Philips RF Manua

product & design manual for RF small signal discretes

> 2nd edition October 2002

2nd edition

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 2

Content

1.	Introd	uction	page:	3			
2.	What'	s new	page:	4			
3.	RF Ap	oplication -basics	page:	5 - 14			
4.	RF De	esign-basics					
	4.1	Fundamentals	page:	15 - 30			
	4.2	Small Signal RF amplifier parameters	page:	31 - 36			
5.	Applic	cation diagrams	page:	37 - 38			
6.	Applic	cation notes					
	6.1	Application notes list	page:	39 - 40			
	6.2	BB202, low voltage FM stereo radio	page:	41 - 46			
	6.3	RF switch for e.g. Bluetooth application	page:	47 - 53			
	6.4	Low impedance Pin diode	page:	54 - 57			
	6.5	WCDMA applications for BGA6589					
		Wideband Amplifier	page:	58 - 61			
	\rightarrow	Online application notes on Philips Semic	onductors web	site:			
		http://www.semiconductors.philips.com/products/all	appnotes.html				
7.	Selec	tion Guides	page:	62 - 63			
	7.1	MMIC's	page:	64			
	7.2	Wideband transistors	page:	65 - 66			
	7.3	Varicap diodes	page:	67 - 68			
	7.4	Bandswitch diodes	page:	69			
	7.5	Fet's	page:	70 - 72			
	7.6	Pin diodes	page:	73 - 75			
	\rightarrow	Online product catalog on Philips Semiconductors website:					
		http://www.semiconductors.philips.com/catalog/219/	/282/27046/index.	html#27046			
0				70 70			
8.	X-rete	erences	page:	76 - 79			
	→ Online cross reference tool on Philips Semiconductors						
		http://www.semiconductors.philips.com/products/xre	<u>et/</u>				
9	Packa	aging (including roadman)	nade.	80 - 81			
0.		Online nackage information on Philips Se	miconductors	vohsito:			
	/	http://www.semiconductors.philips.com/package/		websile.			
10.	Promo	otion Materials	page:	82			
11.	Contacts & References		page:	83			

PHILIPS

RF Manual

product & design manual for RF small signal discretes Page: 3

1. Introduction

"YOUR time-to-market is OUR driving force"

2nd edition

We are not just happy to take your order. We want to be a part of your application. We want you to challenge us on design-ins. We want to be your partner in RF solutions. In March of this year we launched our first Philips RF Manual. We received encouraging and positive responses and understood the value of this manual. Of course, we will keep up our promise of updating the manual twice a year and present you the 2nd edition. Also this 2nd edition of RF Manual will help you building your application. It gives an overview starting from RF basics up to and including our complete portfolio. RF Manual will be a dynamic source of information. A living document that will be updated when we feel the need to inform you on important developments for your applications.

miconductor

If you are already familiar with the previous RF Manual, make sure to check next page: 'What's new'.

Kind regards, Henk Roelofs Director RF Consumer Products

RF Manual

Semiconductors

NEW BGA6x89

MMIC's

product & design manual for RF small signal discretes Page: 4

2. What's New

→ NEW RF Application & Design-basics, chapter 3/4:

The former RF Basics have been extended and the new chapter RF Designbasics emphasises on design fundamentals like e.g.: the Smith Chart, frequency and time domain and explanation of the small signal RF amplifier parameters.

→ NEW interactive application notes list, chapter 6:

The total number of listed application notes has grown to 50 of which 35 have a interactive link to a individual webpage.

→ NEW application notes, chapter 6, e.g.:

2nd edition

WCDMA applications for BGA6589 Wideband Amplifier

	NEW types	Upcomming types in development
MMIC's	BGU2003, BGM1011	BGA6289, BGA6489, BGA6589
Wideband transistors	BFQ591	BFU620
Varicap diodes	BB140-01	BB140L
		BF1205, BF1206,
		BF1211, BF1211R, BF1211WR,
Field effect transistors		BF1212, BF1212R, BF1212WR
	BAP51-01, BAP63-01, BAP65-01,	
	BAP27-01, BAP70-02, BAP70-03,	BAP51L, BAP1321L, BAP142L,
Pin diodes	BAP1321-01	BAP144L

→ NEW products, chapter 7:

→ NEW update cross-references, chapter 8:

A powerfull tool to find our parts versus the competitor parts.

→ NEW packages, chapter 9:

The new leadless SOD882 & SOT883, see chapter 8 packaging.

→ NEW design support and promotional materials, chapter 10, e.g.: six new wideband amplifier demoboards: BGA27-serie.

→ NEW contacts, chapter 11:

We recently welcomed new colleagues in our regional sales organisation.

2nd edition

product & design manual for RF small signal discretes Page: 5

3. **RF Application-Basics**

3.1. Frequency spectrum

RF Manual

- 3.2. RF transmission system
- 3.3. RF Front-End
- 3.4. Function of an antenna
- 3.5. Examples of PCB design
- 3.5.1. Prototyping
- 3.5.2. Final PCB
- 3.6. Transistor Semiconductor Process
- 3.6.1. General-Purpose Small-signal bipolar
- 3.6.2. Double Polysilicon
- 3.6.3. RF Bipolar Transistor Performance overview

3.1 Frequency spectrum

Radio spectrum and wavelengths

Each material's composition creates a unique pattern in the radiation emitted. This can be classified in the "frequency" and "wavelength" of the emitted radiation. As particles travel with the speed of light, one can determine the wavelength for each frequency.

VLF	LF	MF	HF	VHF	UHF	SHF	EHF	Infrared	Visible Light
10 kHz	100 kHz	1 MHz	10 MHz	100 MHz	1 GHz	10 GHz	100 GHz		

A survey of the frequency bands and related wavelengths :

Frequency	Wavelength - λ	Band	Definition
3kHz to 30kHz	100km to 10km	VLF	Very Low Frequency
30kHz to 300kHz	10km to 1km	LF	Low Frequency
300kHz to 1650kHz	1km to 182m	MF	Medium Frequency
3MHz to 30MHz	100m to 10m	HF	High Frequency
30MHz to 300MHz	10m to 1m	VHF	Very High Frequency
300MHz to 3GHz	1m to 10cm	UHF	Ultra High Frequency
3GHz to 30GHz	10cm to 1cm	SHF	Super High Frequency
30GHz to 300GHz	1cm to 1mm	EHF	Extremely High Frequency

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 6

Microwave Band	Frequency / [GHz]
S	≈ 1.7 to 5.1
С	≈ 3.9 to 6.1
J	≈ 5.9 to 9.5
Н	≈ 7 to 10
Х	≈ 5 to 10.5
М	≈ 10 to 15
К	≈ 11 to 35
KU	≈ 17 to 18
KA	≈ 38 to 45

2nd edition

Examples of applications in different frequency ranges

Major parts of the frequencies domain are reserved to specific applications e.g. radio and TV broadcasting and cellular phone bands. The frequency ranges are country dependent.

- \rightarrow AM radio - 535 kHz to 1.7 MHz
- Short wave radio bands from 5.9 MHz to 26.1 MHz
- Citizens band (CB) radio 26.96 MHz to 27.41 MHz
- Television stations 54 to 88 MHz for channels 2 through 6
- FM radio 88 MHz to 108 MHz
- Television stations 174 to 220 MHz for channels 7 through 13
- Garage door openers, alarm systems, etc. : around 40 MHz
- (Analog) cordless phones: from 40 to 50 MHz
- Baby monitors: 49 MHz
- Radio controlled aeroplanes: around 72 MHz
- Radio controlled cars: around 75 MHz
- Wildlife tracking collars: 215 to 220 MHz
- (Digital) cordless phones (CT2): 864 to 868 and 944 to 948 MHz
- Cell phones (GSM): 824 to 960 MHz
- Air traffic control radar: 960 to 1,215 MHz
- Global Positioning System: 1,227 and 1,575 MHz
- Cell phones (GSM): 1710 to 1990 MHz
- (Digital Enhanced) Cordless phones (DECT) : 1880 to 1900 MHz
- Personal Handy phone System (PHS) : 1895 to 1918 MHz
- Deep space radio communications: 2290 to 2300 MHz
- Wireless Data protocols (Bluetooth): 2402 to 2495 MHz

3.2 RF transmission system

3.3. RF Front-End

3.4 Function of an antenna

In standard application the RF output signal of a transmitter power amplifier is transported by a coaxial cable to a suitable location for mounting the antenna. Typical the coaxial cable has am impedance of 50Ω (75Ω for TV/Radio). The Ether, that is the room between the earth and infinite space has an impedance too. This Ether is the transport-medium for the traveling wireless RF waves from the transmitter antenna to the receiver antenna. For optimum power transfer from the end of the coaxial cable into the Ether (the wireless transport medium) we need a power match unit. This unit is the Antenna. Depending on the frequency and specific application needs their are a lot of antenna constructions available. The easiest one is the Isotropic ball radiator (just a theoretical one and used for mathematical reference).

The next easiest and practical used antenna is the Dipole radiator consists of two sticks. Removal of one stick we get the "Vertical" radiator as illustrate side by with the field round around it.

More and more integration of the circuits and reduction of the cost do influence the antenna design too. Based on the field radiation effects on printed circuit bards was developed PCB antennas called "Patch"-Antennas as illustrate side by.

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 10

Examples of PCB design 3.5

2nd edition

- Low frequency design
- RF design
- Microwave design
- (up to some MHz) (some MHz to some hundredths of MHz) (GHz range)

3.5.1 Prototyping

Standard RF/VHF Receiver Front-End : Top side GND, back side manual wires

Standard RF/VHF: Top side GND, back side manual wires of an SW-antenna amplifier

Page: 11

3.5.2 **Final PCB**

TV-Tuner: PCP and flying parts on the switch (history), some times prototyping technology at RF

Semiconductors

Microwave PCB for GHz LNA amplifier

Demoboard: BGA2001 and BGA2022

3.6 Transistor Semiconductor Process

3.6.1 General-Purpose Small-signal bipolar

The transistor is built up from three different layers:

- Highly doped emitter layer
- Medium doped base area
- Low doped collector area.

The highly doped substrate serves as carrier and conductor only.

During the assembly process the transistor die is attached to a lead frame by means of gluing or eutectic soldering. The emitter and base contacts are connected to the lead frame through bond wires.

Double Polysilicon 3.6.2

For the latest Silicon based bipolar transistors and MMICs Philips' Double Polysilicon process is used. The mobile communications market and the use of ever-higher frequencies have do need low-voltage, high-performance, RF wideband transistors, amplifier modules and MMICs. The "double-poly" diffusion process makes use of an advanced, transistor technology that is vastly superior to existing bipolar technologies.

- Advantages of double-poly-Si RF process:
- Higher transition frequencies >23GHz
- Higher power gain Gmax.=22dB/2GHz
- Lower noise operation
- Higher reverse isolation
- Simpler matching
- Lower current consumption
- Optimised for low supply voltages
- High efficiency
- High linearity
- Better heat dissipation
- Higher integration for MMICs (**SSI=** Small-Scale-Integration)

Applications \geq

Cellular and cordless markets, low-noise amplifiers, mixers and power amplifier circuits operating at 1.8 GHz and higher), high-performance RF front-ends, pagers and satellite TV tuners.

Typical vehicles manufactured in double-poly-Si:

- BGA200xy, and BGA27xy MMIC Family:

BFG403W/410W/425W/480W BGY240S/241/212/280

5th generation wideband transistors: RF power amplifier modules:

With double poly, a polysilicon layer is used to diffuse and connect the emitter while another polysilicon layer is used to contact the base region. And, via a buried layer, the collector is brought out on the top of the die.

3.6.3 RF Bipolar Transistor Performance overview

2nd edition

Semiconductors

product & design manual for RF small signal discretes Page: 15

4. RF Design-Basics

4.1. RF Fundamentals

RF Manual

- 4.1.1. Frequency and time domain
- 4.1.1.1. Frequency domain area
- 4.1.1.2. Time domain area
- 4.1.2. RF waves
- 4.1.3. The reflection coefficient
- 4.1.4. Difference between ideal and practical passive devices
- 4.1.5. The Smith Chart
- 4.2. Small signal RF amplifier parameters
- 4.2.1. Transistor parameters DC to Microwave
- 4.2.2. Definition of the S-Parameters
- 4.2.2.1. 2-Port Network definition
- 4.2.2.2. 3-Port Network definition

4.1. RF Fundamentals

4.1.1. Frequency and time domain

4.1.1.1. Frequency domain area

Typical vehicles:

- Metallic sound of the PC loudspeaker
- Audio analyser (Measuring the quality of the audio signal, like noise and distortion)
- F/A's ultrasonic microscope (E.g. non destructive material analysis on IC packages)
- FFT Spectrum analyser (In the medium frequency range from some Hz to MHz)
- Modulation analyser (Investigation of RF modulation e.g. AM, FSK, GFSK,...)
- Spectrum analyser (Display the signal's spectral quality, e.g. noise, intermodulation, gain)

The mathematical Furrier Transformation rule analyses the performance of a periodical time depending signal in the frequency domain. For an one shoot signal the Furrier Integral Transformation is used. On bench, issues are take over by the Spectrum Analyser or by the *FFT* Analyser (*F*ast *F*urrier *T*ransformation). In the Spectrum Analyser the frequency parts of the device under test (*DUT*) spectrum are isolated (filtered) and measured by tuned filters (like a periodical tuned radio with displaying of the field strength). The FFT analyser has build in a computer or a *DSP* (*D*igital *S*ignal *P*rocessor). This DSP is a special IC with build in hardware based mathematical circuit cells for doing very fast solving of algorithmic problems like *DFFT* (*D*iscrete *F*ast *F*urrier *T*ransformation). This DFFT

RF Manua

Semiconductors

product & design manual for RF small signal discretes Page: 16

can calculate the frequency spectrum of an in coming signal. DSP processors are used in today's mobiles on the base band level, sound cards of the computer, industrial machines,...

In RF and Microwave application the frequency domain is very important for measurement techniques because oscilloscopes can not display extremely high frequency signals. A Spectrum Analyser has a much higher sensitivity and better dynamic range.

Example: An oscilloscope can proper display signals with a voltage ratio of 10 to 20 between the smallest and largest signal (dynamic rage ≈20dB). The RF spectrum analysers can display power signal (levels) with a ratio of more than 1Million at the same time on the display (dynamic range >60dB). E.g. IF amplifiers of receivers have a gain of 40 to 60dB. That means the amplifier output amplitude power is around 10000 to 1000000 larger comparing to it's input. The spectrum analyser can display both signals at the same time with a good accuracy on to the monitor. On an oscilloscope you can see just a thin amplitude of the output signal. The amplifiers input signal looks like some noise ripple on the zero axis.

Typical modern oscilloscopes works in the frequency range of 0Hz (DC) to few GHz. Modern spectrum analysers (SA) go up to several tenth of GHz. Special (SA) up 100GHz.

4.1.1.2. Time domain area

Typical bench vehicle and applications:

- The loudspeaker beep of the computer
- The oscilloscope (displays the signal's action over the time)
- The RF generator (generates very clean sin test signals with various modulation options)
- The <u>Time</u> <u>Domain</u> <u>Reflectometry</u> analyser (TDR) (e.g. analysing cable discontinuities)

In the time domain area the variation of the amplitude versus the time is displayed on a screen. Very low speed actions like temperature drift versus ageing of an oscillator or the earthquake are printed by special plotters in real-time on paper. Fast actions are displayed by oscilloscopes. The signals are forced on the screen by the use of storage tubes (history) or by the use of in built digital memories (RAM). In the time domain, phase differences between different sources or time dependent activities are analysed, characterised or tuned.

In RF applications their are displayed the demodulation actions, base band signals or control actions of the CPU.

Advantage of the oscilloscope is the high resistive impedance of the probes. The disadvantage is the input capacity of some Pico Farad (pF) causing a short or excessive detune of the circuit.

Mixers are non linear devices because their main job is the multiplication of signals. On the other side the RF signal must be operate very linear. Mixer **3rd order intercept point (IP3)** performance characterise this handling of RF signals an port input quality.

2nd edition

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 17

Example for illustrating an application circuit in the frequency domain and in the time domain:

Issue: Receiving the commercial radio broadcasting program SWR3 in the Short-wave 49m Band from the German Transmitter-Mühlacker on 6030KHz. This transmitter has an output power of 20000W. Design the mixer working on an 455KHz IF amplifier. Reference: http://www.swr.de/frequenzen/kurzwelle.html

System design of the *local oscillator*: LO=RF+IF=6030KHz+455KHz=6485KHz The *image frequency* is found at IRF=LO+IF=6485KHz+455KHz=6913KHz Optimum mixer operation is medium gain for IF and RF and damping of IRF and LO transfer to the IF port. For an example, we choose the *BFR92* because this transistor can be used for much higher frequencies mixer applications (e.g. FM Car-Radio, TV, ISM433,...) too. The *R*adio *F*requency (*RF*) signal is mixed with the *L*ocal *O*scillator (*LO*) to the *I*nterim *F*requency (*IF*) output products.

For improving the mixer gain, some part variation were done. This circuit is just an example further optimization should be done for practical operation. In the example the input signal source (V6, V7) are series connected. In the reality it can be done by e.g. a transformer. The computer simulation was done under PSpice with the following set-up: Print Step=0.1ns; Final Time=250µs; Step Ceiling=1ns. This high simulation length and fine step resolution is necessary for useful DFT results in the frequency spectrum down to 400KHz.

Figure 1: Final mixer circuit without output IF tank

Varying of R8 shows influences of the mixer gain at 455KHz output frequency

 2^{nd} edition

RF Manual product & design manual for RF small signal discretes Page: 18

R 8	6k	7k	<u>8k</u>	9k	10k	15k	20k	25k
455KHz	0.32mV	2.21mV	3.37mV	3.66mV	3.62mV	2.33mV	1.43mV	1.44mV
12515KHz	0.29mV	2mV	2.94mV	3.11mV	2.97mV	1.52mV	0.83mV	0.5mV

From the experiments we chose R8=9k for best output amplitude.

Figure 3: The mixer in the Frequency domain area

RF Manual

2nd edition

product <u>& design manual for RF small signal discretes</u> Page: 19

Semiconductors

Figure 4: Mixer output voltage versus tank's characteristic resonance impedance

In the upper diagram inductors with more than 1mH are shown to have higher losses (Q). Additionally their must be measured the available IF bandwidth for transferring the down mixed signal without loss of modulation quality.

Figure 5: The mixer with IF tank

RF Manua

Semiconductors

product & design manual for RF small signal discretes Page: 20

In this chapter was illustrated a mixer operation in the time and frequency domain. Illustrated was the circuit design by try and error of the use of a CAD program with the need of a lot of simulation time.

Better is the use of strategic design and calculation for the exact need specification and final CAD optimization. The devices must be accurate specified (S-Parameter) and models (e.g. 2-port linear model network) must be available for computer simulation.

Philips Semiconductors offers S-Parameters of Small Signal Discretes Devices.

Because in RF application optimum power transfer is important, we have to think about the quality of inter circuit match, qualified by the refection coefficient. This will be handled in the next chapters. Please note Philips Semiconductors offers a <u>M</u>onolithic <u>M</u>icrowave Integrated <u>C</u>ircuit (<u>MMIC</u>) Mixer <u>BGA2022</u> with 50 Ω input impedance. This devices has build in the need biasing circuit, offers excellent gain and linearity.

4.1.2 RF waves

RF electromagnetic signals are travelling like water *waves* in the bath. They are affect by laws comparable to that of optical signals. In a homogeneous vacuum without any kind of external influences their *speed is* C_0 =299792458m/s.

Travelling in substrates, wires (*dielectric* material) do speed down the waves to the amount

of:
$$v = \frac{C_o}{\sqrt{\varepsilon_{reff}}}$$

Ereff is the substrate dielectric constant.

With it we can calculate the *Wave Length*: $\lambda =$

- Example1: Calculate the speed of an electromagnetic wave in an epoxy based <u>Printed</u> <u>Circuit</u> <u>Board</u> (*PCB*) manufactured according to FR4 spec. and in a metaldielectric-semiconductor capacitor.
- Calculation: In a metal-dielectric-semiconductor capacitor the used dielectric can be Silicon-Dioxide or Silicon-Nitride material.

$$v = \frac{C_o}{\sqrt{\varepsilon_{reff}}} = \frac{299792458m/s}{\sqrt{4.6}} = 139.78 \cdot 10^6 \, m/s$$

FR4 $\varepsilon_{reff} = 4.6$ $v = 139.8 \cdot 10^6 \, m/s$
SiO₂ $\varepsilon_{reff} = 2.7 \text{ to } 4.2$ $v = 182.4 \cdot 10^6 \, m/s \text{ to } 139.8 \cdot 10^6 \, m/s$
Si₃N₄ $\varepsilon_{reff} = 3.5 \text{ to } 9$ $v = 160.4 \cdot 10^6 \, m/s \text{ to } 99.9 \cdot 10^6 \, m/s$

PHILIPS

2nd edition

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 21

- Example2: What is the wave length transmitted from the commercial SW radio broadcasting program SWR3 in the 49m Band on 6030KHz in the air / FR4 PCB?
- Calculation: The \mathcal{E}_{reff} of air is close to vacuum. $\mathcal{E}_{reff} \approx 1$ v=C_o Wave length in air: $\lambda_{air} = \frac{C_o}{f} = \frac{299792458m/s}{6030KHz} = 49.72m$ From Example 1 we take over FR4 $\mathcal{E}_{reff} = 4.6$ v=139.8•10⁶m/s and do calculate the wave length in the PCB to : $\lambda_{FR4} = 23.18m$

A forward traveling wave is transmitted / injected by the source into the traveling medium (substrate, dielectric, wire, *Microstrip*, etc.) and running to the load at the opposite wire-end. In junction's between two different substrates/dielectrics a part of the forward running wave is reflected back to the source. The remaining part is forward traveling to the load.

Figure 6: Multi reflection between lines with different impedance

In the upper figure the reflection of the forwards running wave (red) between lines with different wave-impedance's (Z1, Z2, Z3) is illustrate. As shown a backwards reflected wave (green) can be again reflected into load direction (violet).

In the case of optimum *matching* between different travel medium, no signal reflection will occur and an optimum power is forwarded. The quality of reflection caused e.g. junctions of lines with different impedance's or line *discontinuities* are specified by the *refection coefficient* detailed explained in the next chapter.

4.1.3 The reflection coefficient

As discussed in former chapter a forward traveling wave is particularly back reflected on junctions with line impedance in homogeneity, discontinuity or mismatching. Only the wave-part of forward traveling into the load will be absorbed and processed. Because of the limited speed of the waves in a line they will be specified by an individual phase delay too. In the involved mathematics rules this behave is illustrated by a vector in the complex Gauß area. At each location of the wire, waves with different amplitude and phase delay are heterodyned. The resulting envelope of the waves energy along the wire do get a ripple with maximum and minimum of the amplitude. The phase difference between a maximum to the next one is the same between a minimum to the next one. The amount of the distance is the *half wave length* $\lambda/2$ (or normalized phase shift of 180°).

Example: A line with a mismatched end, do have standing waves resulting in minimum and maximum amount of power at certain locations along the wire. Determine the approximated distance between this worse case voltage points for a *Bluetooth* signal processed in a printed circuit on a FR4 based substrate.

Calculation: Assumed speed in FR4: v=139.8•10⁶m/s

Wave length:
$$\lambda_{air} = \frac{v_{FR4}}{f_{BT}} = \frac{139.78 \cdot 10^6 \, m/s}{2.4 GHz} = 58.24 mm$$

The distance minimum to maximum is called the quarter wave length $\lambda/4$ (90°).

Min-Max distance in FR4:
$$\frac{\lambda}{4} = \frac{58.24mm}{4} = 14.56mm$$

- > At the minimum we have low amount of voltage but large current.
- > At the maximum we have large amount of voltage but low current.
- > The distance between a minimum and a maximum is equal to $\lambda/4$.

The reflection coefficient is defined by the ratio between the backward traveling voltage and the forward travelling voltage:

Reflection coefficient: $r_{(x)} = \frac{U_{b(x)}}{U_{f(x)}}$

Reflection loss or return loss: $|r_{dB}| = 20dB \cdot \log|r_{(x)}| = 20dB \{\log|U_{b(x)}| - \log|U_{f(x)}|\}$

The index (x) indicate that at each position of the wire you will see a different reflection coefficient. This is caused by the distribution of the standing wave along the line. The return loss indicates how much lower is the return reflected wave in dB compared to the forward travelling wave.

PHILIPS

2nd edition

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 23

Often the input refection performance of an 50 Ω RF device is specified by the <u>V</u>oltage <u>S</u>tanding <u>W</u>ave <u>R</u>atio (VSWR) or short (SWR).

VSWR: $s = SWR = VSWR = \frac{U_{\text{max}}}{U_{\text{min}}}$ and the Matching factor: $m = \frac{1}{s}$ Per definition the <u>VSWR>1</u> !

Some typical values of the VSWR:

100% mismatch caused by an open or shorted line r=1 and VSWR ∞ Optimum matched line r=0 and VSWR=1 In the reality 0<r<1 and 1<VSWR<∞

Calculating the amount of reflection factor: $r = |r_{(x)}| = \frac{SWR - 1}{SWR + 1}$ Some mathematical changes: $r = \frac{\frac{U_{\text{max}}}{U_{\text{min}}} - 1}{\frac{U_{\text{max}}}{U_{\text{min}}} + 1}$ will result in: $r = \frac{\frac{U_{\text{max}} - U_{\text{min}}}{U_{\text{max}} + U_{\text{min}}}$

The reflection coefficient of an impedance is calculated to $r = \frac{Z - Z_o}{Z + Z_o}$

with Zo=System reference impedance

As explained the standing waves causes different amount of voltage and current along the wire. The ratio of this two parameters is the impedance $Z_{(x)} = \frac{V_{(x)}}{I_{(x)}}$ at individual locations of (x). That means a wire with the length (1) and a line mismatching load $Z_{(x=1)}$ at the wire end location (x=1) will show at the sources location (x=0) a wire length dependent impedance's $Z_{(x=0)_{f(\ell)}} = \frac{V_{(x=0)}}{I_{(x=0)}}$.

Example: There are known several special cases (tricks) used in Microwave designs. Mathematically it can be shown that a wire with the length $=\frac{\lambda}{4}$ and the wire-impedance Z_L will be a *quarter wave length transformer* of: $\frac{\lambda}{4}$ - Impedance transformer: $Z_L = \frac{Z_L^2}{2}$

$$\frac{\lambda_4'}{4}$$
 - Impedance transformer: $Z_{(x=)} = \frac{Z_L^2}{Z_{(x=0)}}$

2nd edition

product <u>& design manual for RF small signal discretes</u> Page: 24

As indicated in the upper RF travelling wave basic rules, the performances of matching, reflection and individual wire performances do extremely determine the bench measurement results caused by transformation on the wire. Due to it, each measurement set-up must be calibrated by precision references.

Examples of RF calibration references are:

- Open
- Short
- Match

The set-up calibration do de-embed unintended wire transformation, discontinuities from plugs,... This prevents changes of the <u>D</u>evice <u>U</u>nder <u>T</u>est (DUT) measurement parameters in the bench test set-up.

Example: a) Determine the input VSWR of BGA2711 MMIC wideband amplifier for 2GHz based on the characteristics in the data sheet.
b) What kind of restive impedance(s) do theoretical cause this VSWR?
c) What is the input return loss measured on a 50
$$\Omega$$
 coaxial cable in a distance of $\lambda/4$?
Calculation: BGA2711@2GHz r_{IN} =10dB
 $r = \frac{SWR - 1}{SWR + 1}$ $r \cdot SWR + r = SWR - 1$ $SWR = \frac{1 + r}{1 - r}$ $r = 10^{\frac{-r_{out}}{20 dB}} = 10^{\frac{-10 dB}{20 dB}} = 0.3162$
 $SWR_{IN} = \frac{1 + 0.3162}{1 - 0.3162} = 1.92$ $r = \frac{Z - Z_o}{Z + Z_o}$ $Z - rZ = rZ_o + Z_o$ $\left[Z = Z_o \frac{1 + r}{1 - r} \right]$
Comparison: $Z = Z_o \frac{1 + r}{1 - r}$ & $SWR = \frac{1 + r}{1 - r}$ $Z = Z_o \cdot SWR$
We know only the amount of (r) but not it's angle/sign. Due to the definition, the VSWR it must be larger than 1. We will get two possible solutions:
 $\left[\frac{SWR1 = \frac{Z1}{Z_o} \right]$ and $\left[\frac{SWR2 = \frac{Z_o}{Z2} \right] Z1 = 1.92*50\Omega = 96.25\Omega$; $Z2 = 50\Omega/1.92 = 25.97\Omega$
We can check it: $|r| = \left| \frac{96.25 - 50}{96.25 + 50} \right| = \left| 25.96 - 50 \right| = 0.316$
The $\lambda/4$ wire transformer do transform the device impedance to:
 $Zin_1 = 96.25\Omega$ $\left[\frac{Z_{ende}}{Z_{IN}} = \frac{Z_o^2}{96.25\Omega} = 25.97\Omega \right]$ and for $Z_{IN2} = 25.97\Omega$ 96.25 Ω
Results: At 2GHz, BGA2711 offers an input return loss of 10dB or VSWR=1.92. This
reflection can e.g. be caused by 96.25Ω or 25.97Ω impedance. Of course their
are infinite results possible taking in to account combination with L or C parts.
Measuring this resistance the use of 50Ω cable in $\lambda/4$ distance will cause
extremely large errors. Because the Zin_1 = 96.25\Omega!

RF Manual

2nd edition

product & design manual for RF small signal discretes Page: 25

As illustrated in this example, the VSWR or return loss associates without calculation the quality of device's input match but don't tells about it real performances (no phase data). Detailed mathematically network analysis on RF amplifiers show depends on the device input impedance by the output load. The output device impedance is depending on source's impedance driving the amplifier. Due to it, the use of S-Parameter model in linear small signal networks offers reliable and accurate results. This theory will be presented in the following chapters.

4.1.4 Difference between ideal and practical passive devices

Practical device has so called parasitic elements at DC and at RF frequency.

ResistorHas an inductive parasitic action. Due to it, low pass functionInductorHas a capacitor and resistive parasitic, causing a damped
parallel resonance tankCapacitorHas an inductive and resistive parasitic, causing a damped tank with
Series Resonance Frequency (SRF)

At the inductor and the capacitor the parasitic reactance do cause self resonance effects.

Figure 7: Equivalent models of passive lumped elements

4.1.5 The Smith Chart

As indicated in an example of the former chapter, impedance's of Semiconductors are a mixture of resistive and reactive parts. As shown RF is easier displayed in the frequency domain.

Object	into	Frequency domain
Resistor	R	$R = R \cdot e^{+j0^{\circ}}$
Inductor	L	$X_L = +j\omega L = \omega L \cdot e^{+j90^\circ}$
Capacitor	С	$X_{C} = -j\frac{1}{\omega C} = \frac{1}{\omega C} \cdot e^{-j90^{\circ}}$
Frequency	f	$\omega = 2\pi \cdot f$
Complex designator	j	$+ j = \sqrt{-1} = \frac{1}{-j} = e^{+j90^{\circ}}$

Some basic vector mathematics used in RF:

Complex impedance is: $Z = \operatorname{Re}\{Z\} + j\operatorname{Im}\{Z\} = |Z| \cdot e^{j\varphi} = |Z| \cdot (\cos\varphi - j\sin\varphi)$ $\operatorname{Im}\{Z\} = |Z|\sin\varphi; \operatorname{Re}\{Z\} = |Z|\cos\varphi;$ $\tan = \frac{\sin}{\cos} \quad \tan \varphi = \frac{\operatorname{Im}\{Z\}}{\operatorname{Re}\{Z\}}; \text{ with } \varphi = \omega \cdot t$

Use of angle	Polar convention
Use of sum	Cartesian convention

The same rules are used for other issues e.g. reflection coefficient:

$$r = \left| r \right| \cdot e^{j\varphi} = \frac{\left| U_{b} \right| \cdot e^{j\varphi_{b}}}{\left| U_{f} \right| \cdot e^{j\varphi_{f}}} = \left| \frac{U_{b}}{U_{f}} \right| \cdot e^{j(\varphi_{b} - \varphi_{f})}$$

reflection coefficient: $\varphi_{(r)} = -90^{\circ}$

Special cases:

- Resistive mismatch: $\varphi_{(R)} = 0$ reflection coefficient: $\varphi_{(r)} = 0$ Inductive mismatch: $\varphi_{(L)} = +90^{\circ}$ reflection coefficient: $\varphi_{(r)} = +90^{\circ}$
- Capacity mismatch: $\varphi_{(C)} = -90^{\circ}$

The Gauß' number area (Polar Diagram) do charting rectangular two dimensional vectors:

In the real world RF designers try to be close and accurate to 50Ω . The upper polar diagram's origin is 0Ω . In RF circuits very large impedance can appear but we try to come to 50Ω by special network design for optimum low loss power transfer. Due to it, this ∞-area don't need to be displayed accurately. Especially the Polar diagram can't show large impedance and 50Ω impedance accurate at the same time because of limited paper size.

Due to it, the Engineer Mr. Phillip Smith from the Bell Laboratories developed in the Thirties the so called Smith Chart. The Chart's origin is 50Ω . Left and right resistive Re-Axis do end in $0\Omega / \infty \Omega$. The imaginary reactive Im-Axis end in 100% reactive (L or C). Close to the 50 Ω origin high resolution is offered. Far away, the resolution/ error do rise up. The standard Smith Chart do only display positive resistances and has a unit radius (r=1). Negative resistances generated by e.g. instability lay outside the unit circle. In this non linear scaled diagram is keep (theoretical) the infinite dot of the Re-Axis and bend to the Zero point of the Smith Chart. Mathematically it can be shown that this will form the Smith Chart's unit circle. All dot's laying on it representing a reflection coefficient magnitude of one (100% mismatch). Any positive L/C combination with a resistor is mathematical represent by it's polar convention reflection coefficient inside the Smith Chart's unity circle. Because the Smith Chart is a transformed linear scaled polar diagram we can take over some rules by 100%. Some other must be changed.

Special cases:

- Dots above the horizontal axis represents impedance with inductive part
- Dots below the horizontal axis represents impedance with capacity part
- Dots laying on the horizontal line are 100% resistive
- Dots laying on the vertical axis are 100% reactive

Figure 8: BGA2003 output Smith Chart (S₂₁)

Illustrate are the special cases zero and infinite large impedance. The upper half circle is the inductor world. The lower half of the circle is the capacitor world. Origin is the 50Ω reference. To be more flexible, numbers printed in the chart are normalised to the reference impedance.

Normalised impedance procedure: $Z_{norm} = \frac{Z_x}{Z_o}$ Zo=Reference impedance (e.g. 50 Ω , 75 Ω)

Example:	Plot a 100 Ω & 50 Ω resistor into the upper <u>BGA2003</u> 's output Smith chart.
Calculation:	Znorm1=100Ω/50Ω=2; Znorm2=25Ω/50Ω=0.5
Result:	The 100 Ω resistor appears as a dot on the horizontal axis at the location 2. The 25 Ω
	resistor appears as a dot on the horizontal axis at the location 0.5

(0°<φ<180°) (180°<φ<360°) (φ=0°)

(φ=0) (φ=90°)

Example1: In the following three circuits capacitors and inductors are specified by their amount of reactance @ 100MHz design frequency. Determine their part values. Plot their impedance in to the <u>BFG425W</u>s output (S21) Smith Chard.

Circuit:

 $Z_A = 10\Omega + j25\Omega$; $L_1 = \frac{25\Omega}{2\pi \cdot 100MHz} = 39.8nH$

Calculation:

Case A (constant resistance)

From the circuit

 $\frac{\text{Basics:}}{C = \frac{1}{\omega \cdot X_C}}$ $L = \frac{X_L}{\omega}$ $\omega = 2\pi \cdot f$

 $Z_{(A)norm} = Z_A/50\Omega = 0.2 + j0.5 Drawing into Smith Chart$ $Case B (constant resistance and variable reactance - variable capacitor) From the circuit Z_B = 10\Omega + j(10_to_25)\Omega$ $C_B = \frac{1}{2\pi \cdot 100MH_Z \cdot (10_to_25)\Omega} = 63.7 \, pF_to_{-1}59.2 \, pF$ $Z_{(B)norm} = Z_B/50\Omega = 0.5 - j(0.2 to_{-0}.5) Drawing into Smith Chart$

<u>Case C</u> (constant resistance and variable reactance - variable inductor) From the circuit $Z_c = (25\Omega_to_50\Omega) + j25\Omega$;

$$L_{c} = \frac{(25_to_50)\Omega}{2\pi \cdot 100MHz} = 39.8nH_to_79.6nH$$

Z_{(C)norm}=Z_C/50Ω=(0.5_to_1)+j0.5 Drawing into Smith Chart

PHILIPS

2nd edition

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 30

- Example2: Determine <u>BFG425W</u>'s outputs reflection coefficient (S21) at 3GHz from the data sheet. Determine the output return loss and output impedance. Compensate the reactive part.
- Calculation: For reading the data from the Smith Chart with improved resolution the vector procedure base on the reflection coefficient is recommended.
- Procedure: 1) Measure the scalar length from the chart origin to the 3GHz mechanical by the use of an circle.
 - On the chart's right side is printed a ruler with the numbers of 0 to 1. Read from it the equivalent scaled scalar length |r|=0.34
 - 3) Measure the angle \angle (r)= ϕ =-50° Write the reflection coefficient in vector polar convention $r = 0.34e^{-j50°}$

Normalised impedance: $\frac{Z}{Z_o} = \frac{1+r}{1-r} = 1.513e^{-j30.5^\circ}$

Because the transistor was characterised in a 50 Ω bench set-up Zo=50 Ω Impedance: $Z_{21} = 75.64\Omega e^{-j30.5^{\circ}} = (65.2 - j38.4)\Omega$

$$C = \frac{1}{2\pi \cdot 3GHz \cdot 38.4\Omega} = 1.38\,pF$$

The output of BFG425W has an equivalent circuit of <u>65.2 Ω with 1.38pF series</u> capacitance.

Output return loss not compensated: 20log(|r|)=-9.36dB

For compensation the reactive part, we have to take the *conjugate* reactance: $Xcon=-Im{Z}=-{-j38.4\Omega}=+j38.4\Omega$

 $L = \frac{38.4\Omega}{2\pi \cdot 3GHz} = 2nH$ a <u>2nH</u> series inductor will compensated the reactance.

The new input reflection coefficient is calculated to $r = \frac{65.2\Omega - 50\Omega}{65.2\Omega + 50\Omega} = 0.132$

Output return loss compensated: 20log(0.132)=<u>-17.6dB</u>

Please note: In the reality the output impedance is a function of the input circuit. The input and output matching circuits are limited by the *stability* requirements. This is done by doing network analysis based on *S-Parameters*.

4.2 Small signal RF amplifier parameters

4.2.1. Transistor parameters DC to Microwave

At DC low current and low voltage you can assume a transistor like a voltage controlled current source with a diode clamping action at it's input. In this area the transistors are specified just by their large signal DC-parameters like DC-current gain (B, ß, h_{fe}), max. power dissipation, break down voltage and so on.

Increasing the frequency up to audio frequency, their is observed frequency depended change of parameters, phase shift and parasitic capacitance effects. For characterisation of this effect small signal h-Parameters were developed. This hybrid parameters are determined by measuring voltage and current at one terminal and by an open or short at the other one.

Increasing the frequency in to HF/VHF range, the open with to much stray field radiation cause unacceptable error. Due to it y-Parameters were developed. They do again measure voltage/current but under the use of only a short.

Increasing the frequency again, the parasitic inductance of the short causes a problem. Especial the measuring of voltage and current with the phase causes extremely problems. Due to it the scattering Parameters were developed based on the measurement of the forward and backward running waves caused by reflection on transistor's terminals (ports).

S-Parameter Matrix:

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} * \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

4.2.2 Definition of the S-Parameters

Each amplifier has an input port and an output port. Normally the input is Port1. The output is port2.

Matrix:	$ \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} * \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} $
Equation:	$b_1 = S_{11} \cdot a_1 + S_{12} \cdot a_2$ $b_2 = S_{21} \cdot a_1 + S_{22} \cdot a_2$

Figure 10: Two-port Network's (a) and (b) waves

The forward travelling waves (a) are running into the DUT's ports. The backward travelling waves (b) are reflected back from the DUT's ports

In the former chapter was defined the:

Reflection coefficient: $reflection = \frac{back \ wave}{forward \ wave}$

Calculating the input reflection coefficient on port 1: $\left|S_{11} = \frac{b_1}{a_1}\right|_{a_2=0}$ Output Z₀ terminate.

That means the source do inject a forward travelling wave (a1) into port1. No forward travelling power (a2) injected into port2. The same can be done at port2 with the

output reflection factor: $S_{22} = \frac{b_2}{a_2}\Big|_{a_1=0}$ Input Z₀ terminate.

Gain is defined by: $gain = \frac{output \ wave}{input \ wave}$

The forward travelling wave gain is calculated by the wave (b2) travelling out off port2 divided by the wave (a1) injected into port1. $S_{21} = \frac{b_2}{a_1}\Big|_{a_2=0}$ The backward travelling wave gain is calculated by the wave (b1) travelling out off port1 divided by the wave (a2) injected into port2. $\left|S_{12} = \frac{b_1}{a_2}\right|_{a_1=0}$

PHILIPS

2nd edition **RF Manual** product & design manual for RF small signal discretes Page: 33

The normalised waves (a) and (b) are defined as ;

 $a_{1} = \frac{1}{2 \cdot \sqrt{Z_{o}}} \cdot (V_{1} + Z_{o} \cdot i_{1}) = \text{signal into port 1}$ $a_{2} = \frac{1}{2 \cdot \sqrt{Z_{o}}} \cdot (V_{2} + Z_{o} \cdot i_{2}) = \text{signal into port 2}$ $b_{1} = \frac{1}{2 \cdot \sqrt{Z_{o}}} \cdot (V_{1} + Z_{o} \cdot i_{1}) = \text{signal out port 1}$ $b_{2} = \frac{1}{2 \cdot \sqrt{Z_{o}}} \cdot (V_{1} + Z_{o} \cdot i_{2}) = \text{signal out port 2}$

The normalised waves have the unit \sqrt{Watt} and are referenced to the system impedance Z_O

This can be shown by the following mathematical analysis:

The relation ship between U, P an Z₀ can be written as: $\frac{u}{\sqrt{Z_o}} = \sqrt{P} = i \cdot \sqrt{Z_o}$ $a_1 = \frac{\sqrt{V_1}}{2\sqrt{Z_o}} + \frac{Z_o \cdot i_1}{2\sqrt{Z_o}} = \frac{\sqrt{P_1}}{2} + \frac{Z_o \cdot i_1}{2\sqrt{Z_o}}$ (Substitution: $\frac{Z_0}{\sqrt{Z_o}} = Z_o$) $a_1 = \frac{\sqrt{P_1}}{2} + \frac{\sqrt{Z_o} \cdot i_1}{2} = \frac{\sqrt{P_1}}{2} + \frac{\sqrt{P_1}}{2} \quad a_1 = \sqrt{P_1} \quad (\text{Unit } = \sqrt{W})$

Because $a_1 = \frac{V_{forward}}{\sqrt{Z_o}}$ the normalised waves can be determined by the measure of the voltage

of the forward running wave referenced to the system impedance Z_o. The forward or backward running voltage can be determined by directional couplers or VSWR bridges.

4.2.2.1 2-Port Network definition

Input return loss
S = Power reflected from input port
$\int_{11}^{11} \sqrt{10}$ Power available from generator at input port
Output return loss
S _ Power reflected from output port
$S_{22} = \sqrt{Power}$ available from generator at output port
Forward transmission loss (insertion loss)
$S_{21} = \sqrt{\text{Transducer power gain}}$
Reverse transmission loss (isolation)
$S = \sqrt{P}$ average transducer power gain
$S_{12} = \sqrt{KeVerse transducer power gain}$

Philips' data sheet parameter Insertion power gain $|S_{21}|^2$: $10dB \cdot \log |S_{21}|^2 = 20dB \cdot \log |S_{21}|$

Example:Calculate for $\underline{BGA2003}$ the insertion power gain @ 100MHz, 450MHz,
1800MHz, 2400MHz for the bias set-up $V_{VS-OUT}=2.5V$, $I_{VS-OUT}=10mA$.Calculation:Download the S-Parameter data file [2_510A3.S2P] from Philips' internet
page for the Silicon MMIC amplifier BGA2003.

	This is a selection	on of the file:		
	# MHz S MA R 50)		
	! Freq S11	S21	S12	S22 :
	100 0.58765 -9.	.43 <u>21.85015</u> 1	63.96 0.00555 8	33.961 0.9525 -7.204
	400 0.43912 -28	8.73 <u>16.09626 1</u>	<u>30.48</u> 0.019843	79.704 0.80026 -22.43
	500 0.39966 -32	2.38 <u>14.27094 1</u>	23.44 0.023928	79.598 0.75616 -25.24
	1800 0.21647 -47	7.97 <u>4.96451</u> 8	85.877 0.07832 8	32.488 0.52249 -46.31
	2400 0.18255 -69	9.08 <u>3.89514</u> 7	6.801 0.11188 8	80.224 0.48091 -64
Results:	100MHz	20log(21.850	15)=26.8dB	
	450MU-	20 dPlog	$626e^{130.48^\circ} + 14.2$	$27094e^{123.44^{\circ}} _{-22.6}dP$
	45010112	20 <i>ab</i> log	2	= 23.0 <i>a</i> D
	1800MHz	20log(4.9645	1)=13.9dB	
	2400MHz	20log(3.89514	4)=11.8dB	

4.2.2.2 3-Port Network definition

Typical vehicles for 3-Port S-Parameters are: Directional couplers, power splitters, combiners, phase splitter, ...

Figure 11: Three-port Network's (a) and (b) waves

3-Port S-Parameter definition:

Port reflection coefficient / return loss: $S_{11} = \frac{b_1}{a_1} \big|_{(a_2 = 0; a_3 = 0)}$ Port 1 $S_{22} = \frac{b_2}{a_2} \big|_{(a_1 = 0; a_3 = 0)}$ Port 2 $S_{33} = \frac{b_3}{a_2}|_{(a_1=0;a_2=0)}$ Port 3 Transmission gain: $S_{21} = \frac{b_2}{a_1}|_{(a_3 = 0)}$ Port 1=>2 $S_{31} = \frac{b_3}{a_1}|_{(a_2=0)}$ Port 1=>3 $S_{32} = \frac{b_3}{a_2}|_{(a_1=0)}$ Port 2 => 3 $S_{12} = \frac{b_1}{a_2}|_{(a_3=0)}$ Port 2=>1 $S_{31} = \frac{b_1}{a_3}|_{(a_2 = 0)}$ Port 3=>1 $S_{23} = \frac{b_3}{a_2}|_{(a_1=0)}$ Port 3=>2

RF Manual

2nd edition

product & design manual for RF small signal discretes Page: 36

References

Author: Andreas Fix RF Discretes Small Signal Application Engineer

- 1. Philips Semiconductors, RF Wideband Transistors and MMICs, Data Handbook SC14 2000, S-Parameter Definitions, page 39
- 2. Philips Semiconductors, Datasheet, 1998 Mar 11, Product Specification, BFG425W, NPN 25GHz wideband transistor
- 3. Philips Semiconductors, Datasheet, 1999 Jul 23, Product Specification, BGA2003, Silicon MMIC amplifier
- 4. Philips Semiconductors, Datasheet, 2000 Dec 04, Product Specification, BGA2022, MMIC mixer
- 5. Philips Semiconductors, Datasheet, 2001 Oct 19, Product Specification, BGA2711, MMIC wideband amplifier
- 6. Philips Semiconductirs, DiscreteSemiconductors, FACT SHEET NIJ004, Double Polysilicon the technology behind silicon MMICs, RF transistors & PA modules
- 7. Philips Semiconductors, Hamburg, Germany, T. Bluhm, Application Note, Breakthrough In Small Signal - Low VCEsat (BISS) Transistors and their Applications, AN10116-02, 2002
- 8. H.R. Camenzind, Circuit Design for Integrated Electronics, page34, 1968, Addison-Wesley,
- 9. Prof. Dr.-Ing. K. Schmitt, Telekom Fachhochschule Dieburg, Hochfrequenztechnik
- 10. C. Bowick, RF Circuit Design, page 10-15, 1982, Newnes
- 11. Nührmann, Transistor-Praxis, page 25-30, 1986, Franzis-Verlag
- 12. U. Tietze, Ch. Schenk, Halbleiter-Schaltungstechnik, page 29, 1993, Springer-Verlag
- 13. W. Hofacker, TBB1, Transistor-Berechnungs- und Bauanleitungs-Handbuch, Band1, page 281-284, 1981, ING. W. HOFACKER
- 14. MicroSim Corporation, MicroSim Schematics Evaluation Version 8.0, PSpice, July 1998
- 15. Karl H. Hille, DL1VU, Der Dipol in Theorie und Praxis, Funkamateur-Bibliothek, 1995
- PUFF, Computer Aided Design for Microwave Integrated Circuits, California Institute of Technology, 1991
PHILIPS 2nd edition RFNanual product & design manual for RF small signal discretes Page: 37

5. Application Diagrams

TV/VCR/DVD Tuning Application Diagram

PHILIPS 2nd edition RFNanual product & design manual for RF small signal discretes Page: 38

5. Application Diagrams

Generic Cell-phone Front-end Application Diagram

2nd edition

Semiconductors

product & design manual for RF small signal discretes Page: 39

6.1 Application notes list (Interactive)

Full application notes in this RF Manual in **bold**. **Online application notes** on Philips Semiconductors website: http://www.semiconductors.philips.com/products/all appnotes.html

Product Family	Application Note Title	Relevant Types
MMICs	Demoboard for 900&1800MHz http://www.semiconductors.philips.com/acrobat/applicationnotes/9001800MHZ.pdf	BGA2001
	Demoboard for BGA2001 http://www.semiconductors.philips.com/acrobat/applicationnotes/9001800MHZ.pdf	BGA2001
	Demoboard 900MHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/LNA900MHZ.pdf	BGA2003
	Demoboard for W-CDMA http://www.semiconductors.philips.com/acrobat/applicationnotes/WBCDMA.pdf	BGA2003
	2GHz high IP3 LNA	BGA2003
	High IP3 MMIC LNA at 900MHz http://www.semiconductors.philips.com/acrobat/applicationnotes/BGA2011_LNA_950MHZ.pdf	BGA2011
	High IP3 MMIC LNA at 1.8 - 2.4 GHz http://www.semiconductors.philips.com/acrobat/applicationnotes/BGA2012_LNA_18_24GHZ.pdf	BGA2012
	Rx mixer for 1800MHz	BGA2022
	Rx mixer for 2450MHz http://www.semiconductors.philips.com/acrobat/applicationnotes/BGA2022_MIXER.pdf	BGA2022
	High-linearity wideband driver mobile communication	BGA2031
	CDMA PCS demoboard	BGA2030
	WDMA appl. For the BGA6589 wideband amplifier	BGA6589
Wideband transistors	1880MHz PA driver http://www.semiconductors.philips.com/acrobat/applicationnotes/BFG21W_1880DRV.pdf	BFG21W
	800MHz PA driver http://www.semiconductors.philips.com/acrobat/applicationnotes/BFG21W_800DRV2.pdf	BFG21W
	900MHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/LNA9M403.pdf	BFG403W
	2GHz buffer amplifier http://www.semiconductors.philips.com/acrobat/applicationnotes/AI_BFG410W_BUF2_1.pdf	BFG410W
	900MHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/B770LNA9M410.pdf	BFG410W
	2GHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/RD7B0789.pdf	BFG410W
	Ultra LNA's for 900&2000MHz with high IP3 http://www.semiconductors.philips.com/acrobat/applicationnotes/KV96157A.pdf	BFG410W, BFG425W
	1.5GHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/1U5GHZLN.pdf	BFG425W
	2GHz driver-amplifier	BFG425W
	900MHz driver-amplifier with enable-switch http://www.semiconductors.philips.com/acrobat/applicationnotes/900MHAP2.pdf	BFG425W

2nd edition RF Manual product & design manual for RF small signal discretes Page: 40

Product Family	Application Note Title	Relevant Types
	900MHz driver amplifier	BFG425W
	http://www.semiconductors.philips.com/acrobat/applicationnotes/900MHZDR.pdf	
	http://www.semiconductors.philips.com/acrobat/applicationnotes/AI_BFG425W_1.pdf	DF 0423W
	Improved IP3 behavior of the 900MHz LNA	BFG425W
	2GHz LNA	BFG425W
	Power amplifier for 1.9GHz DECT and PHS http://www.semiconductors.philips.com/acrobat/applicationnotes/DECT.pdf	BFG425W, BFG21W
	2.4GHz power amplifier http://www.semiconductors.philips.com/acrobat/applicationnotes/AI_BFG425W_21W_2400M_1.pdf	BFG425W, BFG21W
	CDMA cellular VCO http://www.semiconductors.philips.com/acrobat/applicationnotes/VCOB827.pdf	BFG425W, BFG410W, BB142
	900MHz I NA	BEG480W
	2.45GHz power amplifier	BFG480W
	2.4GHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/AI_BFG480W_2400M_1.pdf	BFG480W
	2GHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/AI_BFG480W_2G_1.pdf	BFG480W
	900MHz LNA http://www.semiconductors.philips.com/acrobat/applicationnotes/AI_BFG480W_900M_1.pdf	BFG480W
	1880MHz PA driver http://www.semiconductors.philips.com/acrobat/applicationnotes/BFG480W_1880DRV.pdf	BFG480W
	900MHz driver http://www.semiconductors.philips.com/acrobat/applicationnotes/BFG480W_900MDRV.pdf	BFG480W
	Low noise, low current preamplifier for 1.9GHz at 3V http://www.semiconductors.philips.com/acrobat/applicationnotes/1P9GHZLC.pdf	BFG505
	1890MHz power own converter with 11MHz IF http://www.semiconductors.philips.com/acrobat/applicationnotes/1890MHZ.pdf	BFG505/X
	Low noise 900MHz preamplifier at 3V http://www.semiconductors.philips.com/acrobat/applicationnotes/900MHZ.pdf	BFG520, BFR505, BFR520
	Power amplifier for 1.9GHz at 3V http://www.semiconductors.philips.com/acrobat/applicationnotes/1P9GHZ3.pdf	BFG540/X, BFG10/X, BFG11/X
	400MHz :LNA	BFG540W/X
Varicaps	Low voltage FM stereo radio with TEA5767/68	BB202
FETs	Application for RF switch BF1107	BF1107
	Application note for MOSFET	BF9, BF110, BF120
	Application for RF switch BF1108	BF1108
Pin diodes	2.45 GHz T/R, RF switch for e.g. Bluetooth application	BAP51-02
	Low impedance Pin diode http://www.semiconductors.philips.com/acrobat/applicationnotes/AN10174-01.pdf	BAP50-05
	1.8GHz transmit-receive Pin diode switch	BAP51-03

RF Manual

product & design manual for RF small signal discretes Page: 41

6.2 Application note BB202, low voltage FM stereo radio (TEA5767/68)

Author(s): M Ait Moulay, Philips Semiconductors Strategic Partnership Catena The Netherlands, Date: 18-06-2002

This is a shortened application note to emphasise the BB202 varicap as an important FM oscillator next to the TEA5767/68 single chip stereo FM receiver (complete application note: AN10133).

Summary

The TEA5767/68 is a single chip stereo FM receiver. This new generation low voltage FM radio has a fully integrated IF-selectivity and demodulation. The IC does not require any alignment, which makes the use of bulky and expensive external components unnecessary.

The digital tuning is based on the conventional PLL concept. Via software, the radio can be tuned into the European, Japan or US FM band.

The power consumption of the tuner is low. The current is about 13mA and the supply voltage can be varied between 2.5 and 5V.

The radio can find its application in many areas especially portable applications as mobile phones, CD and MP3 players.

This application note describes this FM radio in a small size and low voltage application. To demonstrate the operation of the tuners a demoboard is developed, which can be extended with a software controllable amplifier and a RDS chip. The whole application can be controlled from a PC by means of demo software.

Introduction

The consumer demand of more integrated and low power consumption IC's has increased tremendously in the last decade. The IC's must be smaller, cheaper and consume less power. Especially for portable equipment like mobile phone, CD, MP3 and cassette players, these requirements are very important. In order to integrate a radio function in this kind of equipment it's also important that the total application is small sized and the overall power is low. The **TEA5767/68** is a single chip digitally tuned FM stereo radio. Its application is small, has a very low current consumption and is completely adjustment free. This makes the PCB design easy and save design-in time. The tuner contains all the blocks necessary to build a complete digitally tuned radio function.

The FM tuners consist of three IC's in 32 pins or 40 pins package. The IC's can be controlled via a 3-Wire, I2C or both bus interfaces.

A small application PCB demo board has been designed on which either of the three IC's can be mounted. These demo boards can be placed on a motherboard, which can be extended with an audio amplifier and a **R**adio **D**ata **S**ystem (**RDS/RBDS**) IC.

RF Manual

Semiconductors

The three tuners are:

- TEA5767HN FM stereo radio, 40 leads with I²C and 3-Wire bus interface, Body 6*6*0.85 mm, SOT1618
- TEA5767HL FM stereo radio, 32 leads with 3-Wire bus interface, Body: 7*7*1.4 mm, SOT358.
- TEA5768HL FM stereo radio, 32 leads with I²C bus interface, Body: 7*7*1.4 mm, SOT358.

In this application note only one IC, the TEA5767HN and one demo board will be described. However, this description can also be applied for the other boards.

1. The TEA5767

A block diagram of the TEA5767HN is given in Figure 1. The block diagram consists of a number of blocks that will be described according to the signal path from the antenna to the audio output.

The RF antenna signal is injected into a balanced low noise amplifier (LNA) via a RF matching circuit. In order not to overload the LNA and the mixer the LNA output signal is fed to an automatic gain control circuit (AGC). In a quadrature mixer the RF signal is converted down to an IF signal of 225KHz by multiplying it with a local oscillator signal (LO). The chosen mixer architecture provides inherent image rejection.

The VCO generates a signal with double the frequency necessary for the I/Q mixer structure. In the N1 divider block, the required LO signal is created. The frequency of the VCO is controlled with a PLL synthesiser system.

The I/Q signals out the mixer are fed to an integrated IF filter (RESAMP block). The IF frequency of this filter is controlled by the IF Centre Frequency adjust block.

The IF signal is then passed to the limiter block, which removes the amplitude variation from the signal. The limiter is connected to the level ADC and the IF counter blocks. These two blocks provide the proper information about the amplitude and frequency of the RF input signal, which will be used by the PLL as stop criterion.

The IC has a quadrature demodulator with an integrated resonator. The demodulator is fully integrated which makes IF alignments or an external resonator unnecessary.

Figure 1 Block application diagram of the TEA5767HN

2nd edition

product & design manual for RF small signal discretes Page: 43

The **stereo decoder** (**MPX decoder**) in its turn is adjustment free and can be put in mono mode from the bus interface. The stereo noise cancelling (SNC) function gradually turns the stereo decoder from 'full stereo' to mono under weak signal conditions. This function is very useful for portable equipment since it improves the audio perception quality under weak signal conditions.

The softmute function suppresses the interstation noise and prevents excessive noise from being heard when the signal level drops to a low level.

The tuning system is based on a conventional PLL technique. This is a simple method in which the phase and the frequency of the VCO are continuously corrected, with respect to a reference frequency, until frequency acquisition takes place. Communication between the tuning system and an external controller is possible via a 3-Wire or I²C bus interface.

2 FM STEREO application

RF Manual

The application is identical for the three IC's as mentioned in chapter 1. This application comprises two major circuits: RF input circuit and a FM oscillator circuit.

The communication with a μ -computer can be performed via an I²C or a 3-Wire serial interface bus, selectable with BUSMODE pin, for the TEA5767HN. TEA5768HL operates in I²C bus mode and TEA5757HL in 3-Wire bus mode. The receivers can work with 32.768KHz or 13MHz clock crystal, which can be programmed by the bus interface. The PLL can also be clocked with 6.5MHz clock signal. Three audio outputs are available: audio left, audio right and MPX (multiplex). A basic application diagram of the FM receiver is shown in Figure 2.

Figure 2 Basic application diagram of TEA5767/68 stereo radio

3 TEA5767HN package

The TEA5767HN FM stereo radio is a 40 pins HVQFN (SOT1618) package IC which can be operate with I²C or 3-Wire bus interface. The fully integrated IF selectivity and demodulation make it possible to design a very small application board with a minimum of very small and low cost components. The outline of the TEA5767HN package is 6*6*0.85 mm.

Figure 3 Pinning of the TEA5767HN (HVQFN40)

E' 0 1 1	· · · · · · · · · · · · · · · · · · ·		TT 1 1 1 1	1	1 . 0.1 10
Liquing 4 chows the	ninning of the	I H A S / 6 / H N and		decomption of a	ich nin at tha lí
1.15010 3 20082 010	0111111112 01 1110	112A2/0711 and	1 a D C I 2 V C S a	$u \in S \cup (U) \cup (U) \cup U \cup U$	
i gaie s sile us the			14010 1 51,00 4	accerption of et	••••• p ···· • • • • • • • • • • • • • •

SYMBOL	PIN	DESCRIPTION	Voltage min.	SYMBOL	PIN	DESCRIPTION	Voltage min.
NC1	1	Not connected		NC4	21	Not connected	
CPOUT	2	Charge pump output of the synthesiser PLL	1.64V	VAFL	22	Audio left output	
VCOTANK1	3	VCO tuned circuit output 1	2.5V	VAFR	23	Audio right output	
VCOTANK2	4	VCO tuned circuit output 2	2.5V	TMUTE	24	Time constant for the softmute	1.5V
VCCVCO	5	VCO supply voltage	2.5V	MPXOUT	25	FM demodulator MPX out	
DGND	6	Digital ground	0V	VREF	26	Reference voltage	1.45V
VDIG	7	Digital supply voltage	2.5V	TIFCENTER	27	Time constant for IF centre adjust	1.34V
DATA	8	Bus data line input/output		LIMDEC1	28	Decoupling IF limiter 1	1.86V
CLOCK	9	Bus clock line input		LIMDEC2	29	Decoupling IF limiter 2	1.86V
NC2	10	Not connected		NC5	30	Not connected	
WRITE/READ	11	Write/read control for the 3-Wire bus		NC6	31	Not connected	
BUSMODE	12	Bus mode select input		IGAIN	32	Gain control current for IF filter	0.48V
BUSENABLE	13	Bus enable input		AGND	33	Analog ground	0V
SWPORT1	14	Software programmable port 1		VCC	34	Analog supply voltage	2.5V
SWPORT2	15	Software programmable port 2		RFIN1	35	RF input 1	0.93V
XTAL1	16	Crystal oscillator input 1	1.64V	RFGND	36	RF ground	0V
XTAL2	17	Crystal oscillator input 2	1.64V	RFIN2	37	RF input 2	0.93V
PHASEDET	18	Phase detector loop filter	1.0V	CAGC	38	Time constant RF AGC	
PILDET	19	Pilot detector lowpass filter	0.7V	LOOPSW	39	Switch output of synthesiser PLL filter	
NC3	20	Not connected		NC7	40	Not connected	

 Table 1 pinning description of the TEA5767HN

4 VCO tank circuit

The VCO circuit produces a signal at double frequency necessary for the tuning system. A divider will half the frequency of this signal and then deliver it to the PLL.

In the proposed application the used tuning diodes D1 and D2 are BB202. This ultra small diode is fabricated in planar technology. It has a low series resistance (0.35Ω typical), which is very important for the signal to noise ratio (SNR). In Figure 4, the capacitance value of this diode is given as function of the reverse voltage.

In our application proposal these diodes can tune the complete FM band (71-108MHz) with less then 3V-supply voltage. The minimum voltage at pin 34 (V_{CC}) should be 2.5V and the maximum voltage 5V. Inside the IC a chargepump is responsible for delivering the required current to charge/discharge the external loop capacitor. During the first 9 ms the charge pump delivers a fast current of 50uA. After that this current is reduced to 1uA.

In the given application the typical tuning voltage is between 0.54V (2*108MHz) and 1.57V (2*87.5MHz).

The minimum voltage to frequency ratio, often referred to VCO conversion factor (K_{vco}), is thus about 40MHz/V. The oscillator circuit is designed such that the tuning voltage is between **0.2V and V_{cc}-0.2V**. In order to match the VCO tuning range two serial coils L2 and L3 are put in parallel with the tuning diodes D1 and D2. A typical FM oscillator-tuning curve, using BB202 tuning diodes, is given in

Figure 4 Diode capacitance as function of reverse voltage; typical values

The inductance value of the oscillator coils L2 and L3 is about 33nH (Q=40 to 45). The inductance is very critical for the VCO frequency range and should have a low spread (2%). The quality factor Q of this coil is important for a large S/N ratio figure. The higher the quality factor the lower the noise floor VCO contribution at the output of the demodulator will be. With a quality factor between 40-45 a good compromise can be found between the size of the coil and the, by the oscillator determined, noise floor.

Figure 5 typical oscillator tuning curve of proposed FM application

This is a shortened application note to emphasise the BB202 varicap as an important FM oscillator next to the TEA5767/68 single chip stereo FM receiver (complete application note: AN10133).

RF Manual

2nd edition

product & design manual for RF small signal discretes Page: 47

6.3 Application note RF switch for e.g. Bluetooth appl. (2.45 GHz T/R)

1 Introduction.

One of the most important building blocks for today's wireless communication equipment is a high performance RF switch. The switch main function is to switch an RF port (ANT) between the transmitter (**TX**) and the receiver (**RX**). The most important design requirements are, Low insertion Loss (**IL**), Low intermodulation distortion,(**IMD**), High isolation between TX and RX, Fast switching and Low current consumption especially for portable communication equipment. This application note addresses a transmit and receive switch for 2.4-2.5 GHz the unlicensed ISM band, in which e.g. the bluetooth standard operates. The design demonstrates a high performance T-R switch utilising low cost Philips BAP51-02 PIN Diodes as switching elements.

2 PIN diode switch design.

There are a number of PIN diode based, single pole double throw (SPDT) topologies, which are shown in the figures 1,2 and 3. Al these topologies are being used widely in RF and microwave design. They all will give good performance, due to their symmetry they will show the same performance in both the RX and TX mode. The disadvantage of these topologies is the need of a pair of digital control signals, and in both TX and RX mode bias current is needed.

Figure 6. SPDT switch with series diodes

Figure 7. SPDT switch with $\lambda/4$ sections to permit shunt diodes

The topology we used for the design in this application note is shown in fig 4. Typically this is a combination of figure 1 and 2. The design consists of a series-connected PIN diode, placed between the transmitter-amplifier and antenna, and a shunt-connected PIN diode at the receiver-port, which is a quarter wavelength away from the antenna. In the transmit-mode both diodes are biased with a forward bias current. Both diodes are in the low impedance state. Which means a low-loss TX-ANT path and a protected RX port from the TX power.

PHILIPS 2nd edition RFNanual product & design manual for RF small signal discretes Page: 48

The $\lambda/4$ transmission line transforms the low impedance at the RX port to a high impedance at the antenna. In the receive mode both diodes are zero biased (high impedance state), which results in a low loss path between antenna and receiver and high isolation ANT-TX path. One of the advantages of this approach is no current consumption is needed in the receive mode.

Figure 8. SPDT switch with series shunt diodes which results in high isolation

Figure 9. SPDT switch with a combination of a series and a shunt connected PIN diode.

The PIN diodes used in an switch like this should have low capacitance at zero bias(V_R=0V), and low series resistance at low forward current. The BAP51-02 typical shows 0.4pF@0V;freq=1MHz and 2 Ω @3mA;freq=100MHz. For the shunt diode also low series inductance is required, for the BAP51-02 this is 0.6 nH.

3 Circuit design.

Circuit and Layout has been designed with the use of Agilent's Advance Design System (ADS). The target performance of the switch is shown in table 1.

Mode	RX (0V)	TX(3mA)
Insertion Loss	< 0.65 dB	< 0.8 dB
Isolation TX/RX	>18 dB	>14.5 dB
Isolation RX/Ant	>16.5	-
Isolation TX/Ant	-	>14.5dB
VSWR RX	<1.2	-
VSWR TX		<1.3
VSWR Ant	<1.2	<1.3
Power handling	+20dBm	+20dBm
Current consumption		3mA @ 3.7V

Table 1

The ADS circuit of the switch is given in figure 5. Notice that D1 is the series connected PIN diode in the receive path en D2 is connected in shunt in the receive RF path. DC bias current is provided through inductance L1, and limited to about 3mA by resistor R1=680 Ω . Notice also that the $\lambda/4$ microstripline (width 1.136mm, length =16.57mm) is divided into several sections in order to save some board space. All the footprints for the SMD components have been modelled as a gap and a piece of stripline in order to approach the actual practice of the design on PCB.

Figure 10 ADS circuit file

The discontinuity effects of the microstrip to coaxial interface have not been taken into account.

4 BAP51-02 model.

The silicon PIN diode of the Philips semiconductors BAP51-02 is designed to operate as a low loss high isolation switching element, and is capable of operating with low intermodulation distortion.

The model for the BAP51-02 PIN diode for an ADS environment is shown in figure 6. The model consists of two diodes, in order to achieve a fit on both DC and RF behaviour. Diode1 is used to model the DC voltage-current characteristics, Diode 2 is the PIN diode build in model of ADS and is used to model the RF resistance versus DC current behaviour of the PIN diode-model. Both diodes are connected in series to ensure the same current flow. For RF the PN junction Diode1 is shorted by an ideal capacitor(DC block), while the portion of the RF resistance, which reflects the residual amount of series resistance is modelled with R1=1.128 Ω . To avoid affecting the DC performance this resistor is shunted with the ideal

Figure 11; BAP51-02 Small Signal Model for an ADS environment

<u>5 Circuit and Layout Description</u>

The circuit diagram for the switch is shown in figure 7 and the PC board layout is shown in figure 8.

The bill of materials for the switch is given in table2.

For the PC board 0.635mm thick FR4 material ($\varepsilon_r = 4.6$)metalized on two sides with 35 µm thick copper, 3 µm gold plated was used. On the test board SMA connectors were used to fed the RF signals to the design.

Figure 12; circuit diagram

Figure 13; PC board Layout.

2nd edition **RF Manual** product & design manual for RF small signal discretes Page: 51

Component	Value	Footprint	Manufacturer
C1	2.2 pF	0402	Philips
$C2^*$	1 nF	0402	Philips
C3	6.8 pF	0402	Philips
C4	6.8 pF	0402	Philips
C5	4.7 pF	0402	Philips
C6	2.2 pF	0402	Philips
R1	680 Ω	0402	Philips
D1	BAP51-02	SC79	Philips
D2	BAP51-02	SC79	Philips
L1	22 nH	1005	Taiyo yuden
TL1	λ/4;50 Ω		on the PCB

Table 2 Bill of materials *C2 is optional.

6 Measurement results.

In table 3 the measured performance of the switch is summarised. In figure 9, both the simulation and Measurement results in TX mode (3.7V/3mA) is shown, for the RX mode this can be seen in fig.10.

	Ν	/lode
parameter	RX (0V)	TX(3mA)
Insertion Loss @ 2.45GHz	< 0.57 dB	< 1.0 dB
Isolation TX/RX @ 2.45GHz	>20.4 dB	>23.6 dB
Isolation Ant/RX @ 2.45 GHz	-	>23.5 dB
Isolation TX/Ant @2.45 GHz	>19.76 dB	-
VSWR RX @2.45 GHz	1.24	-
VSWR TX @2.45 GHz	-	1.35
VSWR Ant @2.45 GHz	1.19	1.29
IM3 Pin 0 dBm f1=2.449 GHz f2=2.451 GHz	+39 dBm	+40 dBm
IP3 Pin 0 dBm f1=2.449 GHz f2=2.451 GHz	+43.8 dBm	+44.8 dBm
IM3 Pin +20 dBm f1=2.449 GHz f2=2.451 GHz	+38.5 dBm	+39.5 dBm
IP3 Pin +20 dBm f1=2.449 GHz f2=2.451 GHz	+43.3 dBm	+44.3 dBm
Power handling	+20 dBm	+20 dBm
Current consumption		3mA @ 3.7V

Table 3 measured switch performance.

Intermodulation distortion measurements were performed as follows. In both RX and TX state, first the measurements were done with two input-signals, each at 0 dBm and second each signal at +20 dBm. In transmit state these signals were applied to the TX port, distortion was measured at the antenna port, while the RX port was terminated with 50 Ω . In receive state the two signals were applied to the ANT port, distortion was measured at the RX port, with the TX port terminated.

According to reference 2, the third order harmonic distortion product is 9.54 dB less than the third order Intermodulation product, the third order harmonic intercept point IP3 is 9.54/2 higher than the third order Intermodulation intercept point IM3.

RF Manual

2nd edition

product & design manual for RF small signal discretes Page: 52

Semiconductors

simulation and measurement results in transmit mode ls=3mA

Figure 14; Results in TX mode; red curves are measurements, blue curves are the simulated ones.

Remark: Loss and Isolation results are all including approximately 0.2 dB loss of the SMA connectors which were used to fed the RF signals through the design. this has a great effect on the Insertion-Loss results.

RF Manual

2nd edition

Semiconductors

product & design manual for RF small signal discretes Page: 53

simulation and measurement results in receive mode Vs=0V

Figure 15; Results in RX mode; red curves are measurements, blue curves are the simulated ones

Remark: Loss and Isolation results are all including approximately 0.2 dB loss of the SMA connectors which were used to fed the RF signals through the design. this has a great effect on the Insertion-Loss results.

Recommendations.

- 1 In this design the BAP51-02 was used because it's designed for switching applications related to Insertion Loss and Isolation. When for instance a better IM distortion is recommended it's better to use the BAP64-02 of Philips Semiconductors.
- 2 As you can see the $\lambda/4$ section still needs a lot of boards space. This section could be replaced by a lumped element configuration, which results in an extra boardspace reduction.

References:1; Gerald Hiller, "Design with PIN diodes", App note APN1002 Alpha industries inc.

- 2; Gerald Hiller, "Predict intercept points in PIN diode switches", Microwaves & RF, Dec. 1985.
- 3; Robert Caverly and Gerald Hiller, "Distortion in PIN diode control circuits" IEEE Trans.Microwave

RF Manual

product & design manual for RF small signal discretes Page: 54

6.4 Application note Low impedance Pin diode

A Low Impedance PIN Diode Driver Circuit with Temperature Compensation

Two Philips BAP50-05 PIN diodes are used in an RF attenuator with a low impedance driver circuit to significantly decrease the rise and fall times. A standard attenuator with an unspecified driver is shown in Figure 1. Each of the two PIN diodes operates as an RF resistor whose value is controlled by the DC current^{*}. The signals reflect off of the diodes and through the 3 dB hybrid in a way to add in phase. The amount of signal that is reflected off the diodes depends on the resistance value. In this circuit, the diodes are operated from several hundred ohms down to a value approaching 50 ohms, where there is no reflection and thus maximum attenuation.

Figure 1. Commonly Used Attenuator. Diodes are BAP50-05.

C1 is required for RF bypass, and typically might be 10-100 pF when working in the GHz range. An application for this attenuator circuit is a fast gain controllers in predistorted and/or feedforward amplifiers, where the circuit is required to change attenuation in tens of nS, where C1, C2, and C3 can limit the speed. Insertion loss is generally not important in this application, and the dynamic range required may be only 8 to 10 dB. When this is true, it is possible to achieve a large improvement in speed. In driving a PIN diode attenuator, conflicting requirements arise from speed, linearity, and temperature compensation. For the best speed, a low impedance source (<50 ohms) is required; for linearity and temperature compensation, a current source is by far the best, especially if it is desired to go to maximum resistance (lowest current) in the PIN diodes. Figures 2 and 3 show current, voltage, and attenuation for the circuit of Figure 1 in two different formats (linear and log x axis), with a current source for the driver.

Semiconductors

At medium attenuation, the PIN diode[†] resistance is in the region of several hundred ohms, and current is in the region of 10-100 uA. The *control* impedance[‡] (impedance of the

diodes) is $Z = \frac{KT}{qI}$. If driven by a current source, such as a current output DAC, the source impedance is high and the

^{*} Although the BAP50-05 contains two diodes, only one per package is used for mechanical layout reasons.

[†] Actually two diodes in parallel, but for analysis we will consider one.

[‡] Not to be confused with RF impedance.

PHILIPS 2nd edition 2nd edition Semiconductors RFNanual product & design manual for RF small signal discretes Page: 55

total impedance is determined by the diodes. The risetime will be limited by the inevitable capacitance's (illustrated by C5).

If the diodes are driven from a voltage source (not shown), the speed is very fast, but the attenuation is highly non-linear and is highly temperature dependent.

Shunting the PIN Diodes

Figure 4 shows a circuit which maintains a low impedance in the PIN circuit, to keep the rise and fall times short, but linearizes the circuit to some extent and is temperature compensated. Only one diode is shown for simplicity.

Operation is as follows: Q1 operates as a diode and absorbs most of the current from the current source. It is shown below that for two diodes in parallel (whether formed by Pins or transistors), the ratio of the two currents is fixed for all currents (over many decades), and is controlled by the voltage offsets applied to them (with respect to each other). This principle is used in *translinear* analog multipliers, of which the Gilbert cell multiplier is a type.

In this circuit, the offset is adjusted with V2, which is only some tens of millivolts. Operating the device like this is similar to circuits where the base and collector are tied together to form a diode. The collector to emitter voltage is *less* than the base to emitter voltage, in magnitude. V_{CE} is roughly 0.65 V. This is acceptable, without resorting to a negative supply for the collector, because there is still several hundred mV of margin from the standpoint of device saturation.

Q1 is thermally tied to the PIN diodes by virtue of their proximity, providing a first order temperature compensation. Q1 thus is operating as a log circuit converting current to voltage in a way that linearizes the attenuation.

Figure 4. Transistor Shunt. v_2 is < 200 mV.

The complete circuit is shown in Figure 5. The hybrid is a surface mount Anaren Xinger 1D1304-3. Figures 6 and 7 show the current, voltage, and attenuation characteristics. Note that the input current is much higher than with the original circuit (Figures 2 and 3). This reduces efficiency but it is desirable from a standpoint of keeping the total impedance low.

Figure 5 . Circuit with Two Diodes and Hybrid. D5 and D6 are Philips BAS50-04. Q1 is PMBT3906.

Capacitors C6 and C8 are essentially in parallel with C5 from a standpoint of the drive circuitry.

Semiconductors

Vianual product & design manual for RF small signal discretes Page: 56

2nd edition

Figure 6. Circuit of Figure 5 (measured).

Figure 7. Same as Figure 6 with Log Scale.

Relationship of the Diode and Transistor Currents

Refer to Figure 4. From basic diode equations, the currents in the PIN diode and Q1 are:

$$I_{1} = I_{S1} \left(e^{\frac{qV1}{KT}} - 1 \right)$$
(1)
$$I_{2} = \beta I_{S2} \left(e^{\frac{q(V1-V2)}{KT}} - 1 \right)$$
(2)

where

q is the electron charge, 1.602E-19,

K = Bolzmann's constant, 1.381E-23

T = temperature in degrees K

 I_{SI} = Saturation current for the PIN diode

 I_{S2} = Saturation current for the base junction of the transistor V_1 - V_2 = the base to emitter voltage of the transistor ($V_2 < 0$)

 $\frac{q}{KT} \approx 40$ at room temperature

For voltages over a few millivolts, the exponential terms in (1) and (2) dominate the "1", and the equations can be simplified to

$$I_{1} = I_{S1} e^{\frac{qV_{1}}{KT}}$$
(3)
$$I_{2} = \beta I_{S2} e^{\frac{q(V_{1} - V_{2})}{KT}}$$
(4)

Then, the ratio of the currents is:

$$\frac{I_{1}}{I_{2}} = \frac{I_{S1}e^{\frac{qV_{1}}{KT}}}{\beta I_{S2}e^{\frac{q(V_{1}-V_{2})}{KT}}} = \frac{I_{S1}}{\beta I_{S2}e^{\frac{-qV_{2}}{KT}}} = \frac{I_{S1}}{\beta I_{S2}e^{-40V_{2}}}$$
(5)

To the extent that β is constant with temperature[§], we see that the current ratio is dependent only on V_2 , which, stated another way, the current in the PIN diode is a fixed percentage of the total input current. There is first order temperature compensation, by virtue of the parallel tracking of the two diode junctions.

Further, we can set the current ratio to an arbitrary amount by setting the base voltage V_2 . If $\beta = 50$, and $I_{SI} = I_{S2}$ (by way of example only), and we want to set the PIN diode current to 1% of the total current, we have

[§] β is certainly not constant with temperature, but this is a second order effect, not nearly as strong as the direct temperature relationship as with the base emitter voltage (Angelo, "*Electronics: BJTs, FETs and Microcircuits*", McGraw Hill 1969.)

2nd edition **RF Manual** product & design manual for RF small signal discretes Page: 57

$$.01 = \frac{1}{50e^{-40V_2}} \quad \text{so } V_2 = -.0173. \tag{6}$$

By having a relatively large current in Q1, the dynamic impedance that the current source sees, defined by $\frac{dV_1}{dI_T}$ becomes much lower, dominated by

the lower impedance of the Q1.

For a general pn junction this impedance is

 $Z = \frac{KT}{qI}$. Thus, in the circuit of Figure 1, with no

shunt transistor, the PIN diodes operate at perhaps 10 to 100 uA (total for two diodes), and the impedance ranges from 2500 to 250 ohms.

In the circuit of Figures 4 and 5, the PIN diodes operate at the same 10 to 100 uA, but the impedance for the parallel combination of Q1 and the two diodes is 25 to 2.5 ohms^{**}.

Risetimes

In Figure 1, if all the capacitance's C1, C2, and C3 add up to 100 pF, the worst case risetime, which occurs at the lowest current, will be $RC = 2500*100\text{E}{-}12 = 250 \text{ nS}$. In contrast, the circuit of Figure 5, the worst case risetime is $25*100\text{E}{-}12 = 2.5 \text{ nS}$.

Adjustment

 V_2 controls the amount of current that Q1 draws relative to the total current I_t . At low voltages (50 mV), Q1 does not draw much current relative to I_t , and the speed benefit will be minimal. However, the dynamic range is the highest, as shown in Figure 8. If lower dynamic range is acceptable, V_2 can be upwards of 150 mV, where the impedance is lower and the speed benefit will be the largest. Of course, using Different types of devices for Q1 and the diodes may require different values of V_2 .

Conclusion

A current controlled RF attenuator driver circuit has been shown which has the speed advantage of a low impedance (<50 ohm) driver, and the linearity advantage of a high impedance (current) driver. This is done by shunting the PIN diodes with a base-emitter junction of a transistor, which carries the bulk (e.g. 99%) of the driver current, lowering the impedance. The current divides itself between the transistor and the PIN diodes in a constant proportion. The current sharing percentage is settable with the base voltage. Temperature compensation on a first order basis is inherent from the tracking of the devices. The trade-off is a lower efficiency, the circuit now requiring 10 to 20 mA of drive, as opposed to 100 uA for the simpler circuit. The current is in the range of many DACs (current output types) and this circuit lends itself well to that application. For application in an envelope restoration loop such as is found in predistorted amplifiers, the dynamic range of 8 to 10 dB is acceptable.

> May 2002 bja

^{**} Neglecting the series emitter resistance of the transistor which might be 1-2 ohms.

RF Manual

product & design manual for RF small signal discretes Page: 58

6.5 Application note WCDMA appl.: BGA6589 Wideband Amplifier

1.0 Introduction.

This application note provides information that is supplementary to the data sheet for the BGA6589 amplifier, and includes temperature and DC stability characteristics and WCDMA information.

Figure 1 shows the biasing method. The device is already matched to 50 ohms.

2.0. DC Characteristics.

Figure 2 shows the DC load line characteristics of the device, when biased with two different voltage and resistor combinations.

Figure 2. BGA6589 DC Characteristics.

Semiconductors

Reviewing the graphical load line method, we superimpose the equation for the load resistor onto the device characteristics, and the intersection shows the current and the voltage of the device. The equation for the resistor is basically a horizontally flipped version of a straight line representing a resistor across a voltage source, which of course runs through the origin and has a slope determined by R and V.

Using BJT terminology, the device voltage at the output pin is v_{CE} and the supply is V_{CC} . Then,

T 7

$$v_{CE} = V_{CC} - K l_C$$
 and

$$i_{C} = \frac{V_{CC}}{R} - \frac{V_{CE}}{R} = I_{O} - \frac{V_{CE}}{R}$$

where Io is the intercept on the y axis.

Figure 3 shows the same data expanded. We can see that when biasing with 8V and 37 ohms, the current is stable over temperature from 82 to 89 mA.

Figure 3. DC Characteristics Expanded

Device variations, however small, and supply voltage variations are not yet accounted for in the figure. However, when we look at how the device functions at different currents, we see that I_C is not critical. For example, in Figure 4 we see that the gain is virtually independent of the bias current.

Similarly, the gain vs. temperature is shown in Figure 5. There is a slight negative temperature coefficient.

Figure 5. Gain Stability with Temperature.

3.0. WCDMA Performance.

3.1. Normal Bias. Figure 6 shows the spectrum for WCDMA 3GPP, with 15 channels of data. The frequency limits for measurement are shown by the arrows for the reference (on) channel and the adjacent channel. The channel powers are integrated over a 3.84 MHz band, with a channel offset of 5 MHz for the ACP measurement.

Figure 7 shows the 5 and 10 MHz offset measurements over a power range. There are many parameters that affect the ACP, even for the same number of channels and their allocations, such as the data type (random or repeating), the powers in the channels (equal or different), pilot length, timing sequence, and the symbol rate.

The effect of the number of data channels in the WCDMA signal is shown in Figure 8.

Figure 8. Effect of Number of Data Channels.

3.2. Reduced Bias. The compression point (P1dB) is affected by the device current, as expected. The effect of the current and the associated P1dB on the WCDMA performance is shown in Figure 9. At low powers, the device can tolerate a lower current and still stay within acceptable limits. At +12 dBm, the bias can drop to 75 mA without undue degradation.

Figure 9. ACP with Reduced Bias.

4.1. CCDF. In WCDMA systems (and IS95 systems and QAM systems in general), the peak to average ratio of the signal can be 12 dB or more. In an amplifier application, designing in enough headroom to handle all the peaks would make it unnecessarily expensive and inefficient. The highest peaks only occur a small portion of the time (such as parts per million), and can be allowed to compress in the amplifier. The tradeoff is of course distortion and ACP.

A complementary cumulative density function (CCDF) curve is shown in Figure 10 for 32 data channels. Consider first the CCDF for the case of no clipping. As a very rough thumbnail estimate of ACP, we know from analysis that limiting or clipping of events that happen .01% of the time can cause ACP's in the general range of -40 dBc. This of course is dependent on many factors, such as type of limiting (hard clipping vs. soft compression, etc.). The value of -40 dBc corresponds to 10 log (.0001), where .0001 is simply .01% as a fraction.

4.2. Digital Hard Clipping. In the physical layer of WCDMA systems, advantage can be taken of the high level of redundancy in the coding, spreading, and overhead bits of the basic channel data by eliminating some of the symbols before entering the amplifier/transmitter. The air interface is designed to operate with fading, dropouts, static etc., therefore, eliminating some small percentage of the symbols can be tolerated, because the bulk of these symbols are corrected for in the receive decoding process.

In the basestation, this clipping is done on the digital summation of all the I and Q samples, *before filtering*. This is critical. This way, the ACP energy caused by the clipping can be filtered out in the baseband filters before amplification. The filtering process softens up the CCDF curve that would otherwise be a hard clip, an example of which is shown in Figure 10.

Also in Figure 10, the CCDF is shown for the cases of clipping the signal at 60% and 80% relative to the highest peak, followed by filtering. While this may seem to be a severe amount of clipping, the highest peaks (uncommon as they are) might actually be 14 dB or more above the average power, so the more typical peaks of 10 dB or so are not clipped very much.

The effect of clipping on the ACP is shown in Figure 11, for a 15 channel WCDMA signal. This is measured data for the BGA6589. The x axis is average power. For 32 channels, the ACP is very similar, because the CCDFs are similar, as shown in Figure 12.

5.0. Load Pull.

Class A devices are not often subjected to a load pull test, but doing so shows the resiliency of the device when the BGA6589 is feeding a stage with a less than perfect S11. Figure 13 shows the ACP under various VSWR conditions.

Figure 13. Load Pull Test.

For this test, the worst of four phases of reflection was plotted for a given reflection coefficient, at several powers. The VSWR corresponding to the reflection coefficient is shown just above the x axis. At low/medium powers, a significantly "poor" load reflection is tolerable, before degrading the ACP. For each measurement, the gain necessarily changed due to the loading, and the input drive was changed accordingly to keep the output power constant.

product & design manual for RF small signal discretes Page: 62

Semiconductor

7 Selection Guides

The 3 product clusters of our RF Small Signal portfolio:

The portfolio covered in this RF Manual covers small-signal products for a wide variety of applications. For tuning, a wide range of varicaps, bandswitch diodes and FETs. For telecom and more generic RF applications an equally wide range of pin diodes, MMICs and wideband transistors are available. The MMIC and wideband transistor portfolio includes SiGe products.

Bandswitch diodes:

PHILIPS

RF Manual

2nd edition

Are **switching** diodes. Mainly used in tuner applications. They help to achieve that the signals which are received by an antenna are separated into the correct frequency band(s).

Varicap diodes "Varactors"

Are electronically **tuning** diodes. Varicap diodes are used in tuner applications to enable various frequencies to be separated (in e.g. the input-filter) or to be generated (e.g. in an oscillator).

\rightarrow Upcoming varicap in development is: BB140L.

This VCO varicap for the communication market will be packed in leadless SOD882.

Pin diodes:

Are **switching** diodes. Due to their construction, they are ideal switches in RF-applications, main usage is as switch between transmitter and receiver in 1-antenna-applications.

→ Upcoming Pin diodes in development are: BAP51L, BAP1321L, BAP142L and BAP144L. The package of these new types will be SOD882.Applications: antenna switch, T/R switch, Antenna diversity switch for cell phones, cordless, basestation transceiver circuits and any equipment requiring switching function.

RF Manual

Semiconductors

product & design manual for RF small signal discretes Page: 63

7 Selection Guides

The 3 product clusters of our RF Small Signal portfolio:

Field-effect transistors (Fet's):

Are e.g. **pre-amplifying** transistors. Fet's e.g. make sure a signal is already amplified in a car radio before the signal enters the radio amplifier, so the Fet prevents that the noise also gets amplified. Fet's are ideal switches for applications where distortion-free amplification is required.

→ Upcoming Field-effect transistors in development are: BF1205, BF1206, BF121xxx-serie. BF1205 will contain two BF1202's and a switch and therefore realises the reduction in component count.

BF1206 UHF/VHF Fet is significantly improved on low frequency noise, Yfs and component count.

BF121xxx-serie will become the improved versions of BF120xxx-serie (low frequency noise performance).

Wideband transistors:

Are signal **amplifying** transistors. Wide band transistors ensures that the voice quality from a person in a mobile phone is good and clear. Main usage in RF amplifiers where signal-levels are increased for better processing.

\rightarrow Upcoming wideband transistor in development is BFU620.

The applications of this 7th generation Si Ge QuBIC4G transistor (Ft=65GHz) are: LNA, buffer & oscillator for cell phone, GPS receivers, LNB & generic RF. Package: SOT343.

MMIC's:

The Monolithic Microwave Integrated Circuit in our product portfolio offers the combination of several transistors, resistors and capacitors to perform one specific RF function.

These devices are therefore an interesting compromise between the total integration of a system on a chip and the use of discrete devices only.

MMIC's have same footprint as discrete devices.

MMIC's can be used for a wide range of applications.

MMIC's benefit from the integration of parts that belong together.

→ Upcoming MMIC's in development are: BGA6589. BGA6489 and BGA6289.

These MMIC's, medium power gainblocks, are used for basestations. Package: SOT89.

Semiconductors

2nd edition product &

product & design manual for RF small signal discretes Page: 64

7.1 Selection Guides: MMIC's

** = new product

Online product catalog on Philips Semiconductors website:

http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

General Purpose Wideband Amplifiers, 50 Ohm Gain Blocks

			Limits	;	f_1			@ '	1GHz			Gain ³ (dB) @				<u>D</u>
Туре	Package	Vs (V)	ls (mA)	Pd (mW)	@-3dB (GHz)	NF (dB)	Psat (dBm)	Gain³ (dB)	P₁dBb (dBm)	IIP₃ (dBm)	OIP ₃ (dBm)	100 MHz	2.6 GHz	3.0 GHz	Vs (V)	ls (mA)
BGA2711	SOT363	6	20	200	3.62)	4.7	2	12.9	-2	-3	10	13	13.8	12.8	5	12
BGA2748	SOT363	4	15	200	1.9	1.82)	-4	21.3	-10	-22	-2	14.8	14.2	11.3	3	5.7
BGA2771	SOT363	4	50	200	2.4	4.4	12 ²⁾	21	11	1	22	20.3	17.5	15.2	3	33
BGA2776	SOT363	6	34	200	2.8	4.7	8	22.8 ²⁾	5.5	6	17	22.2	20.8	18.7	5	23.8
BGA2709	SOT363	6	35	200	2.8	4	12.4	2.7	8.3	1	24	22.6	22.0	21.1	5	23.5
BGA2712	SOT363	6	25	200	2.8	3.9	4.8	21.3	0	-9	12	20.9	20.8	18.6	5	12.5
BGM1011 **	SOT363	6	25.5	200	-	4.7	13.8	30	12.2	-7	23	25.0	32.0	28.0	5	25.5

Notes: 1. Upper -3 db point, to gain at 1 ghz. 2. Optimized parameter. 3. Gain = $|S_{21}|^2$

2 Stage Variable Gain Linear Amplifier

			Limits	3	Frequency		@ 90	0MHz		@1900 MHz					@	
Туре	Package	ge <mark>Vs Is Ptot</mark>		Ptot	Range	Gain ¹	DG ²	P1dB	ACPR	Gain ¹	DG ²	P1dB	ACPR	Vs	ls	
		(V)	(mA)	(mW)	(MHz)	(dB)	(dB)	(dBm)	(dBc)	(dB)	(dB)	(dBm)	(dBc)	(V)	(mA)	
BGA2031/1	SOT363	3.3	50	200	800-2500	24	62	11	49	23	56	13	49	3	51	

Notes: 1. Gain = G_p , pow er gain. 2. DG = Gain control range

Wideband Linear Mixer

		Limits			RF Input Freq.	IF Output	0) 880M	-Iz	0	@			
Type Package		Vs	ls Ptot Range		Freq. Range	NF	Gain ¹	OIP3	NF	Gain ¹	OIP3	Vs	ls	
		(V)	(mA)	(mW)	(MHz)	(MHz)	(dB)	(dB)	(dBm)	(dB)	(dB)	(dBm)	(V)	(mA)
BGA2022	SOT363	4	20	40	800-2500	50-500	9	5	4	9	6	10	3	51

Notes: 1. Gain = G_c , Conversion gain

Low Noise Wideband Amplifiers

			Limits	3	@ 900MHz			@1800 MHz			Gain ³ (db) @					@	
Туре	Package	Vs	ls	Ptot	NF	Gain	IIP₃	NF	Gain	IIP₃	100	1	2.6	3.0	Vs	ls	
		(V)	(mA)	(mW)	(dB)	(dB)	(dBm)	(dB)	(dB)	(dBm)	MHz	GHz	GHz	GHz	(V)	(mA)	
BGA2001	SOT343R	4.5	30	135	1.3	221)	-7.4	1.3	19.5 ¹⁾	-4.5	20	17.1	11.6	10.7	2.5	4	
BGA2003	SOT343R	4.5	30	135	1.8	241)	-6.5	1.8	16 ¹⁾	-4.8	26	18.6	11.1	10.1	2.5	10 ²⁾	
BGA2011	SOT363	4.5	30	135	1.5	19 ³⁾	10	-	-	-	24	14.8	8	6.5	3	15	
BGA2012	SOT363	4.5	15	70	-	-	-	1.7	16 ³⁾	10	22	18.2	11.6	10.5	3	7	
BGU2003	SOT343R	4.5	30	135	1	tbd	tbd	1	tbd	tbd	tbd	tbd	tbd	tbd	2.5	10 ²⁾	

Notes : 1. MSG 2. Adjustable bias 3. $|S_{21}|^2$

General Purpose Medium Power Amplifers, 50 ohm gain blocks

		Limits				@ 900MHz				@180	0 MHz		Gain ³	f _u 1	(0
Туре	Package	Vs	ls	Ptot	NF	Gain ³	OIP_3	$P_1 dB$	NF	Gain ³	NF	P ₁ dB	2.5	@-3dB	Vs	ls
		(V)	(mA)	(mW)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dBm)	GHz	(MHz)	(V)	(mA)
BGA6289 **	SOT89	6	120	480	3.8	15	31	17	4.1	13	4.1	15	12	4000	3.8	83
BGA6489 **	SOT89	6	120	480	3.1	20	33	20	3.3	16	3.3	17	15	4000	5.1	83
BGA6589 **	SOT89	6	120	480	3	22	33	21	3.3	17	3.3	20	15	4000	4.8	83

Notes:1 Determined by return Loss(>10dB) 3. Gain = |S21|2

2nd edition

product & design manual for RF small signal discretes Page: 65

7.2 Selection Guides: Wideband transistors (1)

		Ft	Vceo	lc	Ptot	Polarity	Cum	F		Cum	-		V(a, 1)	ы		@ Io 9	Mag
Ту ре	Package	(GHz)	(V)	(mA)	(mW)		(dB)	F (dB)	(MHz)	Gum (dB)	F (dB)	@ (MHz)	VO 1) (mV)	PI (dBm)	(dBm)	@ IC & (mA)	Vce (V)
		Ty pical	Max	ximum v	alues		(uD)	(02)	(1011 12)	(uD)	(02)	(111112)	((abiii)	(ubiii)	(110.1)	(•)
BF547	SOT23	1.2	20	50	300	NPN	20	-	100	-	-	-	-	-	-	-	-
BF747	SOT23	1.2	20	50	300	NPN	20	-	100	-	-	-	-	-	-	-	-
BFC505	SOT353	7.3	8	18	500	NPN	-	1.8	900	-	3.5	2000	-	-	-20	1	3
BFC520	SOT353	7	8	70	1000	NPN	-	1.3	900	-	-	-	-	-	-18	5	3
BFE505	SOT353	9	8	18	500	NPN	-	1.2	900	-	1.9	2000	-	-	-	-	-
BFE520	SOT353	9	8	70	1000	NPN	-	1.1	900	-	1.9	2000	-	-	-	-	-
BFG10(X)	SOT143	-	8	250	250	NPN	-	-	-	7	-	1900	-	-	-	-	-
BFG10W/X	SOT343	-	10	250	400	NPN	-	-	-	7	-	1900	-	-	-	-	-
BFG11(/ X)	SOT143	-	8	500	400	NPN	-	-	-	5	-	1900	-	-	-	-	-
BFG11W/X	SOT343	-	8	500	760	NPN	-	-	-	6	-	1900	-	-	-	-	-
BFG135	SOT223	7	15	150	1000	NPN	16	-	500	12	-	800	850	-	-	100	10
BFG16A	SOT223	1.5	25	150	1000	NPN	10	-	500	-	-	-	-	-	-	-	-
BFG198	SOT223	8	10	100	1000	NPN	18	-	500	15	-	800	700	-	-	70	8
BFG21W	SOT343	18	4.5	200	600	NPN	-	-	-	10	-	1900	-	-	-	-	-
BFG25A/X	SOT143	5	5	6.5	32	NPN	18	1.8	1000	-	-	-	-	-	-	-	-
BFG25AW(/X)	SOT343	5	5	6.5	500	NPN	16	2	1000	8	-	2000	-	-	-	-	-
BFG25W(/X)	SOT343	5	5	6.5	500	NPN	16	2	1000	8	-	2000	-	-	-	-	-
BFG31	SOT223	5	15	100	1000	PNP	16	-	500	12	-	800	550	-	-	70	10
BFG35	SOT223	4	18	150	1000	NPN	15	-	500	11	-	800	750	-	-	100	10
BFG403W	SOT343	17	4.5	3.6	16	NPN	-	1	900	-	1.6	2000	-	5	6	1	1
BFG410W	SOT343	22	4.5	12	54	NPN	-	0.9	900	-	1.2	2000	-	5	15	10	2
BFG425W	SOT343	25	4.5	30	135	NPN	-	0.8	900	-	1.2	2000	-	12	22	25	2
BFG480W	SO1343	21	4.5	250	360	NPN	-	1.2	900	-	1.8	2000	-	-	28	80	2
BFG505(/X)	SOT143	9	15	18	150	NPN	20	1.6	900	13	1.9	2000	-	4	10	5	6
BFG520(/X)	SO1143	9	15	70	300	NPN	19	1.6	900	13	1.9	2000	275	17	26	20	6
BFG520W(/X	.) SOT343	9	15	70	500	NPN	17	1.6	900	11	1.85	2000	275	17	26	20	6
BFG540(/X)	SOT143	9	15	120	500	NPN	18	1.9	900	11	2.1	2000	500	21	34	40	8
BFG540W(/X	.) SOT343	9	15	120	500	NPN	16	1.9	900	10	2.1	2000	500	21	34	40	8
BFG541	SOT223	9	15	120	650	NPN	15	1.9	900	9	2.1	2000	500	21	34	40	8
BFG590(/X)	SOT143	5	15	200	400	NPN	13	-	900	7.5	-	2000	-	-	-	-	-
BFG590W	SOT343	5	15	200	500	NPN	13	-	900	7.5	-	2000	-	21	-	80	5
BFQ591	SOT89	7	15	200	2000	NPN	13	-	900	7.5	-	2000	-	-	-	-	-
BFG67(/X)	SOT143	8	10	50	380	NPN	17	1.7	1000	10	2.5	2000	-	-	-	-	-
BFG92A(/ X)	SOT143	5	15	25	400	NPN	16	2	1000	11	3	2000	-	-	-	-	-
BFG93A(/X)	SOT143	6	12	35	300	NPN	16	1.7	1000	10	2.3	2000	-	-	-	-	-
BFG94	SOT223	6	12	60	700	NPN	-	2.7	500	13.5	3	1000	500	21.5	34	45	10
BFG97	SOT223	5.5	15	100	1000	NPN	16	-	500	12	-	800	700	-	-	70	10
BFM505	SOT363	9	8	18	500	NPN	17	1.4	900	10	1.9	2000	-	-	-	-	-
BFM520	SOT363	9	8	70	1000	NPN	15	1.7	900	9	1.9	2000	-	-	-	-	-
BFQ135	SOT172	6.5	19	150	2700	NPN	17	-	500	13.5	-	800	1200	-	-	120	18
BFQ136	SOT122	4	18	600	9000	NPN	12.5	-	800	-	-	-	2500	-	-	500	15
BFQ149	SOT89	5	15	100	1000	PNP	12	3.75	500	-	-	-	-	-	-	-	-
BFQ17	SOT89	1.5	25	150	1000	NPN	16	-	200	6.5	-	800	-	-	-	-	-
BFQ18	SOT89	4	18	150	1000	NPN	-	-	-	-	-	-	-	-	-	-	-
BFQ19	SOT89	5.5	15	100	1000	NPN	11.5	3.3	500	7.5	-	800	-	-	-	-	-

Online product catalog on Philips Semiconductors website:

http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

RF Manual

2nd edition

Semiconductors

product & design manual for RF small signal discretes Page: 66

7.2 Selection Guides: Wideband transistors (2)

Online product catalog on Philips Semiconductors website:

http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

		Ft	Vceo	lc	Ptot	Polarity											
T	Deslars	(GHz)	(V)	(mA)	(mW)		Gum	F	@	Gum	F	@	Vo 1)	Р	ITO	@ lc	Vce
туре	Раскаде	Typical	Max	vimum v			(dB)	(dB)	(MHz)	(dB)	(dB)	(MHz)	(mV)	(dBm)	(dBm)	& (mA)	(V)
		турісаі	IVICI	KIITIUTTI V	alues											(
BFQ34/01	SOT122	4	18	150	2700	NPN	16.3	8	500	-	-	-	1200	26	45	120	15
BFQ540	SOT89	9	12	120	1200	NPN	-	1.9	900	-	-	-	500	-	-	40	8
BFQ67	SOT23	8	10	50	300	NPN	14	1.7	1000	8	2.7	2000	-	-	-	-	-
BFQ67W	SOT323	8	10	50	300	NPN	13	2	1000	8	2.7	2000	-	-	-	-	-
BFQ68	SOT122	4	18	300	4500	NPN	13	-	800	-	-	1600	1600	28	47	240	15
BFR106	SOT23	5	15	100	500	NPN	11.5	3.5	800	-	-	-	350	-	-	50	9
BFR505	SOT23	9	15	18	150	NPN	17	1.6	900	10	1.9	2000	-	4	10	5	6
BFR505T	SOT416	9	-	18	150	NPN	17	1.2	900	-	-	-	-	-	-	-	-
BFR520	SOT23	9	15	70	300	NPN	15	1.6	900	9	1.9	2000	-	17	26	20	6
BFR520T	SOT416	9	-	70	150	NPN	15	1.6	900	9	1.9	2000	-	17	26	-	-
BFR53	SOT23	2	10	50	250	NPN	-	5	500	10.5	-	800	-	-	-	-	-
BFR540	SOT23	9	15	120	500	NPN	14	1.9	900	7	2.1	2000	550	21	34	40	8
BFR92	SOT23	5	15	25	300	NPN	18	2.4	500	-	-	-	150	-	-	14	10
BFR92A	SOT23	5	15	25	300	NPN	14	2.1	1000	8	3	2000	150	-	-	14	10
BFR92AT	SOT416	5	15	25	150	NPN	14	2	1000	8	-	2000	-	-	-	-	-
BFR92AW	SOT323	5	15	25	300	NPN	14	2	1000	-	3	2000	-	-	-	-	-
BFR93	SOT23	5	12	35	300	NPN	16.5	1.9	500	-	-	-	-	-	-	-	-
BFR93A	SOT23	6	12	35	300	NPN	13	1.9	1000	-	3	2000	425	-	-	30	8
BFR93AT	SOT416	5	12	35	150	NPN	13	1.5	1000	8	_	2000	-	-	-	-	-
BFR93AW	SOT323	5	12	35	300	NPN	13	1.5	1000	8	2.1	2000	-	-	-	-	-
BES17	SOT23	1	15	25	300	NPN	-	4.5	500	-	_		-	-	-	-	-
BES17A	SOT23	28	15	25	300	NPN	13 5	2.5	800	-	-	-	150	-	-	14	10
BFS17W	SOT323	1.6	15	50	300	NPN	-	4.5	500	-	-	-	-	-	-	-	-
BES25A	SOT323	5	5	6.5	32	NPN	13	1.8	1000	-	-	-	-	-	-	-	-
BES505	SOT323	9	15	18	150	NPN	17	1.6	900	10	19	2000	_	4	10	5	6
BES520	SOT323	9	15	70	300	NPN	15	1.0	900	9	1.0	2000	_	17	26	20	6
BFS540	SOT323	q	15	120	500	NPN	14	1.0	900	8	2.1	2000	-	21	34	40	8
BFT25	SOT23	23	5	6.5	30	NPN	18	3.8	500	12	-	800	-	-	-		-
BFT25A	SOT23	5	5	6.5	32	NPN	15	1.8	1000	-	-	-	-	-	-	_	-
BFT92	SOT23	5	15	25	300		18	2.5	500	_	_	_	150	_	_	14	10
BET02W/	SOT323	5	15	35	300		17	2.5	500	11	3	1000	150		-	14	10
BET03	SOT23	5	10	35	300		16.5	2.5	500		5	1000	- 300	-	-	- 30	- 5
DET02W/	SO123	5	12	50	200		10.5	2.4	500	- 10	-	-	300	-	-	30	5
BELIS10	SOT3/3	45	25	15	300		15.5	2.4	900	20	0.0	2000	-	-	-	-	_
BI US 10	SOT4343	45	2.5	50	125		-	0.0	900	20	0.9	2000	-	-	-	-	-
	SO14343	40	2.5	250	120		-	0.0	900	20	0.9	2000	-	-	-	-	-
DL170	SU1223	0.0	0	200	2100		~0	-	900	-	-	-	-	-	-	-	-
BSR12	SU123	1.5	15	100	250	PINP	-	-	-	-	-	-	-	-	-	-	-
	SU123	ð 0	10	100	300		15	1.4	1000	9.5	2	2000	-	-	-	-	
	SU123	8	10	100	305		14	۱.3	1000	ŏ	2	2000	-	-	-	-	
	50123	0.65	25	40	400		-	-	-	-	-	-	-	-	-	-	-
HMB13640	SO123	0.5	12	80	350		-	-	-	-	-	-	-	-	-	-	-
PMBTH81	SOT23	0.6	20	40	400	PNP	-	-	-	-	-	-	-	-	-	-	-
PRF947	SO1323	8.5	10	50	250	NPN	16	1.5	1000	10	2.1	2000	-	-	-	-	-
PRF949	SO [416	9	10	50	150	NPN	16	1.5	1000	-	-	-	-	-	-	-	
PRF957	SOT323	8.5	10	100	270	NPN	15	1.3	1000	9.2	1.8	2000	-	-	-	-	-

RF Manual

2nd edition

Semiconductors

product & design manual for RF small signal discretes Page: 67

7.3 Selection Guides: Varicap diodes

Online product catalog on Philips Semiconductors website: <u>http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046</u>

11000		an 10	~p –		00	••••							
					TUNI	NG RA	NGE				TYP	CAL	
		C	d @ Vr		Cdov	ver volt	age	rs (O)	MATCHED	A	PPLIC	ATION	S
Туре	Package		(pF)		ran	ge (V)	(22)	SETS	τv	vœ	SAT.	STB
		min	max	(V)	ratio	V1 to	o V2	max	%				
Matched													
BB134	SOD323	1.7	2.1	28	10	0.5	28	0.75	0.5	Х		Х	Х
BB149	SOD323	1.9	2.25	28	9	1	28	0.75	1	Х			Х
BB149A	SOD323	1.95	2.22	28	9.7	1	28	0.75	2	Х			Х
BB149A/TM	SOD323	1.95	2.22	28	9.7	1	28	0.75	2	Х			Х
BB179	SOD523	1.95	2.22	28	9.7	1	28	0.75	2	Х	Х		Х
BB179B	SOD523	1.9	2.25	28	9.2	1	28	0.75	2	Х			Х
Unmatche	d												
BB135	SOD323	1.7	2.1	28	10	0.5	28	0.75		Х	Х		
BB159	SOD323	1.9	2.25	28	9	1	28	0.75		Х			
BBY31													
BBY39	SOT23	1.6	2	28	8.3	1	28	1.2	-	Х			X
BBY62	SOT143												

TV & Satellite Varicap Diodes - UHF tuning

TV & Satellite Varicap diodes - VHF tuning

			-		TUNI	NG RA	NGE				TYP	ICAL	
_		С	d@Vr	•	Cd ov	ver volt	ade	rs (O)	MATCHED	A	PPLIC	ATION	S
Туре	Package		(pF)		ran	ge ('	V)	(22)	SETS	τv	vœ	SAT.	STB
		min	max	(V)	ratio	V1 to	0V2	max	%				
Matched													
BB132	SOD323	2.3	2.75	28	26	0.5	28	2	1	Х			Х
BB133	SOD323	2.2	2.75	28	16	0.5	28	0.9	0.7	Х			Х
BB147	SOD323	2.4	2.8	28	40	0.5	28	2.8	2	Х			Х
BB148	SOD323	2.4	2.75	28	15	1	28	0.9	1	Х			Х
BB152	SOD323	2.48	2.89	28	>20.6	1	28	1.2	2	Х			Х
BB153	SOD323	2.36	2.75	28	>13.5	1	28	0.8	2	Х			Х
BB157	SOD323	2.57	2.92	25	11	2	25	0.75	2	Х			Х
BB157/TM	SOD323	2.57	2.92	25	11	2	25	0.75	2	Х			Х
BB164	SOD323	2.9	3.4	28	>19.5	1	28	1.4	2	Х			Х
BB178	SOD523	2.36	2.75	28	>13.5	1	28	0.8	2	Х			Х
BB182	SOD523	2.48	2.89	28	>20.6	1	28	1.2	2	Х			Х
BB182B	SOD523	2.65	3	25	17	2	25	1.1	2	Х			Х
BB187	SOD523	2.57	2.92	25	11	2	25	0.75	2	Х			Х
Unmatche	d												
BB131	SOD323	0.7	1.055	28	14	0.5	28	3				Х	
BB158	SOD323	2.4	2.75	28	15	1	28	0.9		Х		Х	
BB181	SOD523	0.7	1.055	28	14	0.5	28	3				Х	
BBY40	SOT23	4.3	6	25	5.5	3	25	0.7	-	Х			Х
BBY42	SOT23	2.4	3	28	14	1	28	1	-	Х	l l		Х

RF Manual

Semiconductors

product & design manual for RF small signal discretes Page: 68

7.3 Selection Guides: Varicap diodes

Online product catalog on Philips Semiconductors website: http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

VCO Varicap diodes

 2^{nd} edition

Туре	Package	C	d @ Vr (pF)		C	کd @ Vi (pF)	r	TUNING Cd over vol (V	RAN(tage i ')	GE range	rs (Ω)
		min	max	(V)	min	max	(V)	ratio	V1 t	:o V2	typ.
BB145B-01	SOD723	6.4	7.4	1	2.55	2.95	4	>2.2	1	4	0.6
BB140-01 **	SOD723	2.77	' typ.	1	1.29	typ.	3	2.14	1 4 1 3		1.1
BB141	SOD523	3.9	4.5	1	2.22	2.55	4	1.76	1	4	0.4
BB142	SOD523	4	4.9	1	1.85	2.35	4	2.2	1	4	0.5
BB143	SOD523	4.75	5.75	1	2.05	2.55	4	2.35	1	4	0.5
BB145	SOD523	6.4	7.4	1	2.75	3.25	4	2	1	4	0.6
BB145B	SOD523	6.4	7.4	1	2.55	2.95	4	.2.2	1	4	0.6
BB145C	SOD523	6.4	7.2	1	2.55	2.85	4	2.39 - 2.53	1	4	
BB202	SOD523	28.2	33.5	0.2	7.2	11.2	2.3	2.5	0.2	2.3	0.35
BB151	SOD323	15.4	17	1	9 t	yp.	4	1.8	1	4	0.4
BB156	SOD323	14.4	17.6	1	7.6	9.6	4	1.86	1	4	0.4
BB190	SOD323	18	20	1	10.1	11.6	4	1.55	1	4	0.26
BB155	SOD323	45.2	49.8	0.3	24.55	26.70	2.82	-	-	-	0.35

Radio Varicap diodes FM radio tuning

Туре	Package	C	d @ Vr (pF)		С	d @ Vi (pF)	r	TUNING Cd over vol (V	RAN(tage (/)	GE range	rs (Ω)
		min	max	(V)	min	max	(V)	ratio (min)	V11	to V2	typ.
BB804	SOT23	42	46.5	2	26	typ.	8	1.75	2 8		0.2
BB200	SOT23	65.8	74.2	1	12	14.8	4.5	5	1	4.5	0.43
BB201	SOT23	89	102	1	25.5	29.7	7.5	3.1	1	7.5	0.3
BB202	SOD523	28.2	33.5	0.2	7.2	11.2	2.3	2.5	0.2	2.3	0.35
BB156	SOD323	14.4	17.6	1	7.6	9.6	4	3.3	1	7.5	0.4

RF Manual

Semiconductors

product & design manual for RF small signal discretes Page: 69

7.4 Selection Guides: Bandswitch diodes

Online product catalog on Philips Semiconductors website: http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

Band Switch diodes

2nd edition

		MAXIMUM	RATINGS		CHAR	ACTERIS	STICS	; maxi	mals
Туре	Package	VR (V)	IF (mA)	Rd	@ and	IF f	Cd	@ and) VR f
				Ω	(mA)	(MHz)	(pF)	(V)	(MHz)
BA277-01	SOD723	35	100	0.7	2	100	1.2	6	1
BA277	SOD523	35	100	0.7	2	100	1.2	6	1
BA278	SOD523	35	100	0.7	2	100	1.2	6	1
BA891	SOD523	35	100	0.7	3	100	0.9	3	1
BA591	SOD323	35	100	0.7	3	100	0.9	3	1
BA792	SOD110	35	100	0.7	3	200	1.1	3	1 to 100
BAT18	SOT23	35	100	0.7	5	200	1.0	20	1

Bandswitching diodes at 100MHz

RF Manual

Semiconductors

product & design manual for RF small signal discretes Page: 70

7.5 Selection Guides: Fet's

Online product catalog on Philips Semiconductors website:

http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

1) Asymmetrical	3) I _D
2) V _{GS(th)}	4) V _{SG}
5) Depletion FET plus diode	in one package

2nd edition

7) @ 200 MHz 8) VG2-S(th) 9) @ VDS 9V 10) Two equal dual gate MOS-FETs in one package

11) Two different dual gate Mos-Fets in one package

N-channel Junction Field-effect transistors for switching

		V _{DS}	I _G				С	HARA	CTERIS	TICS				
Туре	Package			I _{DSS}	;	V _{(p})GS	R _{DSON}	Cr	S	to	n	t _{of}	f
		(V)	(mA)	(mA)	(\	/)	()	(Pt	f)	(ns	5)	(ns	5)
		max	max	min	max	min	max	max	min	max	typ	max	typ	max
BSR56	SOT23	40	50	50	-	4	10	25	-	5	-	-	-	25
BSR57	SOT23	40	50	20	100	2	6	40	-	5	-	-	-	50
BSR58	SOT23	40	50	8	80	0.8	4	60	-	5	-	-	-	100
PMBFJ108	SOT23	25	50	80	-	3	10	8	-	15	4	-	6	-
PMBFJ109	SOT23	25	50	40	-	2	6	12	-	15	4	-	6	-
PMBFJ110	SOT23	25	50	10	-	0.5	4	18	-	15	4	-	6	
PMBFJ111	SOT23	40	50	20	-	3	10	30	-	typ.3	13	-	35	-
PMBFJ112	SOT23	40	50	5	-	1	5	50	-	typ.3	13	-	35	-
PMBFJ113	SOT23	40	50	2	-	0.5	3	100	-	typ.3	13	-	35	-
J108	SOT54	25	50	80	-	3	10	8	-	15	4	-	6	-
J109	SOT54	25	50	40	-	2	6	12	-	15	4	-	6	-
J110	SOT54	25	50	10	-	0.5	4	18	-	15	4	-	6	
J111	SOT54	40	50	20	-	3	10	30	-	typ.3	13	-	35	-
J112	SOT54	40	50	5	-	1	5	50	-	typ.3	13	-	35	-
J113	SOT54	40	50	2	-	0.5	3	100	-	typ.3	13	-	35	-
PMBF4391	SOT23	40	50	50	150	4	10	30	-	3.5	-	15	-	20
PMBF4392	SOT23	40	50	25	75	2	5	60	-	3.5	-	15	-	35
PMBF4393	SOT23	40	50	5	30	0.5	3	100	-	3.5	-	15	-	50
PN4391	SOT54	40	50	50	-	4	10	30	-	5	-	15	-	20
PN4392	SOT54	40	50	25	-	2	5	60	-	5	-	15	-	35
PN4393	SOT54	40	50	5	-	0.5	3	100	-	5	-	15	-	50

P-channel Junction Field-effect transistors for switching

		V _{DS}	I _G				С	HARA	CTERIST	ICS				
Туре	Package			I _{DSS}	6	V _{(p})GS	R_{DSON}	Cr	6	t _o	n	t _{of}	f
		(V)	(mA)	(mA	.)	(\	()	()	(Pf)	(ns	s)	(ns	5)
		max	max	min	max	min	max	max	min	max	typ	max	typ	max
PMBFJ174	SOT23	30	50	20	135	5	10	85	typ.	4	7	-	15	-
PMBFJ175	SOT23	30	50	7	70	3	6	125	typ.	4	15	-	30	-
PMBFJ176	SOT23	30	50	2	35	1	4	250	typ.	4	35	-	35	-
PMBFJ177	SOT23	30	50	1.5	20	0.8	2.25	300	typ.	4	45	-	45	-
J174	SOT54	30	50	20	135	5	10	85	typ.	4	7	-	15	-
J175	SOT54	30	50	7	70	3	6	125	typ.	4	15	-	30	-
J176	SOT54	30	50	2	35	1	4	250	typ.	4	35	-	35	-
J177	SOT54	30	50	1.5	20	0.8	2.25	300	typ.	4	45	-	45	-

RF Manual

 2^{nd} edition

Semiconductors

product <u>& design manual for RF small signal discretes</u> Page: 71

7.5 Selection Guides: Fet's

Online product catalog on Philips Semiconductors website:

http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

N-channel Junction Field-effect transistors

		V _{DS}	I _G			CHA	RACTE	RISTIC	cs		
Туре	Package			I _{DS}	S	V _{(p})GS	ľ	/fs	(Crs
		(V)	(mA)	(m/	۹)	(\	/)	(r	nS)	(Pf)
		max	max	min	max	min	max	min	max	typ.	max
General pu	rpose am	plifiers for	e.g. ı	measuri	ing eq	uipme	ent &	micro	phone	es	
BF245A	SOT54	30	10	2	6.5	0.25	8	3	6.5	1.1	-
BF245B	SOT54	30	10	6	15	0.25	8	3	6.5	1.1	-
BF245C	SOT54	30	10	12	25	0.25	8	3	6.5	1.1	-
BF545A	SOT23	30	10	2	6.5	0.4	7.5	3	6.5	0.8	-
BF545B	SOT23	30	10	6	15	0.4	7.5	3	6.5	0.8	-
BF545C	SOT23	30	10	12	25	0.4	7.5	3	6.5	0.8	-
BF556A	SOT23	30	10	3	7	0.5	7.5	4.5	-	0.8	-
BF556B	SOT23	30	10	6	13	0.5	7.5	4.5	-	0.8	-
BF556C	SOT23	30	10	11	18	0.5	7.5	4.5	-	0.8	-
BFR30	SOT23	25	5	4	10	-	5	1	4	1.5	-
BFR31	SOT23	25	5	1	5	-	2.5	1.5	4.5	1.5	-
BFT46	SOT23	25	5	0.2	1.5	-	1.2	1	-	1.5	-
Preamplifie	ers for AM	tuners in	car ra	dios							
BF861A	SOT23	25	10	2	6.5	0.2	1.0	12	20	2.1	2.7
BF861B	SOT23	25	10	6	15	0.5	1.5	16	25	2.1	2.7
BF861C	SOT23	25	10	12	25	0.8	2	20	30	2.1	2.7
BF862	SOT23	20	10	10	25	0.3	1.2	35	-	1.9	-
PMBFJ308	SOT23	25	50	12	60	1	6.5	10	-	1.3	2.5
PMBFJ309	SOT23	25	50	12	30	1	4	10	-	1.3	2.5
PMBFJ310	SOT23	25	50	24	60	2	6.5	10	-	1.3	2.5
RF stages	FM portab	oles, car ra	dios,	main ra	idios a	and m	ixer s	tages	5		
BF510 ¹⁾	SOT23	20	10	0.7	3	typ.	0.8	2.5	-	0.4	0.5
BF511 ¹⁾	SOT23	20	10	2.5	7	typ.	1.5	4	-	0.4	0.5
BF512 ¹⁾	SOT23	20	10	6	12	typ.	2.2	6	-	0.4	0.5
BF513 ¹⁾	SOT23	20	10	10	18	typ	. 3	7	-	0.4	0.5

N-channel, single MOS-FETS for switching

		V _{DS}	I _D						CHAR	ACTEF	RISTICS	6			
Туре	Package			V _{(p)G}	S	R _{DSON}	C	rs	to	n	t₀	ff	$ S_{21(on)} ^2$	$ S_{21(off)}^{2} $	
		(V)	(mA)	(V)		()	(F	Pf)	(ทะ	S)	(n	s)	(dB)	(dB)	MODE
		max	max	min	max	max	min	max	typ.	max	typ.	max	max	min	
High Speed	Switches	S													
BSD22	SOT143	20	50	-	2	30	typ	.0.6	1	-	5	-	-		depl.
BSS83	SOT143	10	50	0.1 ²⁾	2 ²⁾	45	typ	.0.6	1	-	5	-	-	-	enh.
Silicon RF	Switches														
BF1107	SOT23	3	10	-	4.5	20	-	-	-	-	-	-	-2.5	-30	depl.
BF1108 ⁵⁾	SOT143B	3	10		4	20	-	-	-	-	-	-	-3	-30	depl.
BF1108R ⁵⁾	SOT143R	3	10		4	20	-	-	-	-	-	-	-3	-30	depl.

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 72

7.5 Selection Guides: Fet's

Online product catalog on Philips Semiconductors website:

http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046

N-channel, Dual Gate MOS-FETS

2nd edition

	Package	V _{DS}	I _D	CHARACTERISTICS											
Туре				I _{DSS}		V _{(p)G1-S}		Yfs		Cis	Coss	F @ 800 MHz			
		(V)	(mA)	(mA	.)	(\	/)	(r	nS)	(pF)	(pF)	(dB)	VHF	UHF	
		max	max	min	max	min	max	min	typ.	typ.	typ.	typ.			
With extern	al bias														
BF908	SOT143	12	40	3	27	-	2	36	43	3.1	1.7	1.5	Х	Х	
BF908R	SOT143R	12	40	3	27	-	2	36	43	3.1	1.7	1.5	Х	Х	
BF908WR	SOT343R	12	40	3	27	-	2	36	43	3.1	1.7	1.5	Х	Х	
BF989	SOT143	20	20	2	20	-	2.7	9.5	12	1.8	0.9	2.8		Х	
BF991	SOT143	20	20	4	25	-	2.5	10	14	2.1	1.1	1′)	Х		
BF992	SOT143	20	40	-	-	0.2	1.3	20	25	4	2	1.27)	Х		
BF994S	SOT143	20	30	4	20	-	2.5	15	18	2.5	1	1′)	Х		
BF996S	SOT143	20	30	4	20	-	2.5	15	18	2.3	0.8	1.8	Х	Х	
BF998	SOT143	12	30	2	18	-	2	21	24	2.1	1.05	1	Х	Х	
BF998R	SOT143R	12	30	2	18	-	2	21	24	2.1	1.05	1	Х	Х	
BF998WR	SOT343R	12	30	2	18	-	2	22	24	2.1	1.05	1	Х	Х	
	Package	V _{DS}													
Туре			I _D	CHARACTERISTICS											
				I _{DSX}		V _{G1-S(th)}		Yfs		Cis	Cos	F @ 800 MHz			
		(V)	(mA)	(mA)		(V)		(mS)		(pF)	(pF)	(dB)	VHF	UHF	
		max	max	min	max	min	max	min	typ.	typ.	typ.	typ.			
Partly inter	nal bias								71		71				
BF904(A)	SOT143	7	30	8	13	0.3	1	22	25	2.2	1.3	2	Х	Х	
BF904(A)R	SOT143R	7	30	8	13	0.3	1	22	25	2.2	1.3	2	X	X	
BF904(A)WR	SOT343R	7	30	8	13	0.3	1	22	25	2.2	1.3	2	X	X	
BF909(A)	SOT143	7	40	12	20	0.3	1	36	43	3.6	2.3	2	X	X	
BF909(A)R	SOT143R	7	40	12	20	0.3	1	36	43	3.6	2.3	2	X	X	
BF909(A)WR	SOT343R	7	40	12	20	0.3	1	36	43	3.6	2.3	2	X	X	
BF1100	SOT143	14	30	8	13	0.3	1	24	28	2.2	1.4 ⁹⁾	2	X	X	
BF1100R	SOT143R	14	30	8	13	0.3	1	24	28	2.2	1.4 ⁹⁾	2	Х	х	
BF1100WR	SOT343R	14	30	8	13	0.3	1	24	28	2.2	1.4 ⁹⁾	2	Х	Х	
BF1101	SOT143	7	30	8	16	0.3	1	25	30	2.2	1.2	1.7	Х	Х	
BF1101R	SOT143R	7	30	8	16	0.3	1	25	30	2.2	1.2	1.7	Х	Х	
BF1101WR	SOT343R	7	30	8	16	0.3	1	25	30	2.2	1.2	1.7	Х	Х	
BF1102(R)	SOT363	7	40	12	20	0.3	1	36	43	2.8	1.6	2	Х	Х	
BF1201	SOT143	10	30	11	19	0.3	1	23	28	2.6	0.9	1.9	Х	Х	
BF1201R	SOT143R	10	30	11	19	0.3	1	23	28	2.6	0.9	1.9	Х	Х	
BF1201WR	SOT343R	10	30	11	19	0.3	1	23	28	2.6	0.9	1.9	Х	Х	
BF1202	SOT143	10	30	8	16	0.3	1	25	30	1.7	0.85	1.1	Х	Х	
BF1202R	SOT143R	10	30	8	16	0.3	1	25	30	1.7	0.85	1.1	Х	Х	
BF1202WR	SOT343R	10	30	8	16	0.3	1	25	30	1.7	0.85	1.1	Х	Х	
				11	19			23	28	2.6	0.9	1.9			
BE1203 ¹¹⁾	SOT363	10	30	8	16	0.3	1	25	30	1.7	0.85	1.1	X	x	
BF1204 ¹⁰⁾	SOT363	10	30	8	16	0.3	1	25	30	1.7	0.85	1.1	X	X	
Fully intern	al bias			-				_~	20						
BF1105	SOT143	7	30	8	16	0.3 ⁸⁾	1.2 ⁸⁾	25	31	22	12	17	×	X	
BE1105R	SOT143R	7	30	8	16	0.38)	1.2 ⁸⁾	25	31	22	12	1.7	X	x	
BE1105WR	SOT343R	7	30	8	16	0.3 ⁸⁾	1.2 ⁸⁾	25	31	22	12	1.7	X	X	
BF1109	SOT143	. 11	30	8	16	0.3	1	24	30	22	1.3	1.5	X	X	
BF1109R	SOT143R	11	30	8	16	0.3	1	24	30	22	1.3	1.5	X	X	
BE1109WR	SOT343R	11	30	8	16	0.3	1	24	30	22	1.3	1.5	X	X	
RF Manual

2nd edition

Semiconductors

product <u>& design manual for RF small signal discretes</u> Page: 73

7.6 Selection Guides: Pin diodes

** = new product

Online product catalog on Philips Semiconductors website: <u>http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046</u>

Туре	Package	Conf	Limits		RD (Ω) typ @			Cd (pF) type @		
			Vr(V)	lf(mA)	0.5mA	1 mA	10 mA	0V	1V	20V
BAP27-01 **	SOD723	S	20	50	1.7	1.3	0.7	0.55	0.45	0.37
BAP50-02	SOD523	S	50	50	25	14	3	0.4	0.3	0.22 @ 5V
BAP50-03	SOD323	S	50	50	25	14	3	0.4	0.3	0.2 @ 5V
BAP50-04	SOT23	SS	50	50	25	14	3	0.45	0.35	0.3 @ 5V
BAP50-04W	SOT323	SS	50	50	25	14	3	0.45	0.35	0.3 @ 5V
BAP50-05	SOT23	CC	50	50	25	14	3	0.45	0.35	0.3 @ 5V
BAP50-05W	SOT323	CC	50	50	25	14	3	0.45	0.35	0.3 @ 5V
BAP51-01 **	SOD723	S	60	60	5.5	3.6	1.5	0.4	0.3	0.2 @ 5V
BAP51-02	SOD523	S	60	60	5.5	3.6	1.5	0.4	0.3	0.2 @ 5V
BAP51-03	SOD323	S	60	60	5.5	3.6	1.5	0.4	0.3	0.2 @ 5V
BAP51-05W	SOT323	CC	60	60	5.5	3.6	1.5	0.4	0.3	0.2 @ 5V
BAP63-01 **	SOD723	S	50	100	2.5	1.95	1.17	0.36	0.32	0.25
BAP63-02	SOD523	S	50	100	2.5	1.95	1.17	0.36	0.32	0.25
BAP63-03	SOD323	S	50	100	2.5	1.95	1.17	0.4	0.35	0.27
BAP63-05W	SOT323	CC	50	100	2.5	1.95	1.17	0.4	0.35	0.3
BAP64-02	SOD523	S	200	175	20	10	2	0.52	0.37	0.23
BAP64-03	SOD323	S	200	175	20	10	2	0.52	0.37	0.23
BAP64-04	SOT23	SS	200	175	20	10	2	0.52	0.37	0.23
BAP64-04W	SOT323	SS	200	100	20	10	2	0.52	0.37	0.23
BAP64-05	SOT23	CC	200	175	20	10	2	0.52	0.37	0.23
BAP64-05W	SOT323	CC	200	100	20	10	2	0.52	0.37	0.23
BAP64-06	SOT23	CA	200	175	20	10	2	0.52	0.37	0.23
BAP64-06W	SOT323	S	100	100	20	10	2	0.52	0.37	0.23
BAP65-01 **	SOD723	s	30	100		1	0.56	0.65	0.6	0.375
BAP65-02	SOD523	S	30	100		1	0.56	0.65	0.6	0.375
BAP65-03	SOD323	S	30	100		1	0.56	0.65	0.6	0.375
BAP65-05	SOT23	CC	30	100		1	0.56	0.65	0.6	0.375
BAP65-05W	SOT323	CC	30	100		1	0.56	0.65	0.6	0.375
BAP70-02 **	SOD523	S	70	100	70	27	4.5	0.29	0.2	0.125
BAP70-03 **	SOD323	S	70	100	70	27	4.5	0.29	0.2	0.125
BAP1321-01 **	SOD723	S	60	100	3.4	2.4	1.2	0.4	0.35	0.25
BAP1321-02	SOD523	S	60	100	3.4	2.4	1.2	0.4	0.35	0.25
BAP1321-03	SOD323	S	60	100	3.4	2.4	1.2	0.4	0.35	0.25
BAP1321-04	SOT23	SS	60	100	3.4	2.4	1.2	0.4	0.35	0.25

7.6 Selection Guides: Pin diodes

Online product catalog on Philips Semiconductors website: <u>http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046</u>

Series resistance as a function of forward current.

7.6 Selection Guides: Pin diodes

Online product catalog on Philips Semiconductors website: <u>http://www.semiconductors.philips.com/catalog/219/282/27046/index.html#27046</u>

Diode capacitance as a function of reverse voltage.

2nd edition

Semiconductors

RF Manual product & design manual for RF small signal discretes Page: 76

8. X-references

Italic = *Manufacturer type*, blue = Closest Philips type, ■ = exact drop in, ▲ = different package

Online cross reference tool on Philips Semiconductors website:

http://www.semiconductors.philips.com/products/xref/

Toshiba	1SS314	BA591	Toshiba	1SV290	BB182 B	Indust. standard	2N5486	PMBF5486
Rohm	1SS356	BA591	Toshiba	1SV293	BB151	Indust. standard	2N5638	PN4391
Toshiba	1SS381	BA277	Toshiba	1SV293	BB190	Indust. standard	2N5639	PN4392
Rohm	1SS390	BA891	Sanyo	1SV294	BAP70-03	Indust. standard	2N5640	PN4393
Toshiba	1SV172	BAP50-04	Toshiba	1SV307	BAP51-03	Indust. standard	2N5653	J112
Toshiba	1SV214	BB149	Toshiba	1SV308	BAP51-02	Indust. standard	2N5654	J111
Toshiba	1SV214	BB149A	Toshiba	1SV314	BB143	NEC	2SC4092	BFG67/XR
Toshiba	1SV215	BB153	Toshiba	1SV329	BB143	NEC	2SC4093	BFG67/XR
Toshiba	1SV217	BB133	Sony	1T362	BB149	NEC	2SC4094	BFG520/XR
Toshiba	1SV228	BB201	Sony	1T362 A	BB149A	NEC	2SC4095	BFG520/XR
Toshiba	1SV229	BB190	Sony	1T363 A	BB153	NEC	2SC4182	BFS17W
Toshiba	1SV231	BB132	Sony	1T368	BB133	NEC	2SC4184	BFS17W
Toshiba	1SV231	BB152	Sony	1T368 A	BB148	NEC	2SC4185	BFS17W
Toshiba	1SV232	BB148	Sony	1T369	BB132	NEC	2SC4186	BFR92AW
Sanyo	1SV233	BAP70-03 🔺	Sony	1T369	BB152	NEC	2SC4226	PRF957
Sanyo	1SV234	BAP64-04	Sony	1T369	BB164	NEC	2SC4227	BFQ67W
Toshiba	1SV239	BB145B	Sony	1T379	BB131	NEC	2SC4228	BFS505
Sanyo	1SV241	BAP64-02	Sony	1T397	BB152	Toshiba	2SC4247	BFR92AW
Toshiba	1SV242	BB164	Sony	1T399	BB148	Toshiba	2SC4248	BFR92AW
Sanyo	1SV246	BAP64-04W	Sony	1T402	BB179 B	Toshiba	2SC4315	BFG520/XR
Sanyo	1SV247	BAP70-02	Sony	1T403	BB178	Toshiba	2SC4320	BFG520/XR
Sanyo	1SV248	BAP50-02	Sony	1T404A	BB187	Toshiba	2SC4321	BFQ67W
Sanyo	1SV249	BAP50-04W	Sony	1T405 A	BB187	Toshiba	2SC4325	BFS505
Sanyo	1SV250	BAP50-03	Sony	1T406	BB182	Toshiba	2SC4394	PRF957
Sanyo	1SV251	BAP50-04	Sony	1T407	BB182B	Hitachi	2SC4463	BF547W
Toshiba	1SV252	BAP50-04W	Sony	1T408	BB187	NEC	2SC4536	BFQ19
Toshiba	1SV254	BB179	Indust. standard	2N3330	J176	Hitachi	2SC4537	BFR93AW
Toshiba	1SV262	BB133	Indust. standard	2N3331	J176	Hitachi	2SC4592	BFG520/XR
Sanyo	1SV263	BAP50-02	Indust. standard	2N4091	PN4391	Hitachi	2SC4593	BFS520
Sanyo	1SV264	BAP50-04W	Indust. standard	2N4092	PN4392	NEC	2SC4703	BFQ19
Sanyo	1SV266	BAP50-03	Indust. standard	2N4093	PN4393	Hitachi	2SC4784	BFS505
Sanyo	1SV267	BAP50-04	Indust. standard	2N4220	BF245A	Hitachi	2SC4807	BFQ18A
Toshiba	1SV269	BB148	Indust. standard	2N4391	PN4391	Toshiba	2SC4842	BFG540W/XR
Toshiba	1SV270	BB156	Indust. standard	2N4392	PN4392	Hitachi	2SC4899	BFS505
Toshiba	1SV271	BAP50-03	Indust. standard	2N4393	PN4393	Hitachi	2SC4900	BFG520/XR
Toshiba	1SV276	BB151	Indust. standard	2N4416	PMBF4416	Hitachi	2SC4901	BFS520
Toshiba	1SV277	BB142	Indust. standard	2N4856	BSR56	Hitachi	2SC4988	BFQ540
Toshiba	1SV278	BB179	Indust. standard	2N4857	BSR57	NEC	2SC5011	BFG540W/XR
Toshiba	1SV279	BB190	Indust. standard	2N4858	BSR58	NEC	2SC5012	BFG540W/XR
Toshiba	1SV280	BB145	Indust. standard	2N5114	J174	Toshiba	2SC5065	PRF957
Toshiba	1SV281	BB151	Indust. standard	2N5115	J175	Toshiba	2SC5085	PRF957
Toshiba	1SV282	BB178	Indust. standard	2N5116	J175	Toshiba	2SC5087	BFG520/XR
Toshiba	1SV282	BB187	Indust. standard	2N5432	J108	Toshiba	2SC5088	BFG540W/XR
Toshiba	1SV283	BB178	Indust. standard	2N5433	J108	Toshiba	2SC5090	BFS520
Toshiba	1SV283	BB187	Indust. standard	2N5434	J109	Toshiba	2SC5092	BFG520/XR
Toshiba	1SV283	BB187	Indust. standard	2N5457	BF245A	Toshiba	2SC5095	BFS505
Toshiba	1SV284	BB156	Indust. standard	2N5458	BF245A	Toshiba	2SC5107	BFS505
Toshiba	1SV285	BB142	Indust. standard	2N5459	BF245B	Toshiba	2SC5463	BFQ67W
Toshiba	1SV288	BB152	Indust. standard	2N5484	PMBF5484	Hitachi	2SC5593	BFG410W
Toshiba	1SV290	BB182	Indust. standard	2N5485	PMBF5485	Hitachi	2SC5594	BFG425W

2nd edition

RF Manual product & design manual for RF small signal discretes Page: 77

Hitachi	2SC5623	BFG410W	Infineon	BAR63-02V	BAP63-02	Infineon	BF2030	BF1101
Hitachi	2SC5624	BFG425W	Infineon	BAR63-02W	BAP63-02 🔺	Infineon	BF2030R	BF1101R
Hitachi	2SC5631	BFQ540	Infineon	BAR63-03W	BAP63-03	Infineon	BF2030W	BF1101WR
Indust. standard	2SJ105GR	J177	Infineon	BAR63-05	BAP63-05W 🔺	Infineon	BF2040	BF909(A)
Hitachi	2SK108	PN4392	Infineon	BAR63-05W	BAP63-05W	Infineon	BF2040W	BF909(A)WR
Hitachi	2SK147BL	PN4393	Infineon	BAR64-02V	BAP64-02	Indust, standard	BF244A	BF245A
Hitachi	2.SK162-K	PN4393	Infineon	BAR64-02W	BAP64-02	Indust standard	BF244B	BE245B
Hitachi	25K162-I	PN//303	Infineon	BAR64-03W	BAP64-03	Indust standard	BE211D BE211C	BF245C
Litachi	20K102-L	DN4202	Infineen	DARG4-03W		Indust. standard	DF2470	UI 2400
Hitachi	25K 102-1VI	PIN4393	Inimeon	BAR04-04		Indust. standard	BF24/A	J100
Hitachi	2SK162-N	PN4393	Infineon	BAR64-04W	BAP64-04VV	Indust. standard	BF24/B	J108
Hitachi	2SK163-K	J113	Infineon	BAR64-05	BAP64-05	Indust. standard	BF247C	J108
Hitachi	2SK163-L	J113	Infineon	BAR64-05W	BAP64-05W	Indust. standard	BF256A	BF245A
Hitachi	2SK163-M	J113	Infineon	BAR64-06	BAP64-06	Indust. standard	BF256B	BF245B
Hitachi	2SK163-N	J113	Infineon	BAR64-06W	BAP64-06W	Indust. standard	BF256C	BF245C
Hitachi	2SK170BL	PN4393	Infineon	BAR65-02V	BAP65-02	Infineon	BF770A	BFR93A
Hitachi	2SK170GR	PN4393	Infineon	BAR65-02W	BAP65-02	Infineon	BF771	PBR951
Hitachi	2SK170V	PN4393	Infineon	BAR65-03W	BAP65-03	Infineon	BF771W	BFS540
Hitachi	2SK170Y	PN4393	Infineon	BAR66	BAP1321-04	Infineon	BF772	BFG540
Hitachi	2.SK197D	PMBF4416	Infineon	BAR67-021	BAP1321-01	Infineon	BE775	BFR92A
Hitachi	2SK197E	PMBF4416	Infineon	BAR67-02W/	BΔP1321-02 =	Infineon	BE7754	BER924
Hitachi	25K2000	DMRE4416	Infineor	BADGT 02W	BAD1221 02 -	Infineon	DE 77514/	BEDO2AW/
	2312090		Infineer	DAT10	DAT 102 1-03	Infineen	DE700	
	2SK2U9BL	PMBF4416	Infineon	DA 1 18		Infineon	BF199	DF/4/
Hitachi	2SK209GR	PMBF4416	Hitachi	BB304C	BF1201WR	Infineon	BF/99	BF/47
Hitachi	2SK209Y	PMBF4416	Hitachi	BB304M	BF1201R	Infineon	BF799W	BF547W
Hitachi	2SK210BL	PMBFJ309	Hitachi	BB305C	BF1201WR	Indust. standard	BF851A	BF861A
Hitachi	2SK210GR	PMBF4416	Hitachi	BB305M	BF1201R	Indust. standard	BF851B	BF861B
Hitachi	2SK2110	PMBF4416	Hitachi	BB403M	BF909R	Indust. standard	BF851C	BF861C
Hitachi	2SK211GR	PMBF4416	Hitachi	BB501C	BF1202WR	Vishay	BF994S	BF994S
Hitachi	2SK211Y	PMBF4416	Hitachi	BB501M	BF1202R	Vishay	BF996S	BF996S
Hitachi	2SK212	PN4393	Hitachi	BB502C	BF1202WR	Infineon	BF998	BF998
Hitachi	2SK217D	PMBF4416	Hitachi	BB502M	BE1202R	Vishav	BF998	BE998
Hitachi	2SK217E	PMBF4416	Hitachi	BB503C	BE1202WR	Vishav	BF998R	BE998R
Hitachi	2012112	DN//202	Hitachi	BB502M	BF1202011	Vishay	BE008DW/	BE008W/D
Litachi	251225	DMDE4416	Infinoon	DD505W		Infinoon	DI 990NW	DE 009/M/D
	23N242E		Inimeon	BB030	BB134	Infineon	BF996W	BF990VVR
Hitachi	2SK242F	PMBF4416	Infineon	BB535	BB149	Infineon	BFG135A	BFG135
Hitachi	2SK370BL	J109	Infineon	BB545	BB149A	Infineon	BFG193	BFG198
Hitachi	2SK370GR	J109	Infineon	BB555	BB179B	Infineon	BFG194	BFG31
Hitachi	2SK370V	J109	Infineon	BB565	BB179	Infineon	BFG196	BFG541
Hitachi	2SK381	J113	Hitachi	BB601M	BF1202	Infineon	BFG19S	BFG97
Hitachi	2SK425	PMBF4416	Infineon	BB639	BB133	Infineon	BFG235	BFG135
Hitachi	2SK426	PMBF4416	Infineon	BB639	BB148	Infineon	BFP180	BFG505/X
Hitachi	2SK43	J113	Infineon	BB639	BB153	Infineon	BFP181	BFG67/X
Hitachi	2SK435	J113	Infineon	BB640	BB132	Infineon	BFP182	BFG67/X
Hitachi	2SK508	PMBFJ308	Infineon	BB640	BB152	Infineon	BFP182R	BFG67/XR
Hitachi	3SK290	BE998WR	Infineon	BB640	BB164	Infineon	BEP183	BEG520/X
Hitachi	35K322	BEQQUA	Infineon	BB6/1	BB132	Infineon	BED183P	BEG520/XP
Indust standard	10801	BED30	Infineon	BB6/1	BB152	Infineon	BED102	BEC540/V
Indust standard	40905	BED30	Infineor	DD041	BB164	Infineon	DED10211/	BECEADW/VP
	40090		Infineer	DD041	DD104	Infineen		
moust. standard	40890	BERGO	Intineon	DB059	DB100	Infineon	DFP196W	DFG54UW/XR
Indust. standard	40897	BFR30	Infineon	BB659	BB178	Infineon	BFP280	BFG505/X
Infineon	BA592	BA591	Infineon	BB664	BB178	Infineon	BFP405	BFG410W
Infineon	BA592	BA591	Infineon	BB664	BB187	Infineon	BFP420	BFG425W
Infineon	BA595	BAP70-03	Infineon	BB814	BB201	Infineon	BFP450	BFG480W
Infineon	BA597	BAP70-03	Infineon	BB831	BB131	Infineon	BFP520	BFU510
Infineon	BA885	BAP70-03 🔺	Infineon	BB833	BB131	Infineon	BFP540	BFU540
Infineon	BA892	BA891	Infineon	BB835	BB131	Infineon	BFP81	BFG92A/X
Infineon	BA892	BA891	Infineon	BBY51	BB141	Infineon	BFP93A	BFG93A/X
Infineon	BA895	BAP70-02 =	Infineon	BBY51-03W	BB142	Infineon	BFQ193	BEQ540
Infineon	BAR14-1	2xBAP70-03 A	Infineon	BBV53	BB143	Infineon	BE0195	BEO19
Infineen			Infineon	BBV52 0214/	DD143	Infineen	DED 106	DED106
	DAR 13-1			DD 103-03W	DD 143		DFR 100	
Infineon	DAR 10-1	ZXBAP70-03	Intineon	БВY55-03W	DB190	infineon	DFR180	DFK505
Infineon	BAR17	BAP50-03	Infineon	BBY58-02V	BB202	Infineon	BFR180W	BFS505
Infineon	BAR60	3xBAP50-03 ▲	Infineon	BBY66-05	BB200	Infineon	BFR181	BFR520
Infineon	BAR61	3xBAP50-03 ▲	Infineon	BF1005S	BF1105	Infineon	BFR181W	BFS520
Infineon	BAR63	BAP63-03	Infineon	BF1009S	BF1109	Infineon	BFR182	PBR941
Infineon	BAR63-021	BAP63-02	Infineon	BE1009SW	BF1109WR	Infineon	BER182W	PRF947

2nd edition

RF Manual product & design manual for RF small signal discretes Page: 78

	-					b		
Infineon	BFR183	PBR951	Hitachi	HVB14S	BAP50-04W	Matsushita	MA368	BB131
Infineon	BFR183W	PRF957	Hitachi	HVC131	BAP65-02	Matsushita	MA372	BB149
Infineon	BFR193	PBR951	Hitachi	HVC132	BAP51-02	Matsushita	MA372	BB149A
Infineon	BFR193W	PRF957	Hitachi	HVC200A	BB178	Matsushita	MA374	BB164
Infineon	BER35AP	BER92A	Hitachi	HVC200A	BB187	Matsushita	MA377	BB141 =
Motorola	BER92AI	BFR92A	Hitachi	HVC202A	BB179 =	Matsushita	MAACP101A	BAP65-03
Infineon	BEROOD	BED02A	Hitachi	HVC202R	BB170B	Matsushita	MAAD274 1141	BAD51 03
Infineen	DEDOOW		l litachi	11/02/02/02	DD179D	Matsushita	MA4F274-1141	DAPGE 02
Inimeon	BFR92W	DFR92AVV		HVC300A	DD102	Matsushita	MA4P275-1141	BAP05-05
Infineon	BFR93A	BFR93A	Hitachi	HVC300A	BB182	Matsushita	MA4P275CK-287	BAP65-05
Motorola	BFR93AL	BFR93A	Hitachi	HVC300B	BB182	Matsushita	MA4P277-1141	BAP70-03
Infineon	BFR93AW	BFR93AW	Hitachi	HVC300B	BB182B	Matsushita	MA4P278-287	BAP70-03
Motorola	BFS17L	BFS17	Hitachi	HVC306A	BB187	Matsushita	MA4P789-1141	BAP1321-03
Motorola	BFS17L	BFS17	Hitachi	HVC306B	BB187	Matsushita	MA4P789ST-287	BAP1321-04
Infineon	BFS17P	BFS17A	Hitachi	HVC355	BB145	Motorola	MMBF4391	PMBF4391
Infineon	BFS17W	BFS17W	Hitachi	HVC355B	BB145B	Motorola	MMBF4392	PMBF4392
Infineon	BFS481	BFM505	Hitachi	HVC359	BB202	Motorola	MMBF4393	PMBF4393
Infineon	BFS483	BFM520	Hitachi	HVC363A	BB178	Motorola	MMBF4416	PMBF4416
Infineon	BFT92	BFT92	Hitachi	HVC369B	BB143	Motorola	MMBF4860	PMBE.I112
Infineon	BETOS	BFT03	Hitachi	HVC372B	BB151	Motorola	MMBE5484	BER31
Infineon	BC P540	BCI 12002	Hitachi		BAD65 01 -	Motorolo	MADE 1112	DMRE 1112
	BGB340	BGU2003		HVDISI	BAP65-01	Motorola	MIMBFJ113	PIVIDE J113
Hitachi	BIC701C	BF1105WR	Hitachi	HVD132	BAP51-02	Motorola	MMBFJ174	PMBFJ174
HITACHI	BIC/UIM	BF1105R	HITACHI	HVD139	ВАР63-01	iviotorola	MMBFJ1/5	PMBFJ1/5
Hitachi	BIC702C	BF1105WR	Hitachi	HVD142	BAP63-01	Motorola	MMBFJ176	PMBFJ176
Hitachi	BIC702M	BF1105R	Hitachi	HVU131	BAP65-03	Motorola	MMBFJ177	PMBFJ177
Hitachi	BIC801M	BF1105	Hitachi	HVU132	BAP51-03	Motorola	MMBFJ308	PMBFJ308
Indust. standard	BSR111	PMBFJ111	Hitachi	HVU200A	BB133	Motorola	MMBFJ309	PMBFJ309
Indust. standard	BSR112	PMBFJ112	Hitachi	HVU202(A)	BB149	Motorola	MMBFJ310	PMBFJ310
Indust. standard	BSR113	PMBFJ113	Hitachi	HVU202(A)	BB149A	Motorola	MMBFU310	PMBFJ310
Indust. standard	BSR174	PMBFJ174	Hitachi	HVU202A	BB134	Motorola	MMBR5031L	BFS17
Indust standard	BSR175	PMBFJ175	Hitachi	HVU300A	BB132	Motorola	MMBR51791	BES17A
Indust standard	BSR176	PMBE 1176	Hitachi	HVI 1300A	BB152 =	Motorola	MMBR5711	PRR951
Indust. standard	BORTTO BOD177	DMRE 1177	Hitachi		BB164	Motorola		PED02A
ไทยนอเ. รเล่านลาน	CMV01		l litachi	11VU300A	DD104	Motorola	MMDR901L	
Agilent		DGA2022		HVU300A	DD133	Motorola	MMBR911L	
Aglient	HBFP0403	BFG410W		HVU307	DD140	Motorola	MMBR920L	BFR93A
Aglient	HBFP0420	BFG425W	Hitachi	HVU315	BB148	Motorola	MMBR931L	BF125A
Agilent	HBFP0450	BFG480W	Hitachi	HVU316	BB131	Motorola	MMBR941BL	PBR941
Hitachi	HSC277	BA277	Hitachi	HVU356	BB155	Motorola	MMBR941L	PBR941
Agilent	HSMP3800	BAP70-03 🔺	Hitachi	HVU357	BB190	Motorola	MMBR951AL	PBR951
Agilent	HSMP3802	BAP50-04	Hitachi	HVU363A	BB133	Motorola	MMBR951L	PBR951
Agilent	HSMP3804	BAP50-05	Hitachi	HVU363A	BB148	Indust. standard	MPF102	BF245A
Agilent	HSMP3810	BAP50-03 🔺	Hitachi	HVU363A	BB153	Indust. standard	MPF4391	PN4391
Agilent	HSMP3814	BAP50-05	Hitachi	HVU363B	BB148	Indust. standard	MPF4392	PN4392
Aailent	HSMP381B	BAP50-03	Agilent	INA-51063	BGA2001	Indust. standard	MPF4393	PN4393
Agilent	HSMP381C	BAP50-05	Indust, standard	J201	BF410A	Indust, standard	MPF4416	PN4416
Agilent	HSMP381F	BAP64-05W	Indust standard	.1202	BF410B	Indust standard	MPF970	.1174
Agilent	HSMP3820	BAP1321-03	Indust standard	1203	BF410C	Indust standard	MPE071	1176
Agilent	HSMD3822	BAD1321 04 -	Indust standard	1204	BE410D	Motorola	MRE577	DDE057
	1 ISIVIF 3022		Indust. standard	1270	1177	Motorolo		
Agilent	LISIVIE 3030		Indust. standard	1200	J1//	Motorsia	WIRF3011L	
Aglient	ПЭМР3832	DAP04-04	indust. standard	J3U8	J 108	iviotorola	IVIRE917	
Agilent	HSMP3833	BAP64-06	Indust. standard	J309	J109	Motorola	MRF927	BFS25A
Agilent	HSMP3834	BAP64-05	Indust. standard	J310	J110	Motorola	MRF9411L	BFG520/X
Agilent	HSMP3860	BAP50-03 🔺	Toshiba	JDP2S01E	BAP65-02	Motorola	MRF947	BFS520
Agilent	HSMP3862	BAP50-04	Toshiba	JDP2S01U	BAP65-03	Motorola	MRF947A	PRF947
Agilent	HSMP3864	BAP50-05	Toshiba	JDP2S02S	BAP63-01	Motorola	MRF9511L	BFG540/X
Agilent	HSMP386B	BAP50-02	Toshiba	JDP2S02T	BAP63-02	Motorola	MRF957	PRF957
Agilent	HSMP386E	BAP50-04W	Toshiba	JDP2S04E	BAP50-02	Toshiba	MT4S34U	BFG410W
Agilent	HSMP386L	BAP50-05W	Toko	KV1470	BB200	Motorola	PRF947B	PRF947
Agilent	HSMP3880	BAP51-03 A	Matsushita	MA27V07	BB140-01	Indust standard	PZFJ108	J108
Agilent	HSMP3800	BAP51-03 A	Indust standard	MA2S077	BA277	Indust standard	PZE.1109	.1109
Agilent	1000 0000 USMD2902		Mateuchita	MA20257	DD179	Indust standard	D7E 1110	1110
	LIGND2004		Motouchite	11/120307	DD170	Robm	PN1420	
Agilent	10NP3094	DAP04-00	Mataushila	IVIA20337		RUIIII	RN142G	DAP 1321-03
Agilent	HSMP3895	2xBAP51-02	iviatsushita	MA2S372	BB1/9	Kohm	RN1425	BAP1321-02
Agilent	HSMP389B	BAP51-02	Matsushita	MA2S374	BB182	Rohm	RN731V	BAP50-03 ■
Agilent	HSMP389C	BAP64-04	Matsushita	MA357	BB153	Rohm	RN739D	BAP50-04
Agilent	HSMP389F	BAP51-05W	Matsushita	MA366	BB133	Rohm	RN739F	BAP50-04W
Hitachi	HSU277	BA951	Matsushita	MA366	BB148	Vishav	S503T	BE909(A)

2nd edition

RF Manual product & design manual for RF small signal discretes Page: 79

Vishay	S503TR	BF909(A)R	Alpha/Skyworks	SMP1321-011	BAP1321-03	Indust. standard	SST4858	BSR58
Vishay	S503TRW	BF909(A)WR	Alpha/Skyworks	SMP1321-075	BAP1321-04	Indust. standard	SST4859	BSR56
Vishay	S504T	BF904(A)	Alpha/Skyworks	SMP1321-079	BAP1321-02	Indust. standard	SST4860	BSR57
Vishay	S504TR	BF904(A)R	Alpha/Skyworks	SMP1322-004	BAP65-05	Indust. standard	SST4861	BSR58
Vishay	S504TRW	BF904(A)WR	Alpha/Skyworks	SMP1322-011	BAP65-03	Hitachi	TBB1004	BF1203
Vishay	S505T	BF1101	Alpha/Skyworks	SMP1322-074	BAP65-05W	Indust. standard	TMPF4091	PMBF4391
Vishay	S505TR	BF1101R	Alpha/Skyworks	SMP1322-079	BAP65-02	Indust. standard	TMPF4092	PMBF4392
Vishay	S505TRW	BF1101WR	Alpha/Skyworks	SMP1340-011	BAP63-03	Indust. standard	TMPF4093	PMBF4393
Vishay	S595T	BF1105	Alpha/Skyworks	SMP1340-079	BAP63-02	Indust. standard	TMPF4391	PMBF4391
Vishay	S595TR	BF1105R	Alpha/Skyworks	SMP1352-011	BAP64-03	Indust. standard	TMPF4392	PMBF4392
Vishay	S595TRW	BF1105WR	Alpha/Skyworks	SMP1352-079	BAP64-02	Indust. standard	TMPF4393	PMBF4393
Vishay	S949T	BF1109	Alpha/Skyworks	SMV1236-011	BB151	Indust. standard	TMPFB246A	BSR56
Vishay	S949TR	BF1109R	Alpha/Skyworks	SMV1263-079	BB143	Indust. standard	TMPFB246B	BSR57
Vishay	S949TRW	BF1109WR	Indust. standard	SST111	PMBFJ111	Indust. standard	TMPFB246C	BSR58
Vishay	S974T	BF1109	Indust. standard	SST112	PMBFJ112	Indust. standard	TMPFJ111	PMBFJ111
Vishay	S974TR	BF1109R	Indust. standard	SST113	PMBFJ113	Indust. standard	TMPFJ112	PMBFJ112
Vishay	S974TRW	BF1109WR	Indust. standard	SST174	PMBFJ174	Indust. standard	TMPFJ113	PMBFJ113
Alpha/Skyworks	SMP1302-004	BAP50-05	Indust. standard	SST175	PMBFJ175	Indust. standard	TMPFJ174	PMBFJ174
Alpha/Skyworks	SMP1302-005	BAP50-04	Indust. standard	SST176	PMBFJ176	Indust. standard	TMPFJ175	PMBFJ175
Alpha/Skyworks	SMP1302-011	BAP50-03	Indust. standard	SST177	PMBFJ177	Indust. standard	TMPFJ176	PMBFJ176
Alpha/Skyworks	SMP1302-074	BAP50-05W	Indust. standard	SST201	BFT46	Indust. standard	TMPFJ177	PMBFJ177
Alpha/Skyworks	SMP1302-075	BAP50-04W	Indust. standard	SST202	BFR31	Vishay	TSDF54040	BF1102
Alpha/Skyworks	SMP1302-079	BAP50-02	Indust. standard	SST203	BFR30	NEC	uPC2709	BGA2709
Alpha/Skyworks	SMP1304-001	BAP70-03	Indust. standard	SST308	PMBFJ308	NEC	uPC2711	BGA2711
Alpha/Skyworks	SMP1304-011	BAP70-03	Indust. standard	SST309	PMBFJ309	NEC	uPC2712	BGA2712
Alpha/Skyworks	SMP1307-001	BAP70-03	Indust. standard	SST310	PMBFJ310	NEC	uPC2745	BGA2001
Alpha/Skyworks	SMP1307-011	BAP70-03	Indust. standard	SST4391	PMBF4391	NEC	uPC2746	BGA2001
Alpha/Skyworks	SMP1320-004	BAP65-05	Indust. standard	SST4392	PMBF4392	NEC	uPC2748	BGA2748
Alpha/Skyworks	SMP1320-011	BAP65-03	Indust. standard	SST4393	PMBF4393	NEC	uPC2771	BGA2771
Alpha/Skyworks	SMP1320-074	BAP65-05W	Indust. standard	SST4416	PMBF4416	NEC	uPC8112	BGA2022
Alpha/Skyworks	SMP1321-001	BAP1321-03	Indust. standard	SST4856	BSR56		•	•
Alpha/Skyworks	SMP1321-005	BAP1321-04	Indust. standard	SST4857	BSR57			
			1	1				

http://www.semiconductors.philips.com/products/xref/

product & design manual for RF small signal discretes Page: 80

9. Packaging

Online package information on Philips Semiconductors website:

http://www.semiconductors.philips.com/package/

- Why packaging

RF Manual

2nd edition

Packaging of discrete dies has in general two purposes:

- Protection of the die against hostile environmental influences
- Making the handling much easier compared to using the small naked die.

In stead of sophisticated die- and wirebonding and encapsulation of the naked die, the relative easy processes of pick&place and softsoldering can be used.

- How to make present day packages

Majority of discrete packages these days are made according to the same principle: A die is soldered or glued on one of the leads (diepad) of a metal carrier (leadframe). The connections on top of the die are wirebonded to the rest of the leads(wedgetabs). The device is encapsulated in an epoxy compound, plated with PbSn or (in future) Pb-free solder, trim/formed, tested, marked and packed. These packages have leads which can be soldered to the PCB. Size is determined by leadframecapabilities, die- and wirebonding.

How to make future packages

The trend for future packages is clearly towards leadless concepts. This means that the contacts are underneath the package as solderpad or solderbump. Size is determined mainly by PCB and pick& place capabilities.

Concepts range from substrate/plastic combinations to naked dies with solderbumps. The last option is interesting for large dies or very small packages.

Following SMD packages are available:

LEADS		6			5	4	4	
SOT(D)	363	457	666	353	665	143B(R)	343N(R)	
SC	88	74		88A		(61B)		
Length [mm]	2.00	2.90	1.60	2.00	1.60	2.90	2.00	
Width [mm]	1.25	1.50	1.20	1.25	1.20	1.30	1.25	
Height [mm]	0.90	0.90	0.55	0.90	0.55	0.90	0.90	
Pwr [W]	300	500	300	300	300	250	250	
Body [mm ²]	2.50	4.35	1.92	2.50	1.92	3.80	2.50	
					•	•		,
LEADS					3			
SOT(D)	416	323	23	346	89	223	490	663
SC	75	70		59	62	73	89	
Length [mm]	1.60	2.00	2.90	2.90	4.50	6.50	1.60	1.60
Width [mm]	0.80	1.25	1.30	1.50	2.50	3.50	0.80	1.20
Height [mm]	0.80	0.90	0.90	1.10	1.50	1.60	0.70	0.55
Pwr [W]	200	250	250	250	1400	1500	250	250
Body [mm ²]	1.28	2.50	3.77	4.35	11.25	22.75	1.28	1.92
				1				
LEADS		2						
SOT(D)	323	523	723					
SC	76	79						
Longth [mana]	1 70	1 00	1.00					
	1.70	1.20	1.00					
vviatn [mm]	1.25	0.80	0.60					
	0.90	0.70	0.50					
Pwr [VV]	200	150	150					
Body [mm ²]	2.13	0.96	0.60					

RF Manua

product & design manual for RF small signal discretes Page: 82

Semiconductors

10. Promotion Materials

For samples or promotion materials below, please contact your Philips Account Manager or contact person in your region, see contacts & references.

Focus	Description	Deliverable	12NC
RF General	Your peRFect discretes partner	Brochure	9397 750 04634
RF General	PeRFectly tuned in to your ideas	Brochure	9397 750 07019
RF General	Standard Products Selection Guide 2002	Guide	9397 750 09014
RF General	The peRFect connection	Brochure	9397 750 07928
RF General	Philips Semiconductors comprehensive product portfolio	CDRom	9397 750 07536
RF General	Double polysilicon	Fact sheet	9397 750 04787
Packaging	Discrete Packages 2000	Brochure	9397 750 05988
Packaging	Discrete Semiconductor Packages	Databook SC18	9397 750 05011
Tuning	RF Tuning Sample Kit (available end of 2002)	Sample kit	Contact RSO
Tuning	Small-signal Field-effect Transistors and Diodes	Databook SC07	9397 750 06017
Pin diodes	Pin diodes designed for RF applications up to 3GHz	Leaflet	9397 750 08008
Pin diodes	Pin diodes	Replacement card	9397 750 08573
Pin diodes	Pin diodes	Sample kit *	9397 750 07299
MMIC's	Optimized MMICs Gain Blocks	Leaflet	9397 750 07976
MMIC's	MMICs	Sample kit *	9397 750 0978
MMIC's	RF Wideband Transistors and MMICs	Databook SC14	9397 750 06311
Wideband ampifiers	50 ohm gain block for IF, buffer and driver amplifier: BGA2709	Demoboard	Contact RSO
Wideband ampifiers	50 ohm gain block for IF, buffer and driver amplifier: BGA2711	Demoboard	Contact RSO
Wideband ampifiers	50 ohm gain block for IF, buffer and driver amplifier: BGA2712	Demoboard	Contact RSO
Wideband ampifiers	50 ohm gain block for IF, buffer and driver amplifier: BGA2748	Demoboard	Contact RSO
Wideband ampifiers	50 ohm gain block for IF, buffer and driver amplifier: BGA2771	Demoboard	Contact RSO
Wideband ampifiers	50 ohm gain block for IF, buffer and driver amplifier: BGA2776	Demoboard	Contact RSO
Wideband transistors	Wideband transistors	Linecard	9397 750 08634
Wideband transistors	RF Wideband Transistors and MMICs	Databook SC14	9397 750 06311
Wideband transistors	Wideband transistors	Sample kit *	9397 750 08553

ad *: contact your RSO

RF Manual product & design manual for RF small signal discretes Page: 83

11. Contacts & References

Online Royal Philips homepage:

http://www.philips.com/InformationCenter/Global/FHomepage.asp?lNodeId=13&lArticleId=

For support, look for your contact person in your region:

2nd edition

Europe:		
Paul Scheepers	+31-40-2737673	paul.scheepers@philips.com
Marten Martens	+31-40-2737528	marten.martens@philips.com
Andreas Fix (technical support)	+49-9081804 -132	andreas.fix@rood.de

Asia Pacific:

Wilson Wong	(Tuning)	+65-6882 3639	wilson.mun.ho.wong@philips.com
Bennett Hua	(WB/MMIC)	+886-2-2382 3224	bennett.hua@philips.com
Richard Xu	(China)	+86-21-63541088	richard.xu@philips.com

North America:

Paul Wilson	+1-508 851-2254	paul.wilson@philips.com
Ercan Sengil (technical support)	+1-508 851-2236	ercan.sengil@philips.com

Editor: Ronald Thissen, +31-24-3536195, <u>ronald.thissen@philips.com</u> International Product Marketeer RF Consumer Products

> Philips Semiconductors B.V. BU Mobile Communications, BL RF Modules Gerstweg 2, 6534 AE Nijmegen, The Netherlands