THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

SP8720

300MHz ÷ 3/4

The SP8720 is an ECL two-modulus divider, with ECL10K compatible outputs. It divides by 3 when either of the ECL control inputs, <u>PE1</u> or <u>PE2</u>, is in the high state and by 4 when both are low (or open circuit). An AC coupled input of 600mVp-p is required.

FEATURES

- ECL Compatible Outputs
- AC-Coupled Input (Internal Bias)
- Control Inputs ECL III/10K Compatible

QUICK REFERENCE DATA

- Supply Voltage: -5.2V
- Power Consumption: 240mW
- Temperature Range:
 - -55°C to +125°C (A Grade) -30°C to +70°C (B Grade)

ABSOLUTE MAXIMUM RATINGS

Supply voltage	-8V
Output current	20mA
Storage temperature range	-65° C to $+150^{\circ}$ C
Max. junction temperature	+175°C
Max. clock input voltage	2·5V p-p

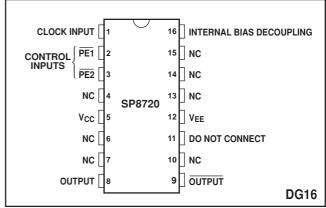


Fig. 1 Pin connections - top view

ORDERING INFORMATION

SP8720 A DG SP8720 B DG 5962-90577 (SMD)

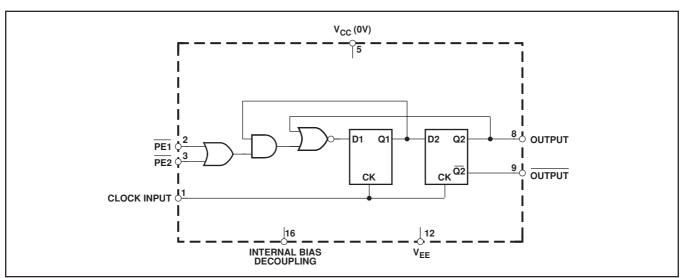


Fig. 2 Functional diagram

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, the Electrical Characteristics are guaranteed over specified supply, frequency and temperature range Supply voltage, V_{CC} = 0V, V_{EE} = $-5\cdot2V$ \pm 0·25V Temperature, T_{AMB} = $-55^{\circ}C$ to $+125^{\circ}C$ (A Grade), $-30^{\circ}C$ to $+70^{\circ}C$ (B Grade)

Characteristic	Symbol	Value		Linita	0	Notes
		Min.	Мах.	Units	Conditions	140165
Maximum frequency (sinewave input)	f _{MAX}	300		MHz	Input = 400-800mV p-p	5
Minimum frequency (sinewave input)	f _{MIN}		40	MHz	Input = 400-800mV p-p	5
Power supply current	I _{EE}		65	mA	$V_{EE} = -5.2V$	5
Output high voltage	V _{OH}	-0.85	-0.7	V	$V_{EE} = -5.2V (25^{\circ}C)$	
Output low voltage	V_{OL}	-1⋅8	−1·5	V	$V_{EE} = -5.2V (25^{\circ}C)$	
PE input high voltage	V _{INH}	-0.93		V	$V_{EE} = -5.2V (25^{\circ}C)$	
PE input low voltage	V_{INL}		-1.62	V	$V_{EE} = -5.2V (25^{\circ}C)$	
Clock to output delay	t _p		6	ns		6
Set-up time	ts	2.5		ns		3, 6
Release time	t _r	3		ns		4, 6

NOTES

- 1. The temperature coefficients of $V_{OH} = +1.63 \text{mV}/^{\circ}\text{C}$, $V_{OL} = +0.94 \text{mV}/^{\circ}\text{C}$ and of $V_{IN} = +1.22 \text{mV}/^{\circ}\text{C}$.
- The test configuration for dynamic testing is shown in Fig.6.
- The set-up time t_s is defined as the minimum time that can elapse between L→H transition of control input and the next L→H clock pulse transition to ensure that the $\div 3$ mode is obtained.
- The release time t_r is defined as the minimum time that can elapse between $H \rightarrow L$ transition of control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 4$ mode is obtained.
- SP8720B tested at 25°C only.
- Guaranteed but not tested.

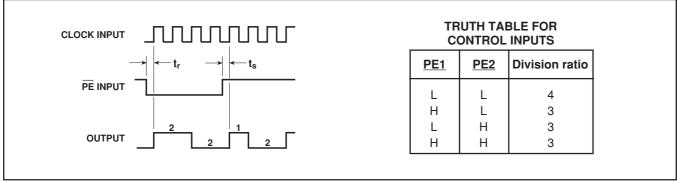


Fig. 3 Timing diagram

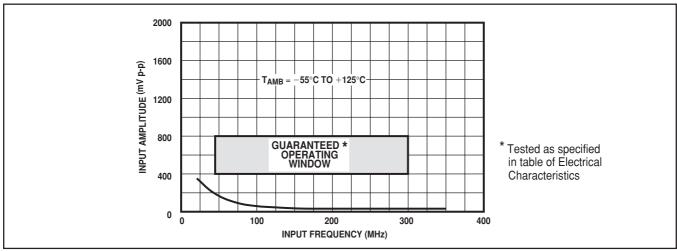


Fig. 4 Typical input characteristic of SP8720A

OPERATING NOTES

- 1. The clock input is biased internally and is coupled to the signal source with a suitable capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected from pin 16 to ground.
- 2. If no signal is present the device will self-oscillate. If this is undesirable, it may be prevented by connecting a $15k\Omega$ resistor from the clock input (pin 1) to $V_{\text{EE}}.$ This will reduce the input sensitivity by approximately 100mV.
- 3. The circuit will operate down to DC but slew rate must be better

than 100V/µs.

- 4. The Q and Q outputs are compatible with ECLII but can be interfaced to ECL10K as shown in Fig. 7. There is an internal circuit equivalent to a load of $2k\Omega$ at each output.
- 5. The PE inputs are ECLIII/10K compatible and include $4.3k\Omega$ pulldown resistors. Unused inputs can therefore be left open.
- 6. The input impedance of the SP8720 varies as a function of frequency, see Fig. 5.
- 7. All components should be suitable for the frequency in use.

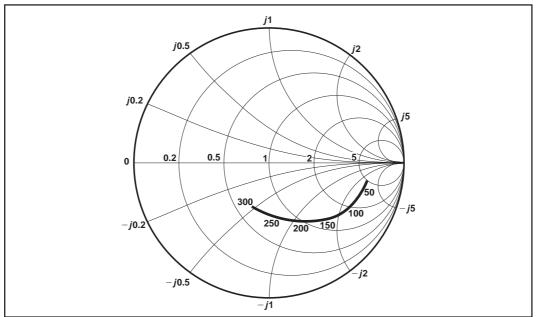


Fig. 5 Typical input impedance. Test conditions: Supply Voltage = -5.2V, Ambient Temperature = $25^{\circ}C$. Frequencies in MHz, impedances normalised to 50Ω .

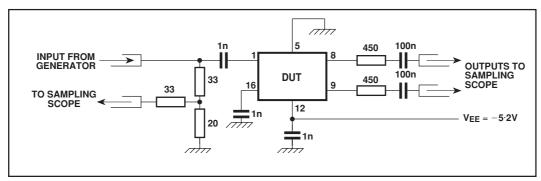


Fig. 6 Test circuit

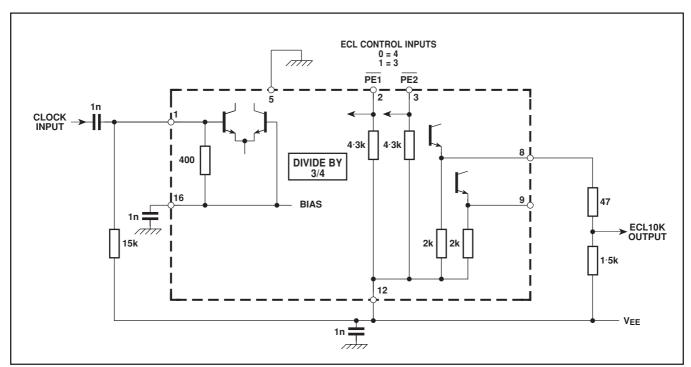
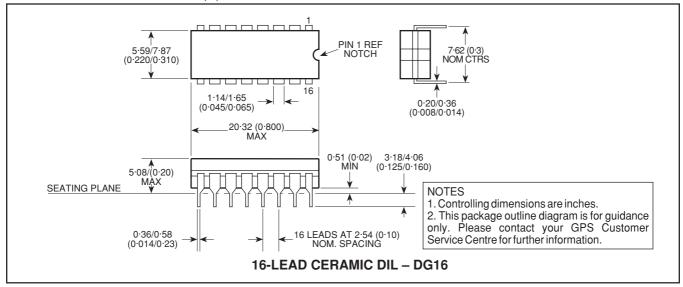



Fig. 7 Typical application circuit showing interfacing

NOTES

PACKAGE DETAILS

Dimensions are shown thus: mm (in).

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire SN2 2QW, United Kingdom. Tel: (0793) 518000

Tel: (0793) 518000 Fax: (0793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, CA95067-0017 United States of America. Tel (408) 438 2900 Fax: (408) 438 5576

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Fax: (1) 64 46 06 07
- **GERMANY** Munich Tel: (089) 3609 06-0 Fax : (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (3) 5276-5501 Fax: (3) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 7023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon Tel: (0793) 518510 Fax: (0793) 518582

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1994 Publication No. DS3650 Issue No. 1.2 March 1994

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee expresso rimplied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.