ASSP

TIMER

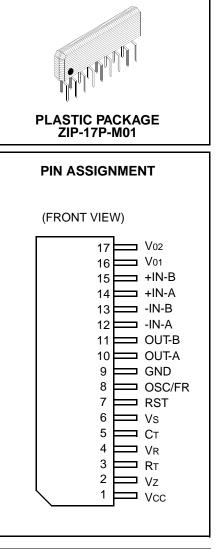
MB4214

LONG PERIOD TIMER

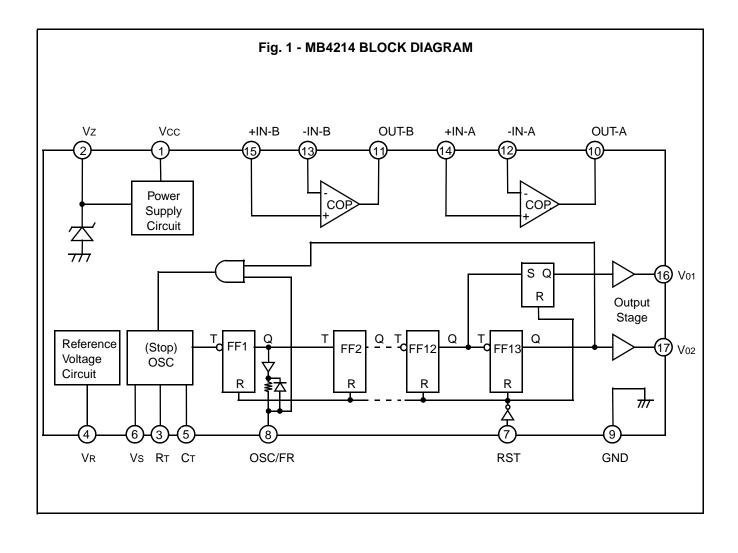
The Fujitsu MB4214 is designed for a long period timer.

It contains oscillator, divider (13 stages of flip-flop), output circuit, power supply circuit and comparator (2-ch).

Arbitrary period is set by external resistor RT, capacitor CT and Vs input voltage.


- Time adjustable: 500ms to 100hours
- · Oscillator period is controlled by Vs input voltage
- Free running oscillation is achieved
- On-chip low power IIL (Integrated Injection Logic) divider
- On-chip zener diode to keep stability
- On-chip two-pair of comparators
- Timer output level: TTL level (open collector)
- Plastic 17-pin ZIP Package (Suffix: -PSZ)

ABSOLUTE MAXIMUM RATINGS


Rating	Symbol	Value	Unit		
Power Supply Voltage	Vcc	18	V		
Zener Current	IZ	20	mA		
Input Voltage	VIN	-0.3 to 18 (VIN≤VCC)	V		
Output Voltage	Vo	18	V		
Power Dissipation	PD	620 (TA≤85°C)	mW		
Operating Temperature	TA	-30 to +85	°C		
Storage Temperature	TSTG	-55 to +125	°C		

(See NOTE) (TA=25°C)

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high

■ PIN DESCRIPTIONS

Pin No.	Pin Name	
1	Vcc	Power Supply Voltage, 4.5 to 16V
2	Vz	Zener Pin VZ pin outputs zener current 20mA max. Unless it is used as stability power supply source, it should be connected to VCC pin through a resistor about $100k\Omega$.
3	RT	RT Input Pin This pin is provided to connect the time constant of a resistor which controls the oscillator period.
4	VR	Reference Voltage Output Reference voltage of 3.5V is output. This pin can supply the current up to 3mA.
5	Ст	C_{τ} Input pin This pin is provided to connect a capacitor which controls the oscillator period.
6	Vs	Vs Input Voltage Input Voltage to this pin controls the oscillator period.
7	RST	Reset Pin Counter operation is interrupted by the instruction of RST pin input level. All counter is cleared when this pin is connected to GND. Power on reset is achieved by connecting a external capacitor.
8	OSC/FR	Free Running Oscillator Output When this pin is connected to GND, 4096 times as long as normal oscillator frequency is output.
9	GND	Ground
10 11	OUT-A OUT-B	Open Collector outputs
12 13 14 15	-IN-A -IN-B +IN-A +IN-B	Comparator Inputs
16	V01	Timer Output Pin NO. 1 The 2048times as long as fundamental oscillator period is kept.
17	V02	Time Output Pin NO. 2 The 4096 times as long as fundamental oscillator period is kept. Owing to free running oscillation, the 4096 times as long as oscillator frequency is output.

FUNCTIONAL DESCRIPTIONS

The MB4214 contains reference voltage circuit, oscillator, divider and comparator as shown in Fig. 1. Oscillator frequency is arbitrary controlled by external resistor R_T , capacitor C_T and Vs input voltage.

Divider consists of 13 stages of divider circuit which is constructed by IIL (Intergrated Injection Logic) technique. It expands the oscillator period up to 4096times. About 100hours period is achieved by a small capacitor.

Free Running Oscillation (Long period low frequency) is achieved when OSC/FR pin is connected to GND.

START RESISTOR Rs

Rs is a start resistor which controls zener diode current. Zener current is 20mA max and stability zener voltage 6.2V is generated.

RESET FUNCTION

Counter operation is interrupted by the instruction of reset pin (7pin). All counter is cleared when this pin is connected to GND. Power on reset is available by connecting a external capacitor CRs. Power on reset time tPOR is formulated:

$$tPOR = 3.5 \frac{CRS}{IRS} (s)$$

OSCILLATOR PERIOD

Two kinds of oscillator period selecting ways are provided.

Divide internal reference voltage by external resistor, to be the Vs voltage. RT pin voltage and reference voltage has the 2 : 3.5 ratio. Oscillator period is formulated:

$$tosc = \frac{3.5}{2} RT CT \frac{R_2}{R_1 + R_2}$$
 (s)

Providing Vs voltage in other power supply source.

$$tosc = K \frac{RT CT}{2} Vs (s)$$

Note: Conversion value K = 1

FREE RUNNING OSCILLATION

Free running oscillation is achieved when OSC/FR pin is connected to GND. Vo2 pin outputs 4096times as long as fundamental oscillator frequency. After the voltage is applied or reset is released, Vo2 keeps 2048times as long as fundamental period. When OSC/FR pin is left open, first divider data is output.

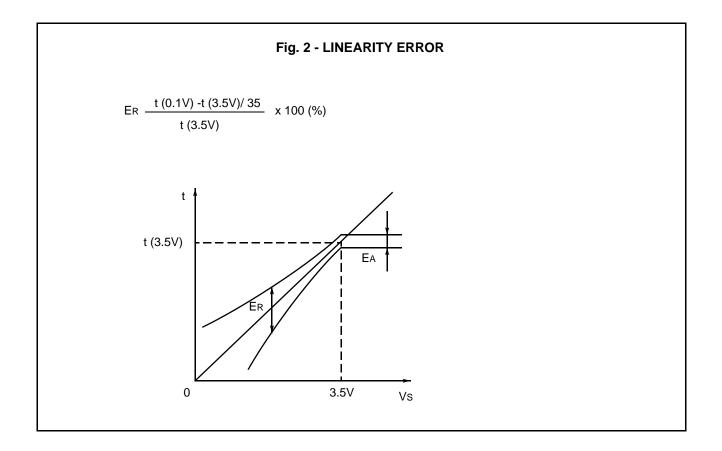
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Power Supply Voltage	Vcc	4.5 to 16	V
Timing Resistance	Rт	10 to 220	kΩ
Timing Capacitance	Ст	0.001 to 100	μF
Operating Temperature	Та	-30 to +85	°C

■ ELECTRICAL CHARACTERISTICS

Comparator Section

(TA=25°C, Vcc=12V, Rs=100kΩ)

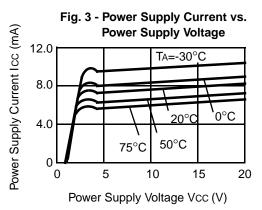

Parameter	Symbol	Condition	Value			Unit
			Min	Тур	Max	Unit
Input Offset Voltage	Vio		-	2.0	5.0	mV
Input Offset Current	lio		-	5	50	nA
Input Bias Current	h		-250	-25	-	nA
Common-Mode Input Voltage	Vсм		0	-	Vcc-1.5	V
Voltage Gain	Av	$RL=15k\Omega$	25	200	-	V/mV
Output Saturation Voltage	Vol	IoL=10mA	-	0.2	0.4	V
Output Sink Current	Isink	Vol=1.5V	20	-	-	mA
Output Leakage Current	Іон	VoH=18V	-	-	1.0	μΑ
Response Time	tR	RL=5.1k Ω , VRL=5V	-	1.3	-	μΑ
Large Signal Response Time	trl	RL=5.1k Ω , VRL=5V	-	300	-	ns

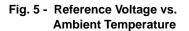
ELECTRICAL CHARACTERISTICS (Continued)

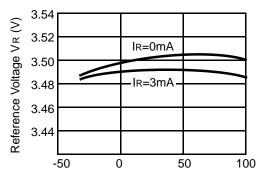
Timer Section

(TA=25°C, Vcc=12V, Rs=100kΩ)

Parameter	0	Symbol Condition	Value			
	Symbol		Min	Тур	Max	Unit
Power Supply Current	Icc	Vcc=12V	50.	8.0	12	mA
Zener Voltage	Vz	Iz=0.3 to 5mA	5.7	6.2	6.7	V
Reference Voltage	VR	Vcc=4.5 to 16V, IR=0 to -3m	3.3	3.5	3.7	V
	Vrt	IRT=-200μA	1.88	2.0	2.12	V
Oberes Ourset	ICT1	IRT=-10μA	-11	-10	-9	μΑ
Charge Current	ICT2	IRT=-200μA	-220	-200	-180	μΑ
Maximum Oscillation Frequency	fMAX		10	100	-	kHz
Reset Input Threshould	VIL		1.1	1.4	1.7	V
Voltage	Vін		3.2	3.5	3.8	V
Reset Charge Current	IRS	VRS=0V	-160	-100	-60	μΑ
OSC/FR Output Voltage	Vol		1.1	1.4	1.7	V
	Vон		3.7	4.2	4.7	V
Stop Input Current	IIST	VST=0.4V	-200	-100	-	μA
Output Saturation Voltage	Vol	IOL=10mA	-	0.2	0.4	V
Output Sink Current	Isink	VOL=1.5V	20	-	-	mA
Output Leakage Current	Іон	VOH=18V	-	-	1.0	μA
Vs Input Current	lis	Vs=0.4V	-5	-1	-	μA
Vs Input Voltage	VINS		0.1	-	Vcc-2	V
V⊤ Setting Error	EA	CT=0.01μF, RT=100kΩ, VS=VR	-10	-	10	%
Linearity Error	ER	Cτ=0.01μF, Rτ=100kΩ,	-2.5	-	2.5	%

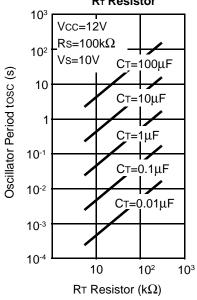

OSCILLATOR PERIOD

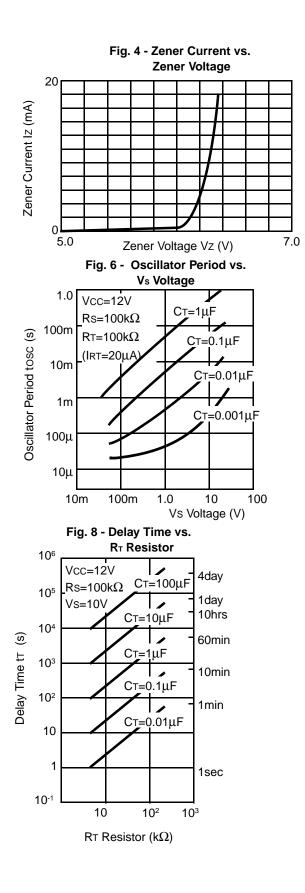

1.
$$\operatorname{tosc} = \mathsf{K} \cdot \frac{\mathsf{RT} \ \mathsf{CT}}{2} \cdot \mathsf{VS}$$
 (s)
2. $\operatorname{tosc} = \frac{3.5}{2} \ \mathsf{RT} \ \mathsf{CT} \ \frac{\mathsf{R2}}{\mathsf{R1} + \mathsf{R2}}$ (s)

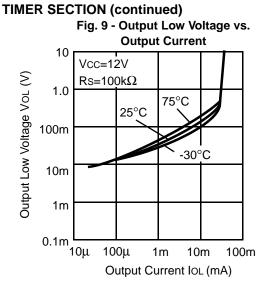

Note: Divide internal reference voltage VR by external resistor, to be the Vs Voltage.

TYPICAL CHARACTERISTICS CURVES

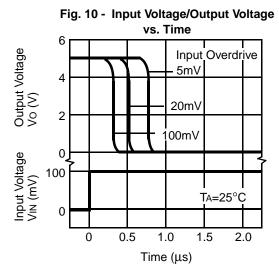
TIMER SECTION

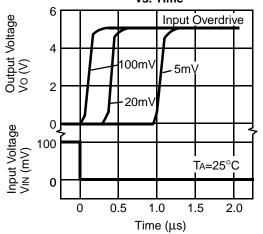


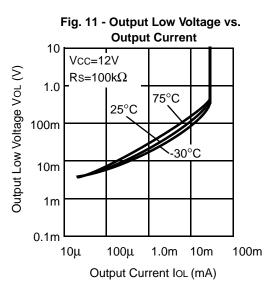




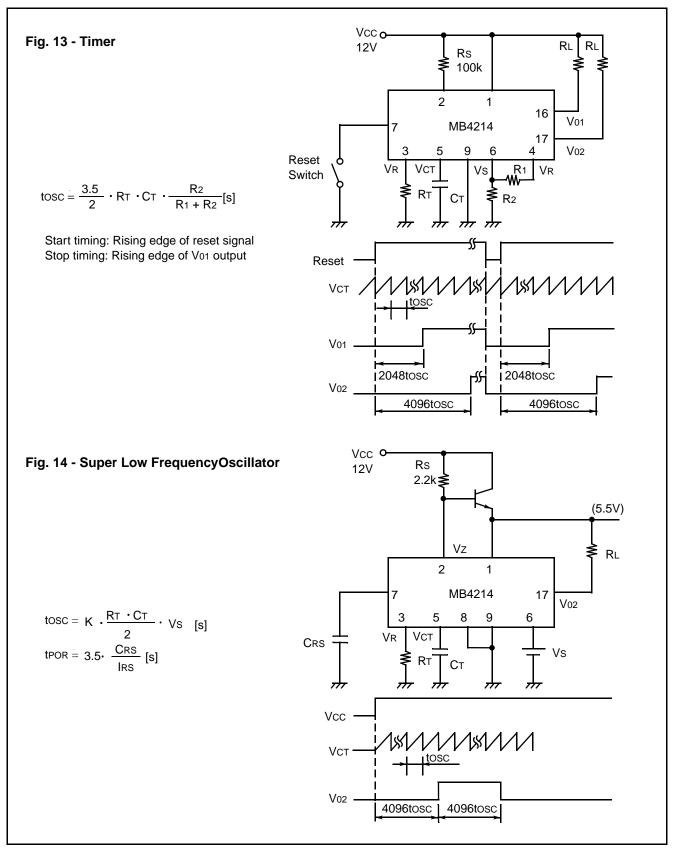
Ambient Temperature TA (°C)

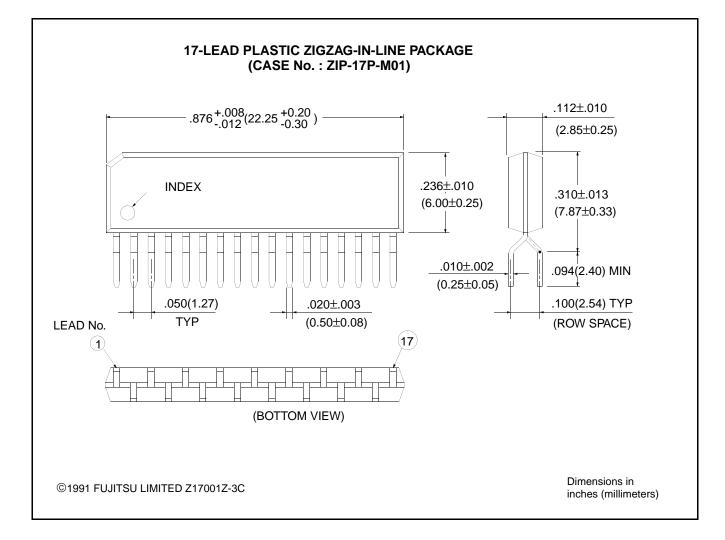

Fig. 7 - Oscillator Period vs. R⊤ Resistor





COMPARATOR SECTION





■ APPLICATION EXAMPLES

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 1015, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211, Japan Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 189554 Tel: 336-1600 Fax: 336-1609

F9601 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.