TN5320A — PNP High Voltage Amplifier

TN5320A PNP High Voltage Amplifier

- This device is designed for general purpose medium power amplifiers and switches requiring collector currents to 1.5 A.
- · Sourced from Process 34.

TO-226

1. Collector 2. Base 3. Emitter

Absolute Maximum Ratings* T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	75	V
V _{CEO}	Collector-Emitter Voltage	75	V
V _{EBO}	Emitter-Base Voltage	7	V
I _C	Collector Current - Continuous	500	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 ~ +150	°C

^{*} This ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES

- 1) These rating are based on a maximum junction temperature of 150 degrees ${\sf C}.$
- 2) These are steady limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
- 3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Max.	Units	
P_{D}	Total Device Dissipation	1.0	mW	
	Derate above 25°C	8.0	mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	50	°C/W	

1

$\textbf{Electrical Characteristics*} \ \, \textbf{T}_{a} = 25 \text{xC unless otherwise noted}$

Symbol	Parameter	Test Condition	Min.	Max.	Units

Off Characteristics

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 100 \text{mA}, I_B = 0$	75		٧
		Vce = 100 V, VBE = 1.5 V (rev.)		100	μΑ
I _{CEX}	Collector Cut-off Current	Vce = 70 V, Vbe = 1.5 V (rev.) T = +150 °C		5	mA
I _{EBO}	Emitter Cut-off Current	V _{EB} = 7.0 V		100	μА

On Characteristics

h _{FE}	DC Current Gain	$V_{CE} = 4.0 \text{ V, } I_{C} = 0.5 \text{ mA},$ $V_{CE} = 2.0 \text{ V, } I_{C} = 1.0 \text{ mA},$	30 10	130	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	Ic = 500 mA, I _B = 50 mA		0.5	V
V _{BE} (on)	Base-Emitter Voltage	Vce = 4.0 V, Ic = 500 mA		1.1	V

^{*} Pulse Test: Pulse Width ≤ 300ms, Duty Cycle = 2%

NOTES

¹⁾ All voltages (V) and currents (A) are negative polarity for PNP transistors.

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™

Current Transfer Logic™ EcoSPARK®

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™

FACT®
FAST®
FastvCore™
FPS™
FRFET®

Global Power ResourceSM

Green FPS™
Green FPS™ e-Series™
GTO™

i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™
MicroFET™
MicroPak™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®

PDP-SPM™ Power220® Power247[®]
POWEREDGE[®]
Power-SPMTM
PowerTrench[®]

Programmable Active Droop™

QFET[®] QS™

QT Optoelectronics[™] Quiet Series[™] RapidConfigure[™] SMART START[™] SPM[®]

STEALTHTM
SuperFETTM
SuperSOTTM-3
SuperSOTTM-6

SuperSOT™-8 SvncFET™

The Power Franchise®

per wer TinyBoost™

TinyBoost
TinyLogic®
TINYOPTOTM
TinyPowerTM
TinyPWMTM
TinyWireTM
µSerDesTM
UHC®
UniFETTM
VCXTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I30