## ASSP Communication Control <br> IEEE 1394 Bus Controller (for DVC)

## MB86615

## - DESCRIPTION

The MB86615 is 1394 serial bus controller compatible with the IEEE 1394 "FireWire" standard (IEEE Standard 1394-1995). One built-in port plus a differential transceiver and comparator are provided to enable formation of networks in a 1394 cable environment. The MB86615 supports s100 data transfer speeds.
By integrating the physical layer and link layer on one chip, The MB86615 is designed to reduce mounting area as well as power consumption.
The MB86615 has an exclusive data port for isochronous transfer, provides automatic packetizing for sending and separation of header and data units at receiving, and is optimized for continuity of transfer processing.
The MB86615 supports DVC AV/C protocols, and includes the necessary built-in automatic operations and CSR's for providing the necessary operations for DVC data transfer.

■ FEATURES

- Compatible with IEEE 1394 high-performance serial bus standards
- Physical layer and link layer integrated on one chip
- 1 cable ports
- Supports s100 transfer speed (98.304 Mbit/sec)
-3.3V single power supply operation
- Built-in PLL (for crystal oscillator) for internal clock signal generation
- Power saving modes

1) Forced sleep mode at instruction from MPU
2) Automatic sleep mode for non-connected ports

- Header and data units automatically separated at receiving and automatic packetizing for sending
- Supports cycle master functions


## PACKAGES

100-pin plastic LQFP
(FPT-100P-M05)
(BGA-120P-M01)

## MB86615

## (Continued)

- Built-in CSR's to provide isochronous resource manager functions
- 32-bit CRC generation and check functions
- General purpose port for asynchronous transfer and control (16-bit MPU/DMA common bus)
- Exclusive built-in ports for isochronous transfer (8-bit bus)
- Built-in CRS's and automatic processes to support DVC

1) Automatic separation of CIP headers at receiving, and automatic packetizing at sending.
2) Automatic generation and match detection of time stamp by FP signal.
3) DBC area automatic increment function
4) No-data packet sending and receiving
5) On-chip PCR (input/output 1 channel each)
6) Each CSR with automatic C\&S lock processing and read processing

- Compatible with 4 -core cable
- Packages: LQFP-100, FBGA-120


## PIN ASSIGNMENTS

## 1. LQFP-100


(FPT-100P-M05)

## 2. FBGA-120



## PIN LIST

## 1. LQFP-100

| NO. | I/O | Pin Name | NO. | I/O | Pin Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | I | RESET | 36 | - | N.C. |
| 2 | 0 | $\overline{\text { INT }}$ | 37 | 0 | DREQ |
| 3 | - | Vdo | 38 | 1 | $\overline{\text { DACK }}$ |
| 4 | - | Vss | 39 | - | Vdo |
| 5 | 1 | ALE | 40 | - | Vss |
| 6 | IU/O | D15 | 41 | I/O | X0 |
| 7 | IU/O | D14 | 42 | 1 | X1 |
| 8 | IU/O | D13 | 43 | 0 | TESTP |
| 9 | IU/O | D12 | 44 | - | AVss |
| 10 | IU/O | D11 | 45 | - | AV ${ }_{\text {do }}$ |
| 11 | IU/O | D10 | 46 | 1 | VCOIN |
| 12 | IU/O | D9 | 47 | 0 | CHPO |
| 13 | IU/O | D8 | 48 | O | ROP |
| 14 | - | V ${ }_{\text {D }}$ | 49 | - | $\mathrm{AV}_{\text {ss }}$ |
| 15 | - | Vss | 50 | - | AV ${ }_{\text {do }}$ |
| 16 | IU/O | D7 | 51 | - | N.C. |
| 17 | IU/O | D6 | 52 | O | ROI |
| 18 | IU/O | AD5 | 53 | - | AV ${ }_{\text {do }}$ |
| 19 | IU/O | AD4 | 54 | - | AVss |
| 20 | IU/O | AD3 | 55 | O | TPBIAS |
| 21 | IU/O | AD2 | 56 | - | $A V_{\text {D }}$ |
| 22 | IU/O | AD1 | 57 | - | AVss |
| 23 | IU/O | D0 | 58 | I/O | $\overline{\text { TPB }}$ |
| 24 | - | VDD | 59 | I/O | TPA |
| 25 | - | Vss | 60 | I/O | TPB |
| 26 | 1 | $\overline{\mathrm{WR}}$ ( $\overline{\mathrm{DS}})$ | 61 | I/O | TPA |
| 27 | 1 | $\overline{\mathrm{RD}}$ (R/W) | 62 | - | AV ${ }_{\text {do }}$ |
| 28 | - | V ${ }_{\text {d }}$ | 63 | - | $\mathrm{AV}_{\text {ss }}$ |
| 29 | - | Vss | 64 | - | N.C. |
| 30 | I | $\overline{\mathrm{CS}}$ | 65 | - | $\mathrm{AV}_{\text {ss }}$ |
| 31 | I | A5 | 66 | - | AV ${ }_{\text {do }}$ |
| 32 | 1 | A4 | 67 | - | N.C. |
| 33 | I | A3 | 68 | - | AVss |
| 34 | 1 | A2 | 69 | - | AV ${ }_{\text {do }}$ |
| 35 | I | A1 | 70 | - | N.C. |

(Continued)
(Continued)

| NO. | I/O | Pin Name | NO. | I/O | Pin Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 71 | - | N.C. | 86 | I/O | ID3 |
| 72 | - | N.C. | 87 | I/O | ID2 |
| 73 | - | N.C. | 88 | I/O | ID1 |
| 74 | - | AVss | 89 | I/O | ID0 |
| 75 | - | AVVD | 90 | - | V $_{\text {ss }}$ |
| 76 | IU/O | TEST1 | 91 | - | VDD |
| 77 | IU/O | TEST2 | 92 | I | ICLK |
| 78 | - | VDD | 93 | I | IDIR |
| 79 | - | Vss | 94 | O | $\overline{\text { ILWRE }}$ |
| 80 | IU/O | TEST3 | 95 | I | $\overline{\text { IV }}$ |
| 81 | IU/O | TEST4 | 96 | $O$ | $\overline{\text { ICRCE }}$ |
| 82 | I/O | ID7 | 97 | I/O | $\overline{\text { FP }}$ |
| 83 | I/O | ID6 | 98 | O | TEST5 |
| 84 | I/O | ID5 | 99 | I | MODE0 |
| 85 | I/O | ID4 | 100 | I | MODE1 |

## 2. FBGA-120

| $\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \hline \text { Ball } \\ & \text { No. } \end{aligned}$ | 1/0 | Pin Name | $\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { Ball } \\ & \text { No. } \end{aligned}$ | I/O | Pin Name | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { Ball } \\ & \text { No. } \end{aligned}$ | I/O | Pin Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A1 | 1 | $\overline{\text { RESET }}$ | 37 | N4 | I | A5 | 73 | H13 | I/O | TPA |
| 2 | B1 | - | N.C. | 38 | M4 | I | A4 | 74 | H12 | - | AVDD |
| 3 | B2 | 0 | $\overline{\text { INT }}$ | 39 | L4 | - | N.C. | 75 | H11 | - | AVss |
| 4 | C1 | - | V ${ }_{\text {d }}$ | 40 | N5 | I | A3 | 76 | G13 | - | N.C. |
| 5 | C2 | - | Vss | 41 | M5 | 1 | A2 | 77 | G12 | - | N.C. |
| 6 | C3 | 1 | ALE | 42 | L5 | 1 | A1 | 78 | G11 | - | AVss |
| 7 | D1 | IU/O | D15 | 43 | N6 | - | N.C. | 79 | F13 | - | AV ${ }_{\text {do }}$ |
| 8 | D2 | IU/O | D14 | 44 | M6 | 0 | DREQ | 80 | F12 | - | N.C. |
| 9 | D3 | IU/O | D13 | 45 | L6 | - | N.C. | 81 | F11 | - | N.C. |
| 10 | E1 | - | N.C. | 46 | N7 | 1 | $\overline{\text { DACK }}$ | 82 | E13 | - | AVss |
| 11 | E2 | IU/O | D12 | 47 | M7 | - | VDD | 83 | E12 | - | AV ${ }_{\text {DD }}$ |
| 12 | E3 | IU/O | D11 | 48 | L7 | - | Vss | 84 | E11 | - | N.C. |
| 13 | F1 | IU/O | D10 | 49 | N8 | I/O | X0 | 85 | D13 | - | N.C. |
| 14 | F2 | IU/O | D9 | 50 | M8 | 1 | X1 | 86 | D12 | - | N.C. |
| 15 | F3 | - | N.C. | 51 | L8 | - | N.C. | 87 | D11 | - | N.C. |
| 16 | G1 | IU/O | D8 | 52 | N9 | 0 | TESTP | 88 | C13 | - | N.C. |
| 17 | G2 | - | V ${ }_{\text {d }}$ | 53 | M9 | - | AVss | 89 | C12 | - | AVss |
| 18 | G3 | - | Vss | 54 | L9 | - | AVDD | 90 | B13 | - | AV ${ }_{\text {DD }}$ |
| 19 | H1 | IU/O | D7 | 55 | N10 | 1 | VCOIN | 91 | A13 | IU/O | TEST1 |
| 20 | H2 | - | N.C. | 56 | M10 | 0 | CHPO | 92 | A12 | - | N.C. |
| 21 | H3 | IU/O | D6 | 57 | L10 | 0 | ROP | 93 | B12 | IU/O | TEST2 |
| 22 | J1 | IU/O | AD5 | 58 | N11 | - | AVss | 94 | A11 | - | V ${ }_{\text {d }}$ |
| 23 | J2 | IU/O | AD4 | 59 | M11 | - | N.C. | 95 | B11 | - | Vss |
| 24 | J3 | IU/O | AD3 | 60 | N12 | - | AVDD | 96 | C11 | IU/O | TEST3 |
| 25 | K1 | IU/O | AD2 | 61 | N13 | - | N.C. | 97 | A10 | IU/O | TEST4 |
| 26 | K2 | IU/O | AD1 | 62 | M13 | - | N.C. | 98 | B10 | - | N.C. |
| 27 | K3 | IU/O | D0 | 63 | M12 | 0 | ROI | 99 | C10 | 1/O | ID7 |
| 28 | L1 | - | VDD | 64 | L13 | - | AVDD | 100 | A9 | I/O | ID6 |
| 29 | L2 | - | N.C. | 65 | L12 | - | AVss | 101 | B9 | I/O | ID5 |
| 30 | M1 | - | Vss | 66 | L11 | 0 | TPBIAS | 102 | C9 | 1/O | ID4 |
| 31 | N1 | 1 | $\overline{\mathrm{WR}}(\overline{\mathrm{DS}})$ | 67 | K13 | - | AV ${ }_{\text {do }}$ | 103 | A8 | I/O | ID3 |
| 32 | N2 | - | N.C. | 68 | K12 | - | $\mathrm{AV}_{\text {ss }}$ | 104 | B8 | 1/O | ID2 |
| 33 | M2 | 1 | $\overline{\mathrm{RD}}$ (R/W) | 69 | K11 | I/O | $\overline{\text { TPB }}$ | 105 | C8 | I/O | ID1 |
| 34 | N3 | - | V ${ }_{\text {d }}$ | 70 | J13 | I/O | $\overline{\text { TPA }}$ | 106 | A7 | - | N.C. |
| 35 | M3 | - | Vss | 71 | J12 | I/O | TPB | 107 | B7 | I/O | ID0 |
| 36 | L3 | 1 | $\overline{\mathrm{CS}}$ | 72 | J11 | - | N.C. | 108 | C7 | - | Vss |

## MB86615

(Continued)

| $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { Ball } \\ & \text { No. } \end{aligned}$ | 1/0 | Pin Name | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { Ball } \\ & \text { No. } \end{aligned}$ | 1/0 | Pin Name | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \hline \text { Ball } \\ & \text { No. } \end{aligned}$ | I/O | Pin Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 109 | A6 | - | V ${ }_{\text {d }}$ | 113 | B5 | - | N.C. | 117 | C4 | O | TEST5 |
| 110 | B6 | I | ICLK | 114 | C5 | 1 | $\overline{\mathrm{I}}$ | 118 | A3 | 1 | MODE0 |
| 111 | C6 | 1 | IDIR | 115 | A4 | 0 | $\overline{\text { ICRCE }}$ | 119 | B3 | - | N.C. |
| 112 | A5 | 0 | ILWRE | 116 | B4 | 1/O | $\overline{\mathrm{FP}}$ | 120 | A2 | 1 | MODE1 |

## PIN DESCRIPTION

## 1. 1394 Interface

| Pin name | I/O | Function |
| :---: | :---: | :--- |
| TPA | I/O | 1394 Cable port TPA positive signal I/O pin |
| $\overline{\text { TPA }}$ | I/O | 1394 Cable port TPA negative signal I/O pin |
| TPB | I/O | 1394 Cable port TPB positive signal I/O pin |
| $\overline{\text { TPB }}$ | I/O | 1394 Cable port TPB negative signal I/O pin |
| TPBIAS | O | 1394 Cable port common voltage reference voltage output pin |
| ROI | O | Connect to GND through 4.7 $\mathrm{k} \Omega$ resistance |

2. Isochronous-data Interface

| Pin name | I/O | Function |
| :---: | :---: | :---: |
| ICLK | I | Isochronous data interface CLK signal input pin ( 4 MHz to 16 MHz ). |
| IDIR | 1 | Isochronous transfer transmission/reception switching signal input pin. <br> 0 input: The device clears the ISO-FIFO buffer and enters the transmission mode. <br> The device asserts the $\overline{\text { LLWRE signal and starts transmission after }}$ receiving one packet of data according to the "data-length" setting (bank 0: 10h). <br> 1 input: The device clears the ISO-FIFO buffer and enters the reception mode. If any packet being transmitted exists, the device enters the reception mode after completing transmission of the packet. The ILWRE signal is asserted upon reception of one packet. <br> Note: The IDIR signal should normally be left at " 1 " and switched to " 0 " only for transmission. |
| ILWRE | O | ISO-FIFO access enable signal output pin. <br> Transmission mode: The signal is asserted when the FIFO buffer is not full. The signal is negated when the FIFO buffer becomes full. When it is negated, data is accepted only up to the rising edge of the next ICLK signal. <br> When a bus reset is detected, the signal is negated after accepting data of up to the packet boundary. After the bus reset, the signal is asserted again upon completion of transmission of one source packet remaining in the FIFO buffer. <br> Reception mode: The signal is asserted upon completion of one packet of data. The signal is negated once when one packet of data is read from the FIFO buffer and asserted back if the FIFO buffer still contains any packet of data which has been received completely. |
| ID7 to ID0 | I/O | Isochronous transfer data input/output bits. (MSB is ID7, LSB is IDO) |
| IV | 1 | ID7 to ID0 enable signal input pin <br> Transmission mode: While the IV signal is active, data from the ID7 to ID0 pins is loaded into the ISO-FIFO buffer at the rising edge of the ICLK signal. <br> Reception mode: While the signal becomes active, the device starts sending data from the ISO-FIFO buffer to the ID7 to ID0 pins. Data is then switched at the rising edge of the ICLK signal. |

(Continued)

| Pin name | I/O | Function |
| :---: | :---: | :---: |
| ICREC | O | This pin outputs a signal indicating that data sent in the reception mode is data in a packet from which a data-CRC error has been detected. |
| $\overline{\mathrm{FP}}$ | I/O | Time stamp trigger signal I/O pin. <br> Transmission mode: This pin inputs the time stamp trigger signal. <br> The value in the internal cycle timer register is fetched upon detection of the falling edge of the $\overline{\mathrm{FP}}$ signal. <br> Reception mode: Time stamp match detection signal output pin. |

## 3. System Interface

| Pin name | 1/0 | Function |
| :---: | :---: | :---: |
| $\overline{\mathrm{CS}}$ | I | Input pin for signals used by the MPU to select the MB86615 as an I/O device. |
| A5 to A1 | 1 | Address input pins for internal register selection. <br> Valid only in non-multiplexed mode. <br> If multiplexed mode is selected these pins should be fixed at ' 0 '. |
| D15 to D6, D0 | 1/O | 16 -bit data bus input/output pins (MSB is D15, LSB is D0). |
| AD5 to AD1 | I/O | 16 -bit data bus input/output pins (MSB is AD5, LSB is AD1). Used for address input signals when multiplexed mode is selected. |
| $\overline{\mathrm{RD}}$ (R/W) | I | 80-series mode: Read strobe signal input pin, used to output data from the MB86615 to the data bus. <br> 68 -series mode: Control signal input pin, used for data input/output operations to the MB86615. |
| $\overline{\mathrm{WR}}$ ( $\overline{\mathrm{DS}}$ ) | 1 | 80-series mode: Write strobe signal input pin, used to input data from the data bus to the MB86615. <br> 68 -series mode: $\overline{\text { DS }}$ signal input pin, output when data bus is enabled. |
| ALE | 1 | ALE signal input pin, for signal output when addresses are enabled in multiplexed mode. In non-multiplexed mode, this signal should be fixed at ' 0 '. |
| DREQ | O | This pin outputs the DMA transfer request signal to the DMAC for asynchronous transfer in DMA mode. <br> The signal requests DMA transfer between the device and memory. |
| DACK | 1 | This pin inputs the DMA enable signal from the DMAC for asynchronous transfer in DMA mode. |
| $\overline{\text { INT }}$ | O | Interrupt output pin. |

## 4. Other

| Pin name | I/O | Function |
| :---: | :---: | :---: |
| X0 | I/O |  |
| X1 | 1 | External crystal connection pins for oscillator circuits. |
| VCOIN | 1 | VCO input pin for internal PLL. |
| CHPO | 0 | Charge pump output pin for internal PLL. |
| ROP | 0 | Connect to GND through $4.7 \mathrm{k} \Omega$ resistance. |
| RESET | 1 | Reset signal input pin. The device enters the forced sleep mode automatically upon detection of the RESET signal asserted. |
| MODE0 | 1 | Input '0' for 80-series mode. Input ' 1 ' for 68-series mode. |
| MODE1 | 1 | Input '0' for non-multiplexed mode. Input ' 1 ' for multiplexed mode. |
| TESTP | 0 | Test pin. Do not connect. |
| TEST1 to TEST4 | IU/O | Test pin. Do not connect. |
| TEST5 | 0 | Test pin. Do not connect. |
| AV ${ }_{\text {do }}$ | - | Analog power supply |
| AVss | - | Analog ground |
| V ${ }_{\text {d }}$ | - | Digital power supply |
| Vss | - | Digital ground |
| N.C. | - | Unused pin. Do not connect. |

## BLOCK DIAGRAM



## BLOCK DESCRIPTIONS

## - PHY Layer Control Circuit

This block contains the IEEE 1394 physical layer control circuits.
Both asynchronous transfer and isochronous transfer in a cable environment are supported.
The transfer speed is $100 \mathrm{Mbit} / \mathrm{sec}$.
One analog transceiver/receiver ports are built-in.
This block provides bus status monitoring initialization operation after a bus reset is applied, as well as arbitration and encoding/decoding functions for data sending and receiving.

- LINK Layer Control Circuit

This block controls the generation and transfer of IEEE 1394 standard packets.
32 -bit CRC generation and checking is performed for packet headers and data.
A 32-bit cycle timer register is built-in to provide cycle master functions.

- Sending/Receiving FIFO

Contains built-in 1-byte FIFO areas, used for isochronous transfer for both sending and receiving.
Contains independent sending and receiving 128-byte FIFO areas for asynchronous transfer.

- Packet Processing

Sending: Performs packetizing of headers, data and CRC. Automatically generates and attaches CRC. Receiving: Separates 1394 packet headers and data, strips CRC.

- Transaction Control Circuit Block

This block controls the 1394 bus protocol based on a variety of instructions.

- Dedicated Transaction Circuit Block

This block packetizes data from the isochronous interface for DVC and rebuilds received data for the isochronous interface in conjunction with the packet processing block.

- Register Block

This block contains various device control registers, as well as registers for setting parameters required for transfer, DVC registers and CSR.
The built-in CSR provides isochronous resource manager functions.

- PLL Circuit

This block uses the reference clock signal generated by the crystal oscillator circuit to create internal operating clock and transfer clock signals.
Reference oscillator frequency: 8.192 MHz .

ABSOLUTE MAXIMUM RATINGS

| Parameter | Symbol | Rating |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Power supply voltage*1 | VDD | Vss -0.5 | 4.0 | V |
| Input voltage* ${ }^{* 1}$ | V | Vss -0.5 | $V_{\text {dD }}+0.5$ | V |
| Output voltage*1 | Vo | Vss -0.5 | $V_{D D}+0.5$ | V |
| Strage temperature | Tst | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| Operating temperature*2 | Top | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| Output current*3 | lo | -14 | +14 | mA |
| Overshoot*4 | - | - | $V_{D D}+1.0$ | V |
| Undershoot*4 | - | - | Vss - 1.0 | V |

*1: Voltage values are based on Vss $=0 \mathrm{~V}$.
*2: Not warranted for continuous operation.
*3: Normal output current flow (Minimum at $\mathrm{Vo}=0 \mathrm{~V}$, maximum at $\mathrm{Vo}=\mathrm{VDD}$ ).
*4: 50 ns or less.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

## RECOMMENDED OPERATING CONDITIONS

| Parameter |  | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Power supply voltage* |  |  | VDD | 3.0 | 3.6 | V |
| "H" level input voltage | CMOS input | $\mathrm{V}_{1}$ | VDD $\times 0.65$ | V ${ }_{\text {do }}$ | V |
| "L" level input voltage | CMOS input | VIL | Vss | $V_{D D} \times 0.25$ | V |
| Differential input voltage (for data transfer) | Cable input | VID | 142 | 260 | mV |
| Differential input voltage (for arbitration) | Cable input | VIDA | 173 | 260 | mV |
| Common mode input voltage | Cable input | Vom | 1.165 | 2.515 | V |
| Receiving input jitter | Cable input | - | - | 1.08 | ns |
| Receiving input skew | Cable input | - | - | 0.8 | ns |
| Output current | CMOS output | $\mathrm{loH} / \mathrm{loL}$ | -4 | +4 | mA |
|  | TPBIAS | lot | -2 | +10 | mA |
| Operating temperature |  | Ta | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |

*: Voltage values are based on Vss $=0 \mathrm{~V}$.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

## ELECTRICAL CHARACTERISTICS

## 1. DC Characteristics

1.1 1394 Interface Driver

| $\left(\mathrm{VDD}=3\right.$ to $3.6 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Conditions | Value |  | Unit |
|  |  |  | Min. | Max. |  |
| Differential output voltage | Vod | $\mathrm{R}_{1}=56 \Omega$ | 172 | 265 | mV |
| Common phase current | Icm | Driver enabled | -0.81 | 0.44 | mA |
| Off state voltage | Voff | Driver disabled | - | 20 | mV |
| TPBIAS output voltage | Vo | - | 1.665 | 2.015 | V |

### 1.21394 Interface - Comparator

| Parameter | Symbol |  | $\left(\mathrm{VdD}=3\right.$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=0$ to $\left.+70^{\circ} \mathrm{C}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Conditions | Value |  | Unit |
|  |  |  | Min. | Max. |  |
| Common phase input current | lic | Driver disabled | -20 | 20 | $\mu \mathrm{A}$ |
| Arbitration comparator " H " level detection offset | Vsch | Driver disabled | 168 | - | mV |
| Arbitration comparator "Z" level detection offset | Vscz | Driver disabled | -30 | 30 | mV |
| Arbitration comparator "L" level detection offset | Vscl | Driver disabled | - | -168 | mV |
| Port status comparator disconnection detect voltage | Vsd | Driver disabled | - | 0.6 | V |
| Port status comparator connection detect voltage | Vsc | Driver disabled | 1.0 | - | V |

## MB86615

### 1.3 System Interface, etc

(VDD $=3$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$ )

| Parameter |  | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. |  | Typ. | Max. |  |
| "H" level input voltage |  |  | $\mathrm{V}_{\mathrm{H}}$ | CMOS | $\mathrm{V}_{\text {D }} \times 0.65$ | - | VDD | V |
| "L" level input voltage |  | VIL | CMOS | Vss | - | $V_{D D} \times 0.25$ | V |
| "H" level output voltage |  | Vон | $\mathrm{I} \mathrm{o}=-4 \mathrm{~mA}$ | VDD - 0.5 | - | Vod | V |
| "L" level output voltage |  | VoL | $\mathrm{loL}=+4 \mathrm{~mA}$ | Vss | - | 0.4 | V |
| Input leak current | Input pins | IL | $\mathrm{V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}$ | -5 | - | 5 | $\mu \mathrm{A}$ |
|  | 3-state pin input | ILz |  | -5 | - | 5 | $\mu \mathrm{A}$ |
| Input pull-up resistance |  | Rp | $\mathrm{V}_{\mathrm{H}}=0$ | 25 | 50 | 200 | k $\Omega$ |
| Power supply current |  | IDD1 | 1394 port connected | - | - | 200 | mA |
|  |  | Idoo | 1394 port non connected | - | - | 180 | mA |
|  |  | lods | Forced sleep | - | - | 30 | mA |

## 2. AC Characteristics

### 2.1 1394 Driver

| Parameter |  | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Sending jitter |  |  | t $\quad$ T | - | $\pm 0.8$ | ns |
| Sending skew |  | tsk | - | $\pm 0.8$ | ns |
| Sending rise time* | Conditions$\mathrm{CL}=10 \mathrm{pF} . \mathrm{RL}=56 \Omega$ | tor | - | 3.2 | ns |
| Sending fall time* |  | tof | - | 3.2 | ns |

*: 10 to $90 \%$ value.

### 2.2 System Clock

| Parameter |  | Symbol | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |
| Clock frequency |  |  | fc | 8.191992 | 8.192 | 8.192008 | MHz |
| Clock cycle time |  | tcla | - | 1/fc | - | ns |
| Clock pulse width | High | tcıch | 50 | - | - | ns |
|  | Low | tclcl | 50 | - | - | ns |
| Clock rise time |  | tcr | - | - | 5 | ns |
| Clock fall time |  | tcF | - | - | 5 | ns |



## MB86615

### 2.3 System Reset

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Reset (RESET) "L" level pulse width | twrsL | 4 tclf | - | ns |



### 2.4 MPU Interface

(1) 68-Series Register Write Operation (multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | tawsm | 10 | - | ns |
| Address hold time | tawhm | 10 | - | ns |
| $\overline{\overline{C S}}$ setup time | tcwsm | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcwнm | 10 | - | ns |
| R/W setup time | trwsm | 20 | - | ns |
| R/W hold time | trwнm | 10 | - | ns |
| ALE "H" level pulse width | tale | 15 | - | ns |
| ALE fall to $\overline{\mathrm{DS}}$ fall time | towo | 15 | - | ns |
| $\overline{\mathrm{DS}}$ "L" level pulse width | tosm | 40 | - | ns |
| Data setup time | towsm | 10 | - | ns |
| Data hold time | towнm | 0 | - | ns |
| $\overline{\mathrm{DS}}$ rise to ALE rise time | tıw | 20 | - | ns |


(2) 68-System Register Read Operation (multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | tarsm | 10 | - | ns |
| Address hold time | tarhm | 10 | - | ns |
| $\overline{\mathrm{CS}}$ setup time | tcrsm | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcrim | 10 | - | ns |
| R/W setup time | trwsm | 20 | - | ns |
| R/W hold time | trwh | 10 | - | ns |
| ALE "H" level pulse width | tale | 15 | - | ns |
| ALE fall to $\overline{\mathrm{DS}}$ fall time | tord | 15 | - | ns |
| $\overline{\mathrm{DS}}$ "L" level pulse width | tosm | 40 | - | ns |
| Data output definition time | trLDM | - | 40 | ns |
| Data output disabled time | trhdm | 5 | - | ns |
| $\overline{\mathrm{DS}}$ rise to ALE rise time | tLRD | 20 | - | ns |


(3) 68-Series Register Write Operation (non-multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | taws | 10 | - | ns |
| Address hold time | tawh | 20 | - | ns |
| $\overline{\mathrm{CS}}$ setup time | tcws | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcw | 10 | - | ns |
| R/W setup time | trws | 20 | - | ns |
| R/W hold time | trwh | 10 | - | ns |
| $\overline{\mathrm{DS}}$ "L" level pulse width | tos | 40 | - | ns |
| Data setup time | tows | 40 | - | ns |
| Data hold time | town | 0 | - | ns |


(4) 68-Series Register Read Operation (non-multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | $\mathrm{taRS}^{\text {a }}$ | 10 | - | ns |
| Address hold time | tarh | 20 | - | ns |
| $\overline{\mathrm{CS}}$ setup time | tcrs | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcri | 10 | - | ns |
| R/W setup time | trws | 20 | - | ns |
| R/W hold time | trwh | 10 | - | ns |
| $\overline{\mathrm{DS}}$ "L" level pulse width | tos | 40 | - | ns |
| Data output definition time | trld | - | 40 | ns |
| Data output disabled time | trhD | 5 | - | ns |


(5) 80-Series Register Write Operation (multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | tawsm | 10 | - | ns |
| Address hold time | tawhm | 10 | - | ns |
| $\overline{\mathrm{CS}}$ setup time | tcwsm | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcwhm | 10 | - | ns |
| ALE "H" level pulse width | taLE | 15 | - | ns |
| ALE fall to $\overline{W R}$ fall time | towd | 15 | - | ns |
| $\overline{\text { WR "L" level pulse width }}$ | twrm | 40 | - | ns |
| Data setup time | towsm | 40 | - | ns |
| Data hold time | towhm | 0 | - | ns |
| $\overline{\text { WR rise to ALE rise time }}$ | tLwD | 20 | - | ns |


(6) 80-Series Register Read Operation (multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | tarsm | 10 | - | ns |
| Address hold time | tarahm | 10 | - | ns |
| $\overline{\mathrm{CS}}$ setup time | tcrsm | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcrim | 10 | - | ns |
| ALE "H" level pulse width | tale | 15 | - | ns |
| ALE fall to $\overline{\mathrm{RD}}$ fall time | tord | 15 | - | ns |
| $\overline{\mathrm{RD}}$ "L" level pulse width | trDM | 40 | - | ns |
| Data output definition time | trldM | - | 40 | ns |
| Data output disabled time | trhDM | 5 | - | ns |
| $\overline{\mathrm{RD}}$ rise to ALE rise time | tLRD | 20 | - | ns |



## (7) 80-Series Register Write Operation (non-multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | taws | 10 | - | ns |
| Address hold time | tawh | 20 | - | ns |
| $\overline{\mathrm{CS}}$ setup time | tcws | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcw | 10 | - | ns |
| $\overline{\mathrm{WR}}$ "L" level pulse width | twr | 40 | - | ns |
| Data setup time | tows | 40 | - | ns |
| Data hold time | towh | 0 | - | ns |


(8) 80-Series Register Read Operation (non-multiplexed)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Address setup time | tars | 10 | - | ns |
| Address hold time | tarh | 20 | - | ns |
| $\overline{\mathrm{CS}}$ setup time | tcrs | 20 | - | ns |
| $\overline{\mathrm{CS}}$ hold time | tcre | 10 | - | ns |
| $\overline{\mathrm{RD}}$ "L" level pulse width | trd | 40 | - | ns |
| Data output definition time | trid | - | 40 | ns |
| Data output disabled time | trHD | 5 | - | ns |


(9) INT Signal Operation

| Parameter | Symbol | Value |  | Unit |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Interrupt read operation to INT signal negate | tinтd | 100 | - | ns |



Note: This specification applies only to reading of the last data from the interrupt holding register. For other read-related specifications, conform to the respective specifications for individual modes.

### 2.5 DMA Access

(1) 68-Series DMA Write Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| DREQ "H" to DACK "L" | tohal | 0 | - | ns |
| $\overline{\text { DS }}$ "H" to DREQ "L" | tohdL | - | 30 | ns |
| $\overline{\text { DACK }}$ setup time | toaws | 20 | - | ns |
| DACK hold time | toaw | 0 | - | ns |
| R/W setup time | torws | 20 | - | ns |
| R/W hold time | torwh | 10 | - | ns |
| $\overline{\mathrm{DS}}$ " L " level pulse width | tods | 40 | - | ns |
| $\overline{\text { DS }}$ "H" level pulse width | todsh | 30 | - | ns |
| Input data setup time | todws | 30 | - | ns |
| Input data hold time | todw | 0 | - | ns |


(2) 68-Series DMA Read Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| DREQ "H" to $\overline{\text { DACK }}$ " ${ }^{\text {" }}$ | tohal | 0 | - | ns |
|  | tohdi | - | 30 | ns |
| DACK setup time | toars | 20 | - | ns |
| $\overline{\text { DACK }}$ hold time | tdarh | 0 | - | ns |
| R/W setup time | torws | 20 | - | ns |
| R/W hold time | tdrwh | 10 | - | ns |
| $\overline{\mathrm{DS}}$ "L" level pulse width | tods | 40 | - | ns |
| $\overline{\mathrm{DS}}$ "H" level pulse width | todsh | 30 | - | ns |
| Data output definition time | torld | - | 40 | ns |
| Data output disabled time | tDRHD | 5 | - | ns |


(3) 80-Series DMA Write Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| DREQ "H" to DACK "L" | tohal | 0 | - | ns |
| $\overline{W R}$ "H" to DREQ "L" | tohdi | - | 30 | ns |
| $\overline{\text { DACK }}$ setup time | tdaws | 20 | - | ns |
| $\overline{\text { DACK }}$ hold time | toawh | 0 | - | ns |
| $\overline{\mathrm{WR}}$ "L" level pulse width | towr | 40 | - | ns |
| $\overline{\mathrm{WR}}$ "H" level pulse width | towrh | 30 | - | ns |
| Input data setup time | todws | 30 | - | ns |
| Input data hold time | todw | 0 | - | ns |


(4) 80-Series DMA Read Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| DREQ "H" to DACK "L" | tohal | 0 | - | ns |
| $\overline{R D}$ "H" to DREQ "L" | tohdi | - | 30 | ns |
| $\overline{\text { DACK }}$ setup time | tdars | 20 | - | ns |
| $\overline{\text { DACK }}$ hold time | toarh | 0 | - | ns |
| $\overline{\mathrm{RD}}$ "L" level pulse width | tDRD | 40 | - | ns |
| $\overline{\mathrm{RD}}$ "H" level pulse width | tordh | 30 | - | ns |
| Data output definition time | torld | - | 40 | ns |
| Data output disabled time | tDRHD | 5 | - | ns |



### 2.6 Isochronous Interface

### 2.6.1 ICLK

| Parameter | Symbol | Value |  | Unit |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Clock frequency | - | 4 | 16 | MHz |
| Clock cycle time | ticLk | 62.5 | 250 | ns |
| Clock "H" level pulse width | ticLh | 20 | - | ns |
| Clock "L" level pulse width | ticle | 20 | - | ns |
| Clock rise time | ticR | - | 7 | ns |
| Clock fall time | ticF | - | 7 | ns |



## MB86615

### 2.6.2 Sending Operation

(1) Start Sending Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| IDIR fall to ILWRE fall time | tsdir | - | tıclk + 125 | ns |
| ICLK rise to ILWRE fall time | tsidir | - | 40 | ns |
| $\overline{\text { ILWRE }}$ fall to $\overline{\mathrm{IV}}$ fall time | tiliv | 0 | - | ns |
| $\overline{\mathrm{IV}}$ setup time | tsiv | 40 | - | ns |
| Data setup time | tsd | 20 | - | ns |
| Data hold time | thd | 0 | - | ns |



## (2) End Sending Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| $\overline{\mathrm{IV}}$ rise to IDIR rise time | thdir | 0 | - | ns |
| IDIR rise to ILWRE rise time | towr | - | 1 ticLk +40 | ns |
| ICLK rise to ILWRE rise time | tswdir | - | 40 | ns |
| IDIR rise to IDIR fall time | toirh | 250 | - | $\mu \mathrm{s}$ |



## MB86615

(3) $\overline{\mathrm{V}}$ Temporary Negation in Sending Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| $\overline{\text { IV hold time }}$ | thiv | 0 | ticle - 40 | ns |
| Date setup time | tso | 20 | - | ns |
| Data hold time | tho | 0 | - | ns |



## (4) Negating ILWRE during Transmission (with a bus reset detected or the FIFO buffer full)

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| ICLK rise to $\overline{\text { ILWRE }}$ rise time | thwrl | - | 40 | ns |
| $\overline{\text { ILWRE }}$ rise to $\overline{\mathrm{V}}$ rise time | tremiv | ticlk | 2 ticlk - 40 | ns |
| ICLK rise to ILWRE fall time | thwrh | - | 40 | ns |



Note: The ILWRE signal is negated to stop writing data to be transmitted in either of the following cases in the transmission mode
(1) When the ISO transmission/reception FIFO buffer becomes full (The ILWRE signal is negated in synchronization with the last ICLK signal generated before the FIFO buffer becomes full. Note, however, that this condition does not negate the ILWRE signal if the point-rcc bit (bit 7) in the ISO-FIFO control register (address 0Eh) has been set to "1."
(2) When a bus reset is detected (The ILWRE signal is negated in synchronization with the last ICLK signal generated before the FIFO buffer loads one packet of data after detection of the bus reset.)
The ILWRE signal is asserted back when transmission of one packet of data to the 1394 bus is completed.
(5) Switch to Transmission from Reception in Process

| Parameter |  | Symbol | Value |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |
| IDIR fall to ILWRE rise time |  |  | Min. | Max. |  |
| IDIR fall to ILWRE fall time | toLWRH | - | ticLK +40 | ns |


(6) $\overline{\mathrm{FP}}$ Input Timing

| Parameter |  | Symbol | Value |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\overline{\mathrm{FP}}$ "L" level pulse width | tFPL | 100 | - | nax |
| $\overline{\mathrm{FP}}$ "H" level pulse width | tFPH | 125 | - | $\mu \mathrm{ns}$ |
| $\overline{\mathrm{FP}}$ "H" detection to CTR value load | - | 80 | 150 | ns |



### 2.6.3 Receiving Operation

(1) Start Receiving Operation

| Parameter |  | Symbol | Value |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  | Min. | Max. |  |
| ICLK rise to ILWRE fall | twreh | - | 40 | ns |
| $\overline{\text { IV }}$ setup time | tsiv | 40 | - | ns |
| Data output definition time | toz | - | 40 | ns |
| Data output disable time | to | 10 | 40 | ns |
| $\overline{\text { IV }}$ fall to $\overline{\text { CRCE }}$ fall time |  | - | 40 | ns |

*: The ICRCE signal is output when a CRC error is detected in receiving data.


## (2) End Receiving Operation

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| ICLK rise to ILWRE rise | twrel | - | 40 | ns |
| Data output disable time | tzd | 0 | 50 | ns |
| ILWRE negate time*1 | twreh | 6 ticlk | - | ns |
| $\overline{\text { IV rise to }} \overline{\text { ICRCE }}$ rise time*2 | terrh | - | 40 | ns |

*1: This device negates the ILWRE signal upon completion of reading each packet of data.
*2: The ICRCE signal is asserted only when a CRC error is detected in data received.

(3) IV Temporary Negation in Receiving Operation

| Parameter |  | Symbol | Value |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  | Min. | Max. |  |
| $\overline{\mathrm{IV}}$ rise to ICLK rise | thiv | 40 | - | ns |
| $\overline{\mathrm{V}}$ rise to $\overline{\text { ICRCE }}$ rise time | terrh | - | 40 | ns |
| $\overline{\mathrm{IV}}$ fall to $\overline{\mathrm{C} C R C E}$ fall time | terrL | - | 40 | ns |



## MB86615

(4) $\overline{\text { FP Signal Output }}$

| Parameter |  | Symbol | Value |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  | Min. | Max. |  |
| IDIR fall to FP output enable | tzfP | - | 40 | ns |
| $\overline{\text { FP "L" level pulse width }}$ | t PPw | 600 | 730 | ns |
| Time stamp match detect to FP output | - | - | 40 | ns |



### 2.6.4 Clearing the ISO Transmission/Reception FIFO Buffer Using the fifo-cIr Bit

The ISO transmission/reception FIFO buffer is cleared by setting the fifo-clr bit (bit 4) in the ISO-FIFO control register (address 0Eh) to "1." Given below is a timing chart for the isochronous interface when the FIFO buffer is cleared.

Note that this FIFO buffer clear function is available only when the point-rec bit (bit 7) or length-chk bit (bit 6) in the ISO-FIFO control register has been set to "1."

| Parameter | Symbol | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| $\overline{\text { IV rise to ILWRE rise }}$ | tcle | - | 4 ticlk | ns |
| ILWRE negate time | twreh | - | 7 ticlk | ns |


*: The ISO transmission/reception FIFO buffer is cleared while the ILWRE signal is negated.

## MB86615

## INTERNAL REGISTERS

The MB86615 internal registers have 3-bank construction, with 16-bit access to all registers.
Bank 0 contains registers necessary for IEEE 1394 settings and transfer, bank 1 contains registers necessary for AV/C (DVC) operation, and bank 2 contains CSR's.
In addition each bank has registers used in common for MB86615 device control.

## 1. Bank Common Registers

The following registers can be accessed in any bank from bank 0 to bank 2 .

| Address |  |  |  |  | Write operation | Read operation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HEX | A5 | A4 | A3 | A2 |  |  | $\leftarrow$ |
| 00 | 0 | 0 | 0 | 0 | 0 | mode-control register | $\leftarrow$ |
| 02 | 0 | 0 | 0 | 0 | 1 | (reserved) | flag \& status register |
| 04 | 0 | 0 | 0 | 1 | 0 | instruction fetch register | $\leftarrow$ |
| 06 | 0 | 0 | 0 | 1 | 1 | interrupt mask register | interrupt code register |
| 08 | 0 | 0 | 1 | 0 | 0 | (reserved) | Receiving acknowledge display <br> register |
| OA | 0 | 0 | 1 | 0 | 1 | ASYNC data port (sending) | ASYNC data port (receiving) |
| $0 C$ | 0 | 0 | 1 | 1 | 0 | mode-control-2 register | $\leftarrow$ |
| $0 E$ | 0 | 0 | 1 | 1 | 1 | ISO-FIFO control register | $\leftarrow$ |
| 3E | 1 | 1 | 1 | 1 | 1 | bank select register | $\leftarrow$ |

## 2. Bank 0 Registers

Bank 0 contains the registers required for 1394 settings and transfers.
Access to this bank is enabled by writing '0000h' to the bank select register (3Eh).

| Address |  |  |  |  |  | Write operation | Read operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HEX | A5 | A4 | A3 | A2 | A1 |  |  |
| 10 | 0 | 1 | 0 | 0 | 0 | Sending ISO PKT header setting register (high) | Receiving ISO PKT header display register (high) |
| 12 | 0 | 1 | 0 | 0 | 1 | Sending ISO PKT header setting register (low) | Receiving ISO PKT header display register (low) |
| 14 | 0 | 1 | 0 | 1 | 0 | Sending ASYNC des ID setting register | Receiving ASYNC des ID setting register |
| 16 | 0 | 1 | 0 | 1 | 1 | Sending ASYNC PKT param setting register | Receiving ASYNC PKT param display register |
| 18 | 0 | 1 | 1 | 0 | 0 | Sending ASYNC data length setting register | Receiving ASYNC data length display register |
| 1A | 0 | 1 | 1 | 0 | 1 | Sending ASYNC ex tcode setting register | Receiving ASYNC ex tcode display register |
| 1C | 0 | 1 | 1 | 1 | 0 | Sending ASYNC source ID setting register | Receiving ASYNC source ID display register |
| 1E | 0 | 1 | 1 | 1 | 1 | Sending ASYNC resp param setting register | Receiving ASYNC resp param display register |
| 20 | 1 | 0 | 0 | 0 | 0 | Sending ASYNC des offset setting register (high) | Receiving ASYNC des offset display register (high) |
| 22 | 1 | 0 | 0 | 0 | 1 | Sending ASYNC des offset setting register (middle) | Receiving ASYNC des offset display register (middle) |
| 24 | 1 | 0 | 0 | 1 | 0 | Sending ASYNC des offset setting register (low) | Receiving ASYNC des offset display register (low) |
| 26 | 1 | 0 | 0 | 1 | 1 | (reserved) | $\leftarrow$ |
| 28 | 1 | 0 | 1 | 0 | 0 | (reserved) | PHY ID display register |
| 2A | 1 | 0 | 1 | 0 | 1 | (reserved) | NODE config display register |
| 2C | 1 | 0 | 1 | 1 | 0 | (reserved) | $\leftarrow$ |
| 2E | 1 | 0 | 1 | 1 | 1 | (reserved) | PORT config display register |
| 30 | 1 | 1 | 0 | 0 | 0 | state clear setting register | root ID display register |
| 32 | 1 | 1 | 0 | 0 | 1 | Self ID PKT param setting register | ISO resource manager ID display register |
| 34 | 1 | 1 | 0 | 1 | 0 | Receiving ISO-channel setting register $(0,1)$ | $\leftarrow$ |
| 36 | 1 | 1 | 0 | 1 | 1 | Receiving ISO-channel setting register $(2,3)$ | $\leftarrow$ |
| 38 | 1 | 1 | 1 | 0 | 0 | (reserved) | cycle timer monitor display register (high) |
| 3 A | 1 | 1 | 1 | 0 | 1 | (reserved) | cycle timer monitor display register (low) |
| 3C | 1 | 1 | 1 | 1 | 0 | (reserved) | $\leftarrow$ |

## 3. Bank 1 Registers

Bank 1 contains the registers required for $\mathrm{AV} / \mathrm{C}$ (DVC) protocols.
Access to this bank is enabled by writing ' 0001 h ' to the bank select register (3Eh).

| Address |  |  |  |  |  | Write operation | Read operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HEX | A5 | A4 | A3 | A2 | A1 |  |  |
| 10 | 0 | 1 | 0 | 0 | 0 | Sending time stamp offset setting register | $\leftarrow$ |
| 12 | 0 | 1 | 0 | 0 | 1 | Receiving time stamp offset setting register | $\leftarrow$ |
| 14 | 0 | 1 | 0 | 1 | 0 | Sending CIP header DBS setting register | Receiving CIP header display register (highest) |
| 16 | 0 | 1 | 0 | 1 | 1 | (reserved) | Receiving CIP header display register (high) |
| 18 | 0 | 1 | 1 | 0 | 0 | Sending CIP header FMT setting register | Receiving CIP header display register (low) |
| 1A | 0 | 1 | 1 | 0 | 1 | (reserved) | Receiving CIP header display register (lowest) |
| 1C | 0 | 1 | 1 | 1 | 0 | OMPR (high) | $\leftarrow$ |
| 1E | 0 | 1 | 1 | 1 | 1 | OMPR (low) | $\leftarrow$ |
| 20 | 1 | 0 | 0 | 0 | 0 | OPCR0 (high) | $\leftarrow$ |
| 22 | 1 | 0 | 0 | 0 | 1 | OPCR0 (low) | $\leftarrow$ |
| 24 | 1 | 0 | 0 | 1 | 0 | (reserved) | $\leftarrow$ |
| 26 | 1 | 0 | 0 | 1 | 1 | (reserved) | $\leftarrow$ |
| 28 | 1 | 0 | 1 | 0 | 0 | (reserved) | $\leftarrow$ |
| 2A | 1 | 0 | 1 | 0 | 1 | (reserved) | $\leftarrow$ |
| 2 C | 1 | 0 | 1 | 1 | 0 | IMPR (high) | $\leftarrow$ |
| 2 E | 1 | 0 | 1 | 1 | 1 | IMPR (low) | $\leftarrow$ |
| 30 | 1 | 1 | 0 | 0 | 0 | IPCR0 (high) | $\leftarrow$ |
| 32 | 1 | 1 | 0 | 0 | 1 | IPCR0 (low) | $\leftarrow$ |
| 34 | 1 | 1 | 0 | 1 | 0 | (reserved) | $\leftarrow$ |
| 36 | 1 | 1 | 0 | 1 | 1 | (reserved) | $\leftarrow$ |
| 38 | 1 | 1 | 1 | 0 | 0 | (reserved) | $\leftarrow$ |
| 3A | 1 | 1 | 1 | 0 | 1 | (reserved) | $\leftarrow$ |
| 3C | 1 | 1 | 1 | 1 | 0 | set-PCR \& FP-timeout setting register | $\leftarrow$ |

## 4. Bank 2 Registers

Bank 2 contains CSR's required for Isochronous resource manager.
Access to this bank is enabled by writing '0002h' to the bank select register (3Eh).

| Address |  |  |  |  | Write operation | Read operation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HEX | A5 | A4 | A3 | A2 |  |  | $\leftarrow$ |
| 10 | 0 | 1 | 0 | 0 | 0 | bus manager ID register (high) | $\leftarrow$ |
| 12 | 0 | 1 | 0 | 0 | 1 | bus manager ID register (low) | $\leftarrow$ |
| 14 | 0 | 1 | 0 | 1 | 0 | bandwidth available register (high) | $\leftarrow$ |
| 16 | 0 | 1 | 0 | 1 | 1 | bandwidth available register (low) | $\leftarrow$ |
| 18 | 0 | 1 | 1 | 0 | 0 | channels available high register (high) | $\leftarrow$ |
| 1A | 0 | 1 | 1 | 0 | 1 | channels available high register (low) | $\leftarrow$ |
| 1C | 0 | 1 | 1 | 1 | 0 | channels available low register (high) | $\leftarrow$ |
| 1E | 0 | 1 | 1 | 1 | 1 | channels available low register (low) | $\leftarrow$ |
| 20 | 1 | 0 | 0 | 0 | 0 | (reserved) | $\leftarrow$ |
| 22 | 1 | 0 | 0 | 0 | 1 | (reserved) | $\leftarrow$ |
| 24 | 1 | 0 | 0 | 1 | 0 | (reserved) | $\leftarrow$ |
| 26 | 1 | 0 | 0 | 1 | 1 | (reserved) | $\leftarrow$ |
| 28 | 1 | 0 | 1 | 0 | 0 | (reserved) | $\leftarrow$ |
| $2 A$ | 1 | 0 | 1 | 0 | 1 | (reserved) | $\leftarrow$ |
| $2 C$ | 1 | 0 | 1 | 1 | 0 | (reserved) | $\leftarrow$ |
| $2 E$ | 1 | 0 | 1 | 1 | 1 | (reserved) | $\leftarrow$ |
| 30 | 1 | 1 | 0 | 0 | 0 | (reserved) | $\leftarrow$ |
| 32 | 1 | 1 | 0 | 0 | 1 | (reserved) | $\leftarrow$ |
| 34 | 1 | 1 | 0 | 1 | 0 | (reserved) | $\leftarrow$ |
| 36 | 1 | 1 | 0 | 1 | 1 | (reserved) | $\leftarrow$ |
| 38 | 1 | 1 | 1 | 0 | 0 | (reserved) | $\leftarrow$ |
| $3 A$ | 1 | 1 | 1 | 0 | 1 | (reserved) | $\leftarrow$ |
| $3 C$ | 1 | 1 | 1 | 1 | 0 | (reserved) |  |

## MB86615

■ ORDERING INFORMATION

| Partnumber | Package | Remarks |
| :--- | :---: | :---: |
| MB86615PFV | 100-pin plastic LQFP <br> (FPT-100P-M05) |  |
| MB86615PBT | 120-pin plastic FBGA <br> (BGA-120P-M01) |  |

## PACKAGE DIMENSIONS

## 100-pin plastic LQFP <br> (FPT-100P-M05)


(c) 1995 FUJITSU LIMITED F100007S-2C-3

Dimensions in mm (inches)

120-pin plastic FBGA
(BGA-120P-M01)


## FUJITSU LIMITED

## For further information please contact:

## Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

## Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

## CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

