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	ing	Unit
Farameter	Symbol	Min.	Max.	Unit
Voltage of VDD Supply Relative to Vss	Vdd	-0.5	+3.3	V
	Vin	-0.5	+3.3	V
Voltage at Any Pin Relative to Vss	Vout	-0.5	+3.3	V
Short Circuit Output Current	Іоит	-50	+50	mA
Storage Temperature	Тѕтс	-55	+125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

(Referenced to								
Parameter	Symbol	Va	Value					
Farameter	Symbol	Min.	Max.	Unit				
Supply Voltage *1	Vdd (27)	2.7	3.1	V				
	Vdd (23)	2.3	2.7	V				
	Vss	0	0	V				
	Vih (27)	2.2	V _{DD} + 0.3	V				
High Level Input Voltage *1, *2	Vін (23)	2.0	V _{DD} + 0.3	V				
	VIL (27)	-0.3	0.5	V				
Low Level Input Voltage *1, *2	VIL (23)	-0.3	0.4	V				
Ambient Temperature	TA	-25	85	°C				

*1 : All voltages are referenced to Vss.

*2 : Minimum DC voltage on input or I/O pins are –0.3 V. During voltage transitions, inputs may undershoot Vss to –1.0 V for periods of up to 5 ns. Maximum DC voltage on input and I/O pins are V_{DD} + 0.3 V.

During voltage transitions, inputs may positive overshoot to V_{DD} + 1.0 V for periods of up to 5 ns.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ PIN CAPACITANCE

 $(f = 1.0 \text{ MHz}, T_A = +25 \circ \text{C})$

Parameter	Symbol	Conditions		Unit		
	Symbol	Conditions	Min.	Тур.	Max.	Unit
Address Input Capacitance	CIN1	$V_{IN} = 0 V$	—	—	5	pF
Control Input Capacitance	CIN2	$V_{IN} = 0 V$	—	—	5	pF
Data Input/Output Capacitance	Сю	V10 = 0 V			8	pF

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

Parameter		Symbol	Conditions			Value		Unit		
Faramete	51	Symbol	Min. Ty		Тур.	Max.	Unit			
Input Leakage Curre	ent	lu	$V_{SS} \leq V_{IN} \leq V_{DD}$		-1.0	_	+1.0	μA		
Output Leakage Cur	rrent	Ilo	$0 \text{ V} \leq V_{\text{OUT}} \leq V_{\text{DD}}$, Output D	isable	-1.0		+1.0	μA		
Output High Voltage		Voh(27)	$V_{DD} = V_{DD(27)}, I_{OH} = -0.5 \text{ mA}$	١	2.1	_		V		
Output High Voltage Level		Voh(23)	$V_{DD} = V_{DD(23)}, I_{OH} = -0.5 \text{ mA}$	N N	1.8		_	V		
Output Low Voltage	Level	Vol	lo∟ = 1 mA		_	_	0.4	V		
VDD Power Down Cu	irrent	IDDP	$\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = V_{\text{DD}} \mbox{ Max.}, \ V_{\text{IN}} = V_{\text{IH}} \mbox{ or } V_{\text{IL}}, \\ CE2 \leq 0.2 \ V \end{array}$				10	μA		
	-90				$V_{DD} = V_{DD} Max$		_	1.5	5	
	-90L	IDDS			_	1	1.5 m	mA		
VDD Standby	-90LL		$\overline{CE}1 = CE2 = V_{IH}, I_{OUT} = 0 I$	mA	_	0.5	1			
Current	-90		Vdd = Vdd Max.,		_		200			
	-90L	DDS1	$V_{\text{IN}} \le 0.2 \text{ V or } V_{\text{IN}} \ge V_{\text{DD}} - 0.2 \text{ V}$		_	_	100	μA		
	-90LL		$\overline{CE}1 = CE2 \ge V_{DD} - 0.2 \text{ V},$	lout = 0 mA		_	70			
$I_{DDA1} V_{DD} = V_{DD} Max.,$ $V_{IN} = V_{IH} \text{ or } V_{IL},$			t _{RC} / t _{WC} = Min.		15	20	mA			
VDD Active Current		Idda2	$\overline{CE1} = V_{IL} \text{ and } CE2 = V_{IH},$ lout = 0 mA	t _{RC} / t _{WC} = Max.	_	2.5	3.0	mA		

Notes: • All voltages are referenced to Vss.

• DC Characteristics are measured after following POWER-UP timing.

• IOUT depends on the output load conditions.

2. AC Characteristics

(1) Read Operation

Devementer	Cumhal	Va	lue	11	Natas
Parameter	Symbol	Min.	Max.	Unit	Notes
Read Cycle Time	trc	90	1000	ns	*1
Chip Enable Access Time	t _{CE}		90	ns	*2, *4
Output Enable Access Time	toe		45	ns	*2
Address Access Time	taa		90	ns	*2, *5
Output Data Hold Time	tон	5	—	ns	*2
CE1 Low to Output Low-Z	tc∟z	5		ns	*3
OE Low to Output Low-Z	tolz	0		ns	*3
CE1 High to Output High-Z	tснz		30	ns	*3
OE High to Output High-Z	tонz		25	ns	*3
Address Setup Time to CE1 Low	tasc	-5		ns	
Address Setup Time to $\overline{O\Gamma}$ Low	taso	45		ns	*4, *6
Address Setup Time to OE Low	taso[abs]	10		ns	*7
Address Invalid Time	tax		5	ns	*5
CE1 Low to Address Hold Time	t clah	90	—	ns	*5
OE Low to Address Hold Time	tolah	45		ns	*5, *8
CE1 High to Address Hold Time	tснан	-5		ns	
OE High to Address Hold Time	tонан	0	—	ns	
CE1 Low to OE Low Delay Time	tclol	45	1000	ns	*4, *6, *8, *9
OE Low to CE1 High Delay Time	tolcн	45	_	ns	*8
CE1 High Pulse Width	t _{CP}	20	_	ns	
	top	45	1000	ns	*6, *8, *9
OE High Pulse Width	top[abs]	20		ns	*7

*1: Maximum value is a reference.

- *2: The output load is 30 pF.
- *3: The output load is 5 pF.
- *4: The tce is applicable if \overline{OE} is brought to Low before $\overline{CE1}$ goes Low and is also applicable if actual value of both or either tASO or tclol is shorter than specified value.
- *5: Applicable only to A_0 and A_1 when both $\overline{CE1}$ and \overline{OE} are kept at Low for the address access.
- *6: The taso, tcLoL (Min.) and top (Min.) are reference values when the access time is determined by toe. If actual value of each parameter is shorter than specified minimum value, toe become longer by the amount of subtraction actual value from specified minimum value. For example, if actual taso, taso (actual), is shorter than specified minimum value, taso (Min.), during OE control access (i.e., CE1 stays Low), the toe become toe (Max.) + taso (Min.) - taso (actual).
- *7: The taso[ABS] and top[ABS] is the absolute minimum value during OE control access.
- *8: If actual value of either tclol or top is shorter than specified minimum value, both tolah and tolch become trc (Min.) tclol (actual) or trc (Min.) top (actual).
- *9: Maximum value is applicable if CE1 is kept at Low.

(2) Write Operation

Parameter	Symbol	Va	alue	Unit	Notes
Farameter	Symbol	Min.	Max.	Unit	Notes
Write Cycle Time	twc	90	1000	ns	*1
Address Setup Time	tas	0		ns	*2
Address Hold Time	tан	45		ns	*2
CE1 Write Setup Time	tcs	0	1000	ns	
CE1 Write Hold Time	tсн	0	1000	ns	
WE Setup Time	tws	0		ns	
WE Hold Time	twн	0	—	ns	
LB and UB Setup Time	t _{BS}	-5	—	ns	
LB and UB Hold Time	tвн	-5	—	ns	
OE Setup Time	toes	0	1000	ns	*3
OE Hold Time	tоен	45	1000	ns	*3, *4
	toeh[ABS]	20	—	ns	*5
OE High to CE1 Low Setup Time	tонс∟	-3		ns	*6
Address Hold Time to OE High	tонан	0	—	ns	*7
CE1 Write Pulse Width	tcw	60		ns	*1, *8
WE Write Pulse Width	twp	60		ns	*1, *8
CE1 Write Recovery Time	twrc	15		ns	*1, *9
WE Write Recovery Time	twr	15	1000	ns	*1, *3, *9
Data Setup Time	tos	20	—	ns	
Data Hold Time	tон	0	—	ns	
CE1 High Pulse Width	tcp	20	—	ns	*9

*1: Maximum value is a reference.

Minimum value must be equal or greater than the sum of actual t_{CW} (or t_{WP}) and t_{WRC} (or t_{WR}).

*2: New write address is valid from either $\overline{CE1}$ or \overline{WE} is brought to High.

*3: Maximum value is applicable if $\overline{CE1}$ is kept at Low and both \overline{WE} and \overline{OE} are kept at High.

*4: The tOEH is specified from end of twc (Min.).

*5: The toehiabsi is the absolute minimum value if write cycle is terminated by \overline{WE} and $\overline{CE1}$ stays Low.

- *6: tohcl (Min.) must be satisfied if read operation is not performed prior to write operation. In case OE is disabled after tohcl (Min.), WE Low must be asserted after trc (Min.) from CE1 Low. In other words, read operation is initiated if tohcl (Min.) is not satisfied.
- *7: Applicable if \overline{CE} 1 stays Low after read operation.
- *8: tcw and twp is applicable if write operation is initiated by CE1 and WE, respectively.
- *9: twRc and twR is applicable if write operation is terminated by CE1 and WE, respectively. The twR (Min.) can be ignored if CE1 is brought to High together or after WE is brought to High. In such case, the tcP (Min.) must be satisfied.

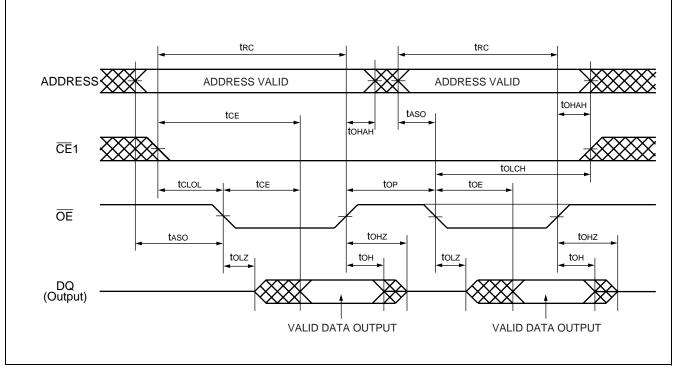
(3) Power Down Parameters

Parameter	Symbol	Va	lue	Unit	Note
r ai ameter	Symbol	Min.	Max.	Onic	NOLE
CE2 Low Setup Time for Power Down Entry	t CSP	10	—	ns	
CE2 Low Hold Time after Power Down Entry	t _{C2LP}	100	_	ns	
CE1 High Hold Time following CE2 High after Power Down Exit	tснн	350		μs	
CE1 High Setup Time following CE2 High after Power Down Exit	tснs	10		ns	

(4) Other Timing Parameters

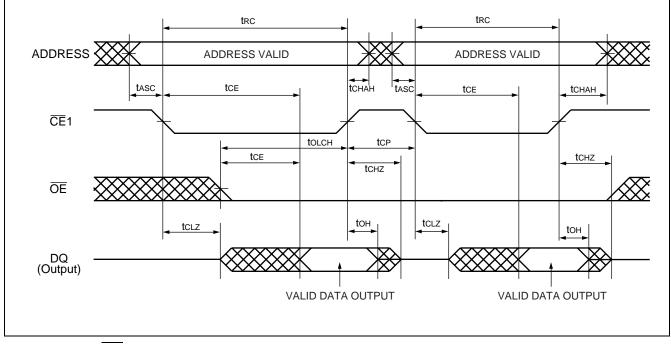
Parameter	Symbol	Va	lue	Unit	Note
Farameter	Symbol	Min.	Max.	Unit	NOLE
CE1 High to OE Invalid Time for Standby Entry	tснох	20	—	ns	
\overline{CE} 1 High to \overline{WE} Invalid Time for Standby Entry	t chwx	20		ns	*1
CE2 Low Hold Time after Power-up	tc2LH	50	—	μs	
CE1 High Hold Time following CE2 High after Power-up	tснн	350		μs	
Input Transition Time	tτ	1	25	ns	*2

*1: It may write some data into any address location if tCHWX is not satisfied.

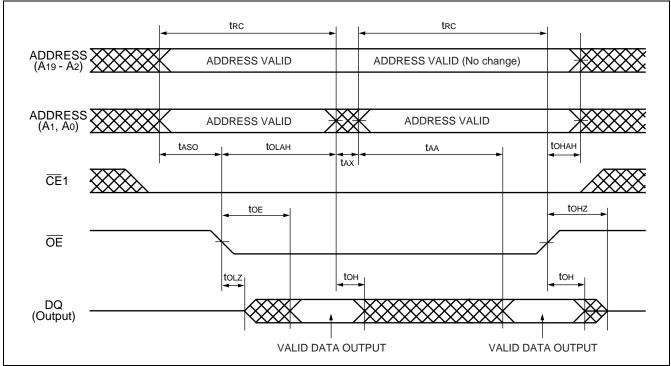

*2: The Input Transition Time (t_T) at AC testing is 5 ns as shown in below. If actual t_T is longer than 5 ns, it may violate AC specification of some timing parameters.

(5) AC Test Conditions

Parameter	Symbol	Conditions	Measured Value	Unit	Note
Input High Level	VIH	$V_{DD} = 2.7 \text{ V to } 3.1 \text{ V}$	2.3	V	
	VIH	V _{DD} = 2.3 V to 2.7 V	2.0	V	
	VIL	V _{DD} = 2.7 V to 3.1 V	0.4	V	
Input Low Level	VIL	V _{DD} = 2.3 V to 2.7 V	0.4	V	
Input Timing Maggurgment Loval	VREF	V _{DD} = 2.7 V to 3.1 V	1.3	V	
Input Timing Measurement Level	VREF	V _{DD} = 2.3 V to 2.7 V	1.1	V	
Input Transition Time	tτ	Between Vi∟ and Viн	5	ns	

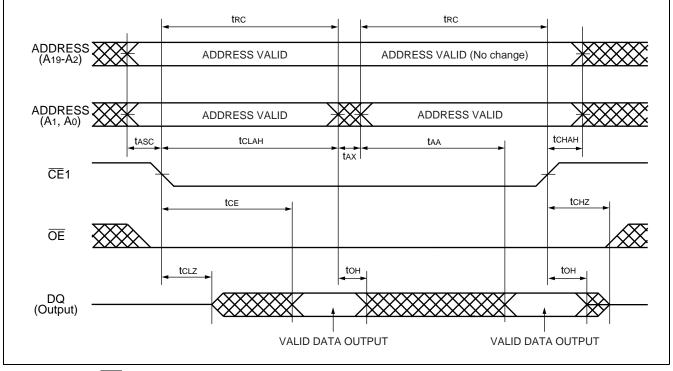

■ TIMING DIAGRAM

1. READ Timing #1 (OE Control Access)

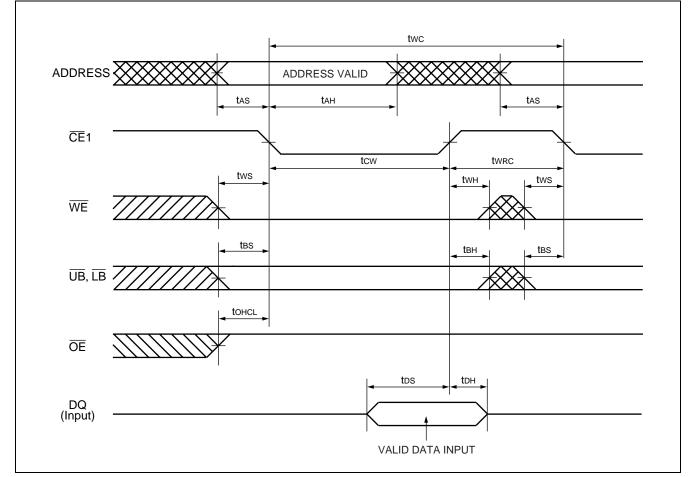


Note : CE2 and $\overline{\text{WE}}$ must be High for entire read cycle.

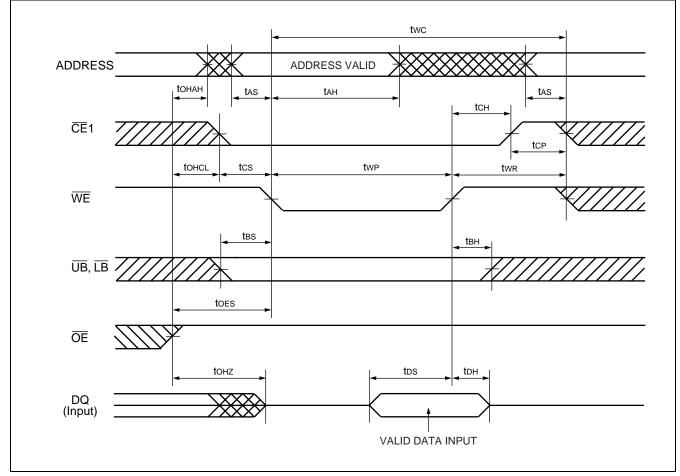
2. READ Timing #2 (CE1 Control Access)


Note : CE2 and $\overline{\text{WE}}$ must be High for entire read cycle.

3. READ Timing #3 (Address Access after OE Control Access)

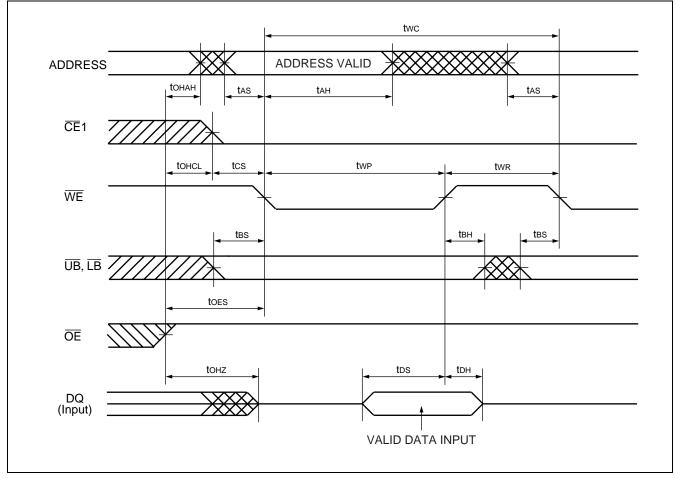

Note : CE2 and WE must be High for entire read cycle.

4. READ Timing #4 (Address Access after CE1 Control Access)



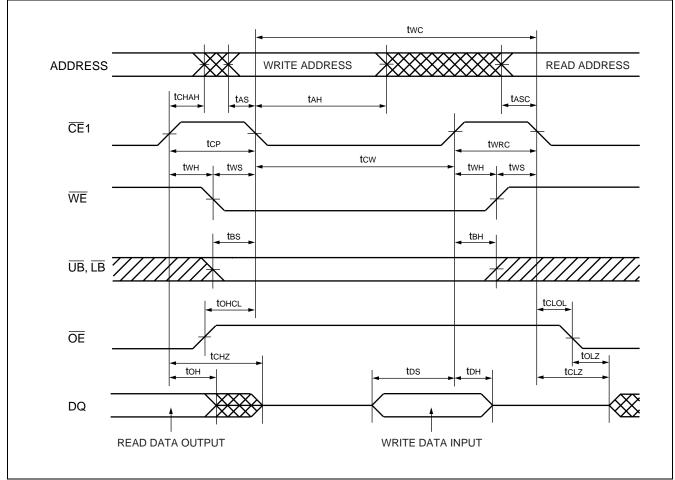
Note : CE2 and $\overline{\text{WE}}$ must be High for entire read cycle.

5. WRITE Timing #1 (CE1 Control)

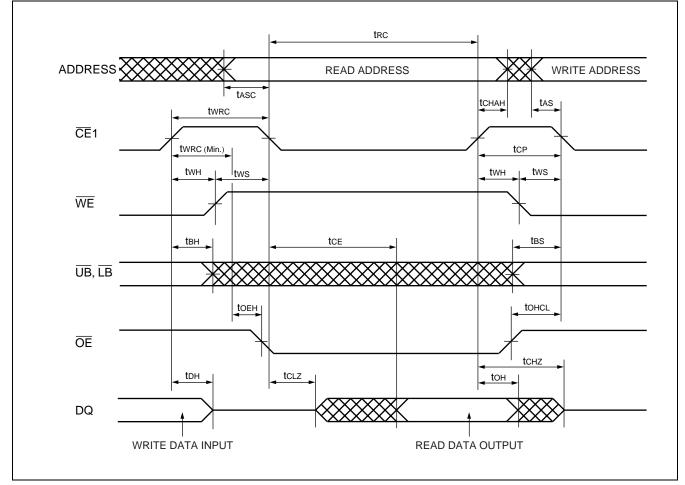


Note : CE2 must be High for write cycle.

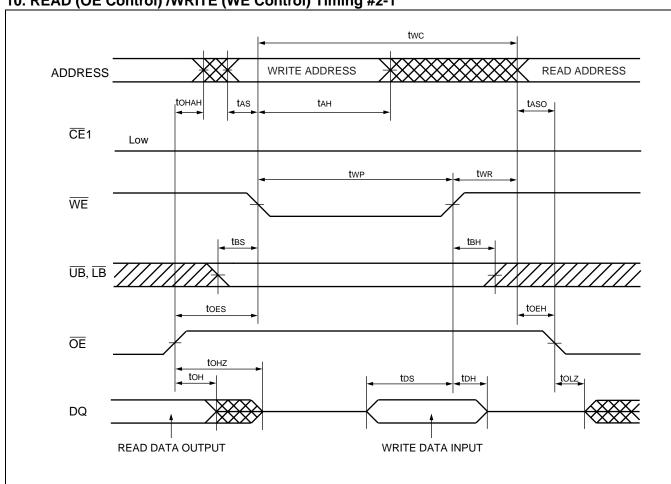
6. WRITE Timing #2-1 (WE Control, Single Write Operation)


Note : CE2 must be High for write cycle.

7. WRITE Timing #2 (WE Control, Continuous Write Operation)

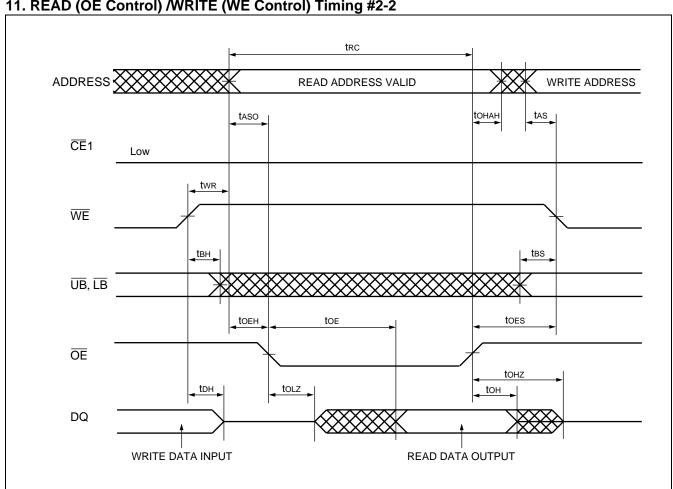

Note : CE2 must be High for write cycle.

8. READ/WRITE Timing #1-1 (CE1 Control)



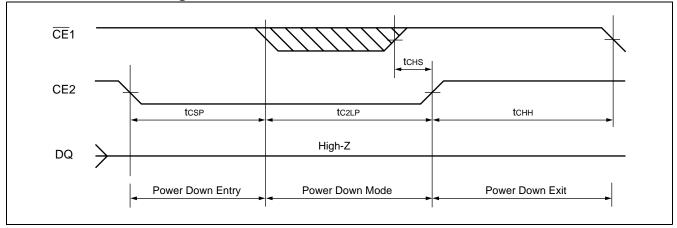
Note : Write address is valid from either $\overline{CE1}$ or \overline{WE} of last falling edge.

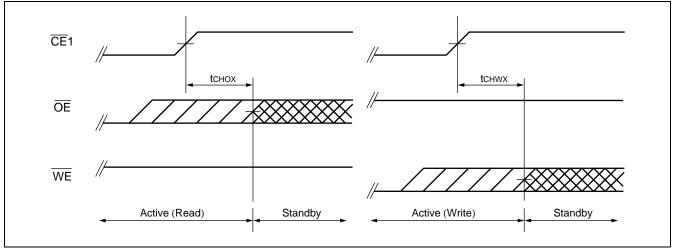
9. READ/WRITE Timing #1-2 (CE1 Control)



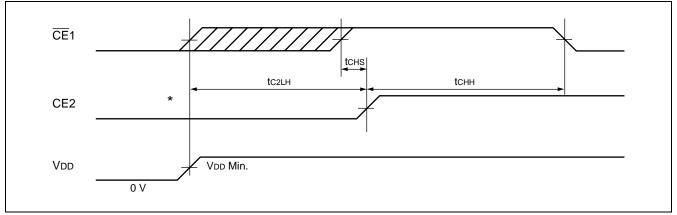
Note : The toeh is specified from the time satisfied both twice and twice (Min.) .

10. READ (OE Control) /WRITE (WE Control) Timing #2-1


Note : $\overline{CE1}$ can be tied to Low for \overline{WE} and \overline{OE} controlled operation. When $\overline{CE1}$ is tied to Low, output is exclusively controlled by \overline{OE} .


11. READ (OE Control) /WRITE (WE Control) Timing #2-2

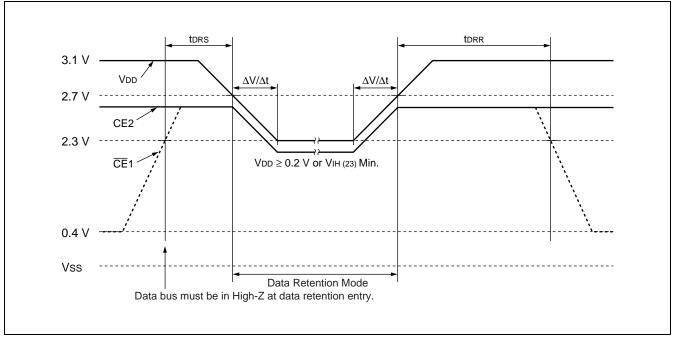
Note : $\overline{CE}1$ can be tied to Low for \overline{WE} and \overline{OE} controlled operation. When $\overline{CE1}$ is tied to Low, output is exclusively controlled by \overline{OE} .


12. POWER DOWN Timing

13. Standby Entry Timing after Read or Write

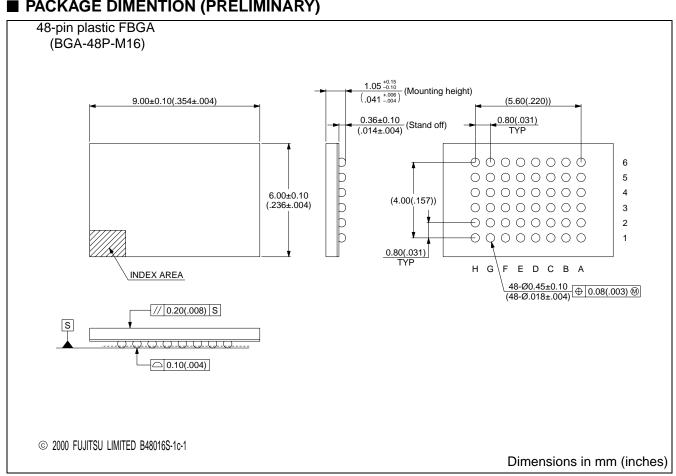
Note : Both t_{CHOX} and t_{CHWX} define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes t_{RC} (Min.) period from either last address transition of A₀ and A₁, or $\overline{CE1}$ Low to High transition.

14. POWER-UP Timing


*: It is recommended CE2 to kept at Low during VDD power-up. The tc2LH specifies after VDD reaches specified minimum level.

■ DATA RETENTION

1. Low VDD Characteristics


Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
V _{DD} Data Retention Supply Voltage		Vdr	$\label{eq:cell} \begin{split} \overline{CE}^{1} &= CE2 \geq V_{DD} - 0.2 \ V \ or, \\ \overline{CE}^{1} &= CE2 = V_{IH}, \end{split}$	2.3		3.1	V
V _{DD} Data Retention Supply Current	-90	ldr		_	1.5	5	mA
	-90L				1	1.5	
	-90LL				0.5	1	
	-90	ldr1	$ \begin{split} & V_{\text{DD}} = V_{\text{DD}~(23)}, \\ & V_{\text{IN}} \leq 0.2 \text{ V or } V_{\text{IN}} \geq V_{\text{DD}} - 0.2 \text{ V}, \\ & \overline{\text{CE}} 1 = \text{CE} 2 \geq V_{\text{DD}} - 0.2 \text{ V}, \text{ Iout} = 0 \text{ mA} \end{split} $			200	μΑ
	-90L					100	
	-90LL			_		70	
Data Retention Setup Time		tdrs	$V_{DD} = V_{DD (27)}$ at data retention entry	0		_	ns
Data Retention Recovery Time		t drr	$V_{DD} = V_{DD (27)}$ after data retention	90	_	_	ns
VDD Voltage Transition Time		$\Delta V / \Delta t$		0.5			V/µs

2. Data Retention Timing

ORDERING INFORMATION

Part Number	Package	Remarks
MB82D01171A-90PBT	Plastic FBGA 48-ball (BGA-48P-M16)	
MB82D01171A-90LPBT	Plastic FBGA 48-ball (BGA-48P-M16)	
MB82D01171A-90LLPBT	Plastic FBGA 48-ball (BGA-48P-M16)	

■ PACKAGE DIMENTION (PRELIMINARY)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0104 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.