Linear IC Converter

CMOS

D/A Converter for Digital Tuning (Compatible with ${ }^{2} \mathrm{C}$ Bus)

MB88141A

- DESCRIPTION

The FUJITSU MB88141A is an 8-bit D/A converter with 12 built-in channels.
The 12 analog output channels have built-in OP Amps, providing large current drive capability.
Data input is compatible with $I^{2} \mathrm{C}$ specifications, and is controlled by two control lines.
The built-in I/O expander function allows the MB88141A to be controlled by devices incompatible with $I^{2} \mathrm{C}$ bus specifications (provides conversion between $I^{2} \mathrm{C}$ serial and 8 - or 4 -bit parallel I/O).
The MB88141A is ideal for replacing electronic knob or pre-set variable resistance tuning devices.

- FEATURES

- Ultra-low power consumption ($0.9 \mathrm{~mW} /$ channel Typ.)
- Ultra-compact package
- Built-in 12-channel R-2R type 8-bit D/A converter
- Built-in analog output amplifier (maximum sink current 1.0 mA , maximum source current 1.0 mA)
- Analog output range 0 V to Vcc
(Continued)

PACKAGES

24-pin plastic DIP
(FIP-24P-M02)
(FPT-24P-M01)

[^0]
MB88141A

(Continued)

- 5 V single power supply
- Power supply/GND for MCU interface and OP Amp is separate from power supply/GND for D/A converter
 AO12) , allowing separate level settings for each system
- Compatible with serial data input, $I^{2} \mathrm{C}$ specifications
- Built-in I/O expander function (converts between $I^{2} \mathrm{C}$ serial and 8-or 4-bit parallel)
- CMOS process
- Packages : DIP 24-pin, SOP 24-pin, SSOP 24-pin

PIN ASSIGNMENT

PIN DESCRIPTION

Pin no.	Symbol	Circuit Type	1/0	Description
21	SDA	C	I/O	${ }^{1}{ }^{2} \mathrm{C}$ bus data input/output pin (hysteresis input). Outputs the acknowledge signal.
20	SCL	B	1	$1^{2} \mathrm{C}$ bus shift clock input pin (hysteresis input)
19	MOD	A	1	D/A converter and I/O expander mode switching pin. *1,*2 Input "L" to operate as a D/A converter, " H " to operate as I/O expander and D/A converter.
$\begin{aligned} & \hline 16 \\ & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { CS0 } \\ & \text { CS1 } \\ & \text { CS2 } \end{aligned}$	A	1	These pins set the lower 3 bits of the slave address. *1 This allows up to eight MB88141A chips to be used on the same bus line.
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	AO1 AO2 AO3 AO4	D	0	8-bit D/A outputs with OP Amp. *2
$\begin{gathered} \hline 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	A05/D7 A06/D6 A07/D5 AO8/D4 AO9/D3 AO10/D2 AO11/D1 AO12/D0	E	I/O	8-bit D/A outputs with OP Amp. *2 In I/O expander operation, these pins function as parallel data input/output pins.
13	VCC	Power supply	-	Power supply pin for digital circuits and OP Amp.
24	GND	GND	-	GND pin for digital circuits and OP Amp.
22	VDD1	Power supply	-	Reference power supply pin for D/A converter (H) . AO1 to AO4.
23	VSS1	Power supply	-	Reference power supply pin for D/A converter (L) . AO1 to AO4.
15	VDD2	Power supply	-	Reference power supply pin for D/A converter (H) . AO5 to AO12.
14	VSS2	Power supply	-	Reference power supply pin for D/A converter (L) . AO5 to AO12.

*1: The MOD and CS0-CS2 pins should be used with fixed level input.
*2: When using the I/O expander function together with the D/A converter function, take care that D/A converter output precision is within a range that will not affect overall system operation.

BLOCK DIAGRAM

MB88141A

I/O CIRCUIT TYPE

| Type | Remarks |
| :--- | :--- | :--- | :--- | :--- |

(Continued)
(Continued)

Type	Circuit	Remarks
E		Analog/digital input/output pin

Note: Circuit types B and C are $I^{2} \mathrm{C}$ bus pins. Caution should be taken in using these pins because when the VCC power is off current from the $I^{2} \mathrm{C}$ bus line power supply VCCS can enter the VCC side of the device power supply.

MB88141A

DATA CONFIGURATION

The MB88141A has the following data configuration the two operating modes (D/A converter (12-channel) and I/O expander plus D/A converter), selected by the MOD pin.

1. For D/A Converter (12-channel) Operation (MOD = "L")
(1) $I^{2} C$ Bus Format

First	$\mathrm{S} \longrightarrow \longrightarrow \mathrm{SO}$	R/W		$\mathrm{C} 7 \longrightarrow \mathrm{CO}$		D7 \longrightarrow D0	Last	
S	Slave address (7 bits)	0	A	Channel selection (8 bits)	A	D/A data (8 bits)	A	P

\square
Sent from master device
S : "Start" condition
\square : Sent from MB88141A (slave device)
P : "Stop" condition
A : "Acknowledge" output
(2) Slave Address Comparison (7 bits)

Slave address input (7 bits)						
S6	S5	S4	S3	S2	S1	S0
1	0	0	1	0	0	0
1	0	0	1	0	0	1
1	0	0	1	0	1	0
1	0	0	1	0	1	1
1	0	0	1	1	0	0
1	0	0	1	1	0	1
1	0	0	1	1	1	0
1	0	0	1	1	1	1

Internally fixed				Externally set		
CS6	CS5	CS4	CS3	CS2	CS1	CSO
1	0	0	1	0	0	0
1	0	0	1	0	0	1
1	0	0	1	0	1	0
1	0	0	1	0	1	1
1	0	0	1	1	0	0
1	0	0	1	1	0	1
1	0	0	1	1	1	0
1	0	0	1	1	1	1

Address comparison: Operates only for devices whose own slave address (internally fixed CS6 to CS3 and externally set CS2 to CSO) matches the slave address input value.
(3) R/W Selection (1 bit)

Fixed at " 0 " (the D/A converter performs write operations only).
(4) Channel Selection (8 bits)

C7	C6	C5	C4	C3	C2	C1	C0	Channel select
\times	\times	\times	\times	0	0	0	0	All channels selected *1
\times	\times	\times	\times	0	0	0	1	AO1 selected
1	1	1	1	1	1	1	1	1
\times	\times	\times	\times	1	1	0	0	AO12 selected
\times	\times	\times	\times	1	1	0	1	Don't Care
\times	\times	\times	\times	1	1	1	0	Don't Care
\times	\times	\times	\times	1	1	1	1	All channels selected *2

x : Don't Care
*1: The 1 byte of data following the channel selection is set on all channels (all channels set to same data value).

S	Slave address (7 bits)	0	A	$\mathrm{X} \times \times \times 0000$	A	D / A data (8 bits)	A	P

*2: The 12 bytes of data following the channel selection are set on all channels (all channels set to separate data values).

S	Slave address	0	A	X X X X1 1111	A	AO1 data	A	\ldots	AO12 data	A

Sent from master device
 : Sent from MB88141A (slave device)
S : "Start" condition P : "Stop" condition A :"Acknowledge" output
Note: Setting will repeat, continuing in order from ch1, until the start and stop conditions are acknowledged.
(5) D/A Data (8 bits)

D7	D6	D5	D4	D3	D2	D1	D0	D/A output
0	0	0	0	0	0	0	0	$\cong V_{\text {ss }}$
0	0	0	0	0	0	0	1	$\cong\left(V_{\text {REF }} / 256\right) \times 1+\mathrm{V}_{\text {ss }}$
0	0	0	0	0	0	1	0	$\cong\left(V_{\text {REF }} / 256\right) \times 2+\mathrm{V}_{\text {ss }}$
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	$\cong\left(V_{\text {REF }} / 256\right) \times 254+\mathrm{V}_{\text {ss }}$
1	1	1	1	1	1	1	1	$\cong\left(V_{\text {REF }} / 256\right) \times 255+\mathrm{V}_{\text {ss }}$

Note: $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$

MB88141A

2. For D/A Converter + I/O Expander Operation (MOD = "H")

(1) $I^{2} C$ Bus Format

(2) Slave Address Comparison (7 bits)

Slave address comparison is the same as for D/A converter (12-channel) operation (see "1. (2) "Slave Address Comparison"), with the exception that the CS2 setting determines the number of D/A converter channels and the number of $1 / \mathrm{O}$ expander bits.

CS2	D/A converter	I/O expander
0	4 channels (AO1 to AO4)	8 bits (D7 to D0)
1	8 channels (AO1 to AO8)	4 bits (D3 to D0)

When CS2 $=$ " 1 " is selected, the upper 4 bits (D7 to D4) of write operations (I ${ }^{2} \mathrm{C}$ bus to parallel interface) are ignored, and the upper 4 bits of read operations (parallel interface to $I^{2} \mathrm{C}$ bus) are output at " 0 " (low) .
(3) R/W Selection (1 bit)

R/W	I/O expander operation	D/A converter operation
0	$I^{2} C$ bus input \rightarrow parallel data output	$I^{2} C$ bus input \rightarrow analog output
1	Parallel data input $\rightarrow I^{2} \mathrm{C}$ bus output	-

(4) Channel Selection (8 bits)

C7	C6	C5	C4	C3	C2	C1	C0	Channel select
\times	\times	\times	\times	0	0	0	0	I/O expander operation
\times	\times	\times	\times	0	0	0	1	AO1 selected
1	1	1	1	1	1	1	1	1
\times	\times	\times	\times	0	1	0	0	AO4 selected
\times	\times	\times	\times	0	1	0	1	Don't care (AO5 selected)
1	1	1	1	1	1	1	1	1
\times	\times	\times	\times	1	0	0	0	Don't care (AO8 selected)
\times	\times	\times	\times	1	0	0	1	Don't Care
1	1	1	1	1	1	1	1	1
\times	\times	\times	\times	1	1	1	0	Don't Care
\times	\times	\times	\times	1	1	1	1	I/O expander continuous operation

(): When using D/A converter 8 channel, I/O expander 4 bit operation.
x : Don't Care

(5) D/A Data (8 bits)

Same as "1 (5) D/A Data (8 bits)".

(6) I/O Expander Continuous Operation

$\mathrm{I}^{2} \mathrm{C}$ bus input \rightarrow parallel data output

S	Slave address	0	A	$\mathrm{XX} \times \mathrm{X} 1111$	A	Digital data	A	\cdots	Digital data	A

Note: In continuous operation, operation continues until start and stop conditions are acknowledged.
Parallel data input $\rightarrow \mathrm{I}^{2} \mathrm{C}$ bus output

S	Slave address	1	A	Digital data	A	Digital data	A	\ldots	Digital data	A	P

$\square:$Sent from master device \square : Sent from MB88141A (slave device)
S : "Start" condition P : "Stop" condition A : "Acknowledge" output

TIMING DIAGRAM (I²C BUS SPECIFICATIONS)

ANALOG OUTPUT VOLTAGE RANGE

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating		Unit
			Min.	Max.	
Supply voltage	Vcc	With reference to GND, at $\mathrm{Ta}=+25^{\circ} \mathrm{C}$	-0.3	+7.0 *	V
	VDD		-0.3	+7.0 *	V
	Vss		-0.3	+7.0 *	V
Input voltage	VIN		-0.3	$\mathrm{V} c \mathrm{c}+0.3$	V
Output voltage	Vout		-0.3	V cc +0.3	V
Power consumption	PD	-	-	250	mW
Operating temperature	Ta	-	-20	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-	-55	+120	${ }^{\circ} \mathrm{C}$

*: $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{DD} 1} \geq \mathrm{V}_{\mathrm{SS} 1}, \mathrm{~V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{DD} 2} \geq \mathrm{V}_{\mathrm{SS} 2}$
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Supply voltage 1	Vcc	-	4.50	5.00	5.50	V
	GND	-	-	0	-	V
Supply voltage 2	Vod1	$\begin{aligned} & V_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{DD} 1}>\mathrm{V}_{\mathrm{SS} 1} \\ & \mathrm{~V}_{\mathrm{DD} 1}-\mathrm{V}_{\mathrm{SS} 1} \geq 2.0 \mathrm{~V} \end{aligned}$	2.00	-	Vcc	V
	Vss1		0.00	-	3.50	V
Supply voltage 3	VDD2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{\mathrm{SS} 2} \\ & \mathrm{~V}_{\mathrm{DD} 2}-\mathrm{V}_{\mathrm{SS} 2} \geq 2.0 \mathrm{~V} \end{aligned}$	2.00	-	Vcc	V
	Vss2		0.00	-	3.50	V
Analog output current	$\mathrm{I}_{\text {AL }}$	Source current	0	-	1.00	mA
	IAH	Sink current	0	-	1.00	mA
Oscillator limit output capacitance	Col	-	-	-	1.00	$\mu \mathrm{F}$
Digital data setting range	-	-	\#00	-	\#FF	-
Operating temperature	Ta	-	-20	-	+85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB88141A

- ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(1) Digital Circuits
$\left(\mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Supply voltage	Vcc	VCC	-	4.50	5.00	5.50	V
Supply current	Icc		$\mathrm{SCL}=400 \mathrm{kHz},$ no load	-	1.00	3.70	mA
Input leak current	lıк	$\begin{gathered} \hline \text { SDA, SCL } \\ \text { CS0, CS1 } \\ \text { CS2, MOD } \\ \text { D0 to D7 } \end{gathered}$	$\mathrm{V}_{\text {If }}=0$ to $\mathrm{V}_{\text {cc }}$	-10	-	+10	$\mu \mathrm{A}$
"L" level input voltage	VIL		-	0	-	0.30 Vcc	V
"H" level input voltage	V_{H}		-	0.70 Vcc	-	Vcc	V
Input hysteresis width	Vhrs	SDA, SCL	-	0.05 Vcc	-	-	V
"H" level output voltage	Vor	D0 to D7	Іон $=-400 \mu \mathrm{~A}$	Vcc - 0.4	-	-	V
"L" level output voltage	Vol1		$\mathrm{loL}=2.5 \mathrm{~mA}$	-	-	0.40	
	Vol2	SDA	$\mathrm{loL}=3.0 \mathrm{~mA}$	-	-	0.40	V
	Vol3		$\mathrm{loL}=6.0 \mathrm{~mA}$	-	-	0.60	

(2) Analog Circuits 1
$\left(\mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Current consumption	lod	VDD1, VDD2	No load $\operatorname{lDD}=\operatorname{lDD} 1+l_{\mathrm{lDD} 2}$	-	1.20	2.50	mA
	V ${ }_{\text {d }}$		$\begin{aligned} & V_{\mathrm{DD} 1}-\mathrm{V}_{\mathrm{SS} 1} \geq 2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 2}-\mathrm{V}_{\mathrm{SS} 2} \geq 2.0 \mathrm{~V} \end{aligned}$	2.0	-	Vcc	V
Analog voltage	Vss	$\begin{aligned} & \text { VSS1, } \\ & \text { VSS2 } \end{aligned}$		GND	-	3.5	
Resolution	Res	$\begin{gathered} \text { AO1 } \\ \text { to } \\ \text { AO12 } \end{gathered}$	No load $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2} \leq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$ $\mathrm{V}_{\mathrm{ss} 1}, \mathrm{~V}_{\mathrm{ss} 2} \geq 0.1 \mathrm{~V}$	-	8	-	bit
Monotonic increase	Rem			-	8	-	bit
Non-linearity error	LE			-1.5	-	+1.5	LSB
Differential linearity error	DLE			-1.0	-	+1.0	LSB

Non-linearity error :
Error in the input/output curve with respect to a straight line connecting output voltage at "00" and output voltage at "FF" levels.
Differential linearity error :
Deviation from ideal voltage with respect to a 1-bit increase in digital value.

Note: $\mathrm{V}_{\mathrm{AOH}}$ and V_{DD}, as well as $\mathrm{V}_{\mathrm{AOL}}$ and $\mathrm{V}_{\text {ss }}$ are not necessarily the same values.

(3) Analog Circuits 2

$$
\left(\mathrm{VCC}=\mathrm{VDD} 1=\mathrm{VDD} 2=+5 \mathrm{~V}, \mathrm{GND}=\mathrm{VSS} 1=\mathrm{VSS} 2=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions		Value			Unit
					Min.	Typ.	Max.	
Output minimum voltage 1	$\mathrm{V}_{\text {AOL1 }}$	$\begin{gathered} \mathrm{AO} 1 \\ \text { to } \\ \mathrm{AO} 12 \end{gathered}$	$\mathrm{I}_{\mathrm{AL}}=0 \mu \mathrm{~A}$	Digital data "00"	Vss	-	Vss +0.1	V
Output minimum voltage 2	$\mathrm{V}_{\text {AOL2 }}$		$\mathrm{I}_{\mathrm{AL}}=500 \mu \mathrm{~A}$		Vss - 0.2	Vss	$\mathrm{Vss}+0.2$	V
Output minimum voltage 3	$\mathrm{V}_{\text {aol3 }}$		$\mathrm{I}_{\text {AH }}=500 \mu \mathrm{~A}$		Vss	-	$\mathrm{Vss}+0.2$	V
Output minimum voltage 4	$\mathrm{V}_{\text {AOL4 }}$		$\mathrm{I}_{\mathrm{AL}}=1.0 \mathrm{~mA}$		Vss - 0.3	Vss	$\mathrm{Vss}+0.3$	V
Output minimum voltage 5	$\mathrm{V}_{\text {AOL5 }}$		$\mathrm{I}_{\text {AH }}=1.0 \mathrm{~mA}$		Vss	-	$V s s+0.3$	V
Output maximum voltage1	$\mathrm{V}_{\text {AOH1 }}$		$\mathrm{I}_{\mathrm{AL}}=0 \mu \mathrm{~A}$	Digital data "FF"	VDD - 0.1	-	VDD	V
Output maximum voltage2	$\mathrm{V}_{\text {AOH2 }}$		$\mathrm{I}_{\mathrm{AL}}=500 \mu \mathrm{~A}$		VDD - 0.2	-	Vdd	V
Output maximum voltage3	$\mathrm{V}_{\text {AOH3 }}$		$\mathrm{I}_{\text {AH }}=500 \mu \mathrm{~A}$		$V_{D D}-0.2$	VDD	$V_{D D}+0.2$	V
Output maximum voltage4	$\mathrm{V}_{\text {AOH4 }}$		$\mathrm{I}_{\mathrm{AL}}=1.0 \mathrm{~mA}$		VDD - 0.3	-	Vod	V
Output maximum voltage5	$\mathrm{V}_{\text {AOH5 }}$		$\mathrm{I}_{\text {AH }}=1.0 \mathrm{~mA}$		VDD - 0.3	VDD	$V_{D D}+0.3$	V

MB88141A

2. AC Characteristics

Parameter			Symbol	Condition			alue		Unit	
			Standard mode		High-speed mode					
			Min.		Max.	Min.	Max.			
SCL clock	frequency			fscl	-	0	100	0	400	kHz
Bus free tim and "start"	me between condition	"stop" condition		tbuf	-	4.7	-	1.3	-	
Hold time The first clock this interval	(resend) "st ock pulse is al.	art" condition. generated after	thd ; STA	-	4.0	-	0.6	-		
SCL clock	low hold tim		tow	-	4.7	-	1.3	-	us	
SCL clock	high hold tim		thigh	-	4.0	-	0.6	-		
Resend "s	tart" conditio	n setup time	tsu ; sta	-	4.7	-	0.6	-		
Data hold	time		thd ; dat	-	0	-	0	0.9		
Data setup	time		tsu ; DAT	-	250	-	100	-		
SDA and S	SCL signal fald	all time	t_{R}	-	-	1000	$20+0.1 \mathrm{Cb}$	300	ns	
SDA and S	CL signal ris	rise time	tF	-	-	300	$20+0.1 \mathrm{Cb}$	300		
"Stop" con	dition setup	time	tsu ; sto	-	4.0	-	0.6	-	$\mu \mathrm{s}$	
Pulse widt filter	of spike su	uppressed by input	tsp	-	-	-	0	50	ns	
Output fall time when bus capacitance is between 10 pF and 400 pF		Sink current 3mA	tof	-	-	250	$20+0.1 \mathrm{Cb}$	250		
		Sink current 6mA		-	-	-	$20+0.1 \mathrm{Cb}$	250		
${ }^{12} \mathrm{C}$ bus line capacitance load			Cb	-	-	400	-	400	pF	
D/A	Analog output settling time		toL; AO	*1	-	100	-	100	$\mu \mathrm{s}$	
I/O expander	Digital output delay time		tol; Do	*2	-	300	-	300	ns	
	Input open time		toz; DI	*3	200	-	200	-		
	Digital input setup time		tsu; DI	-	250	-	100	-		
	Digital input hold time		thr; DI	-	0.9	-	0.9	-	$\mu \mathrm{s}$	

*1: Load condition 1

*2: Load condition 2

*3 : The I/O expander input open time value applies to a read operation following an I/O write operation, or to an I/O write operation following a read operation.

- Input/Output Timing

MB88141A

■ ORDERING INFORMATION

Part number	Package	Remarks
MB88141AP	24-pin plastic DIP	
MB88141APF	(DIP-24P-M02)	
MB88141APFV	(FPT-24P-M01)	

PACKAGE DIMENSIONS

MB88141A

(Continued)

© 2000 FUJTSU LIMTED F24075-SC-5

MB88141A

(Continued)
24-pin plastic SSOP
(FPT-24P-M03)
Note) * marked dimensions do not include resin residues.

© 2000 FUJITSU LIMITED F200188-2C-3

FUJITSU LIMITED

For further information please contact:

 JapanFUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280

Korea

Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0101

© FUJITSU LIMITED Printed in Japan

[^0]: "Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips."

