

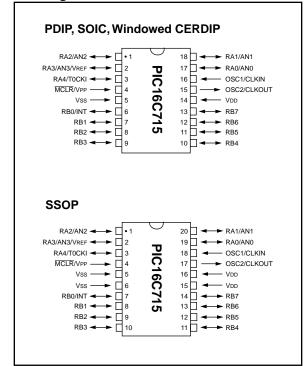
8-Bit CMOS Microcontroller with A/D Converter

High-performance RISC CPU:

- Only 35 single word instructions to learn
- All single cycle instructions (200 ns) except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- 2K x 14 on-chip EPROM program memory
- 128 x 8 general purpose registers (SRAM)
- 18 special function hardware registers
- · Interrupt capability
- · Eight level deep hardware stack
- · Direct, indirect, and relative addressing modes

Peripheral Features:

- 13 I/O pins with individual direction control
- · High current sink/source for LED drive
- Timer0: 8-bit timer/counter with 8-bit prescaler
- · 8-bit multi-channel analog-to-digital converter


Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Brown-out detection circuitry for Brown-out Reset (BOR)
- Programmable code-protection
- Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations
- Program Memory Parity Error checking circuitry with Parity Error Reset (PER)

CMOS Technology:

- Low-power, high-speed CMOS EPROM technology
- · Fully static design
- Wide operating voltage range: 3.0V to 5.5V
- Commercial, Industrial and Automotive temperature ranges
- Low-power consumption:
 - < 2 mA @ 5V, 4 MHz
 - 15 μA typical @ 3V, 32 kHz
 - < 1 μA typical standby current

Pin Diagrams

Table of Contents

1.0	General Description	3
2.0	General DescriptionPIC16C715 Device Varieties	5
3.0	Architectural Overview	7
4.0	Memory Organization	11
5.0	I/O Ports	23
6.0	Timer0 Module	29
7.0	Analog-to-Digital Converter (A/D) Module	35
8.0	Special Features of the CPU	45
9.0	Instruction Set Summary	61
10.0	Development Support	75
11.0	Electrical Characteristics for PIC16C715	79
12.0	Packaging Information	
Appe	endix A:	
Appe	endix B: Compatibility	99
Appe	endix C: PIC16/17 Microcontrollers	101
	(
	6C715 Product Identification System	

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC16C715 device is a low-cost, high-performance, CMOS, fully-static, 8-bit microcontroller with integrated analog-to-digital (A/D) converter, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C715 device has 128 bytes of RAM and 13 I/O pins. In addition a timer/counter is available. Also a 4-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C715 device has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C715 device fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C715 very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, communications and coprocessor applications).

1.1 Family and Upward Compatibility

The PIC16C715 is compatible with other members of the PIC16C7X family.

1.2 <u>Development Support</u>

The PIC16C715 device is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available.

TABLE 1-1: PIC16C7XX FAMILY OF DEVICES

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	1K	2K	2K
	Data Memory (bytes)	36	36	68	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	_	_	_	_	1
	Serial Port(s) (SPI/I ² C, USART)	_	_	_	_	SPI/I ² C
	Parallel Slave Port	_	_	_	_	_
	A/D Converter (8-bit) Channels	4	4	4	4	5
	Interrupt Sources	4	4	4	4	8
	I/O Pins	13	13	13	13	22
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-5.5	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	_	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP

		PIC16C73	PIC16C73A	PIC16C74	PIC16C74A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	4K	4K
	Data Memory (bytes)	192	192	192	192
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	_	_	Yes	Yes
	A/D Converter (8-bit) Channels	5	5	8	8
	Interrupt Sources	11	11	12	12
	I/O Pins	22	22	33	33
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	3.0-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
Features	Brown-out Reset	_	Yes	_	Yes
	Packages	28-pin SDIP, SOIC	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7X Family devices use serial programming with clock pin RB6 and data pin RB7.

2.0 PIC16C715 DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C715 Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C715, there are two device "types" as indicated in the device number:

- C, as in PIC16C715. These devices have EPROM type memory and operate over the standard voltage range.
- LC, as in PIC16LC715. These devices have EPROM type memory and operate over an extended voltage range.

2.1 <u>UV Erasable Devices</u>

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PICSTART® and PRO MATE® programmers both support the PIC16C715. Third party programmers also are available; refer to the Microchip Third Party Guide for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses also allow instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C7X device.

Device	Program Memory	Data Memory		
PIC16C710	512 x 14	36 x 8		
PIC16C71	1K x 14	36 x 8		
PIC16C711	1K x 14	68 x 8		
PIC16C715	2K x 14	128 x 8		
PIC16C72	2K x 14	128 x 8		
PIC16C73	4K x 14	192 x 8		
PIC16C73A	4K x 14	192 x 8		
PIC16C74	4K x 14	192 x 8		
PIC16C74A	4K x 14	192 x 8		

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a $\overline{\text{digit borrow}}$ out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 3-1: PIC16C715 BLOCK DIAGRAM

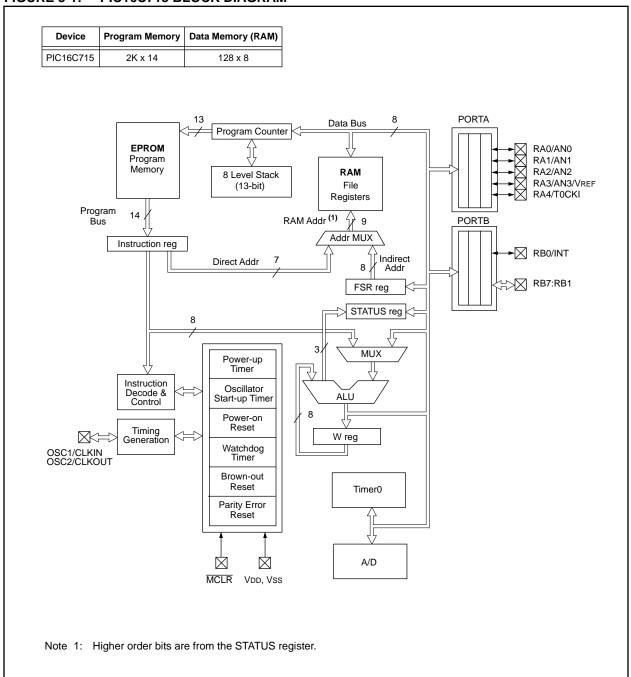


TABLE 3-1: PIC16C715 PINOUT DESCRIPTION

Pin Name	DIP Pin#	SSOP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	16	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	17	I/O	TTL	Analog input0
RA1/AN1	18	20	18	I/O	TTL	Analog input1
RA2/AN2	1	1	1	I/O	TTL	Analog input2
RA3/AN3/VREF	2	2	2	I/O	TTL	Analog input3/VREF
RA4/T0CKI	3	3	3	I/O	ST	Can also be selected to be the clock input to the Timer0 module. Output is open drain type.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	6	7	6	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	8	7	I/O	TTL	
RB2	8	9	8	I/O	TTL	
RB3	9	10	9	I/O	TTL	
RB4	10	11	10	I/O	TTL	Interrupt on change pin.
RB5	11	12	11	I/O	TTL	Interrupt on change pin.
RB6	12	13	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	14	13	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Vss	5	5, 6	5	Р	_	Ground reference for logic and I/O pins.
VDD	14	15, 16	14	Р	_	Positive supply for logic and I/O pins.

Legend: I = input O = output

— = Not used

I/O = input/output TTL = TTL input P = power ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

^{2:} This buffer is a Schmitt Trigger input when used in serial programming mode.

^{3:} This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 <u>Instruction Flow/Pipelining</u>

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

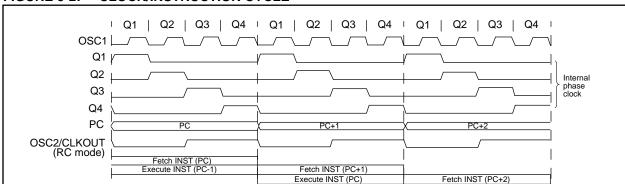
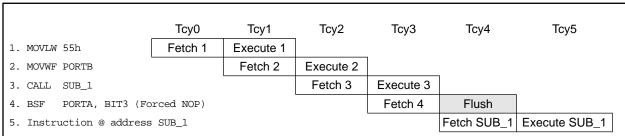
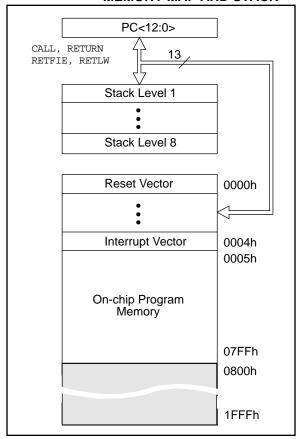



FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C715 has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC16C715 only the first 2K x 14 (0000h-07FFh) is implemented. Accessing a location above the physically implemented address will cause a wraparound. The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C715 PROGRAM
MEMORY MAP AND STACK

4.2 <u>Data Memory Organization</u>

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow Bank 1$

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-2: PIC16C715 REGISTER FILE MAP

	MAP		
File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h	General Purpose	General Purpose	A0h
	Register	Register	BFh
			C0h
l			
[7 /
7Fh	Bank 0	Bank 1	FFh
	Dank	Dank i	
	Unimplemented da as '0'. Not a physical regi:		ons, read
	_		

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (no	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's register	г						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ram Counter's (PC) Least Significant Byte 0000 0000 0000 0000								
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	lirect data memory address pointer xxxx xxxx uuuu uuuu								
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Da	ORTB Data Latch when written: PORTB pins when read xxxx xxxx uuuu uuuu								
07h	_	Unimpleme	Unimplemented — —								
08h	_	Unimpleme	Inimplemented — — —								
09h	_	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_	_	_	_	_	-0	-0
0Dh	_	Unimpleme	nted							_	_
0Eh	_	Unimpleme	nted							_	_
0Fh	_	Unimpleme	nted							_	_
10h	_	Unimpleme	nted							_	_
11h	_	Unimpleme	nted							_	_
12h	_	Unimpleme	nted							_	_
13h	_	Unimpleme	nted							_	_
14h	_	Unimpleme	nted							_	_
15h	_	Unimpleme	nted							_	_
16h	_	Unimpleme	nted							_	_
17h	_	Unimpleme	nted							_	_
18h	_	Unimpleme	nted							_	_
19h	_	Unimpleme	nted							_	_
1Ah	_	Unimpleme	nted							_	_
1Bh	_	Unimpleme	nted							_	_
1Ch	_	Unimpleme	nted							_	_
1Dh	_	Unimpleme	nted							_	_
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 - 3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 - 4: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.

TABLE 4-1: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (CONT.)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)	
Bank 1												
80h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000	
81h	OPTION	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
82h ⁽¹⁾	PCL	Program Co	Counter's (PC) Least Significant Byte									
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu	
84h ⁽¹⁾	FSR	Indirect dat	a memory ad	dress pointe	r		•			xxxx xxxx	uuuu uuuu	
85h	TRISA	_	_	PORTA Dat	a Direction F	Register				11 1111	11 1111	
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111	
87h	_	Unimpleme	nted							_	_	
88h	_	Unimpleme	nted							_	_	
89h	_	Unimpleme	nted							_	_	
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000	
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
8Ch	PIE1	_	ADIE	_	_	_	_	_	_	-0	-0	
8Dh	_	Unimpleme	nted			'		'		_	_	
8Eh	PCON	MPEEN	_	_	_	_	PER	POR	BOR	u1qq	u1uu	
8Fh	_	Unimpleme	nted		'					_	_	
90h	_	Unimpleme	nted							_	_	
91h	_	Unimpleme	nted							_	_	
92h	_	Unimpleme	nted							_	_	
93h	_	Unimpleme	nted							_	_	
94h	_	Unimpleme	nted							_	_	
95h	_	Unimpleme	nted							_	_	
96h	_	Unimpleme	nted							_	_	
97h	_	Unimpleme	nted							_	_	
98h	_	Unimpleme	nted							_	_	
99h	_	Unimpleme	nted							_	_	
9Ah	_	Unimpleme	nted							_	_	
9Bh	_	Unimpleme	nted							_	_	
9Ch	_	Unimpleme	nted							_	_	
9Dh	_	Unimpleme	nted							_	_	
9Eh	_	Unimpleme	nted							_	_	
9Fh	ADCON1	_	_	_	_	_	_	PCFG1	PCFG0	00	00	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

- 3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
- 4: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.

^{2:} The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

4.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 4-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16C715 and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP bit7	RP1	RP0	TO	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
oit 7:	1 = Bank : 0 = Bank	2, 3 (100h 0, 1 (00h -	- 1FFh) FFh)		ndirect add	-		- n = Value at POR reset
bit 6-5:	11 = Bank 10 = Bank 01 = Bank 00 = Bank	< 3 (180h - < 2 (100h - < 1 (80h - F < 0 (00h - 7	1FFh) 17Fh) Fh) Fh)	·	ed for direct		•	clear.
oit 4:				struction, o	or SLEEP ins	struction		
bit 3:	1 = After p	er-down bit bower-up o ecution of t						
bit 2:		esult of an			peration is a			
bit 1:	1 = A carr	y-out from	the 4th lov	v order bi	, SUBLW, SU of the resu oit of the res	It occurred		porrow the polarity is reversed)
bit 0:	1 = A carr 0 = No ca Note: For	y-out from rry-out fror borrow the perand. Fo	the most s n the mos polarity is	significant t significa s reversec		esult occurr result occu ion is exec	ed irred outed by add	ding the two's complement of t either the high or low order bit

4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

FIGURE 4-4: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7				•		•	bit0	W = Writable bit
								U = Unimplemented bit,
								read as '0'
								- n = Value at POR reset

bit 7: RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

bit 6: INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin

bit 5: TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

bit 4: **T0SE**: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3: PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

bit 2-0: PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1 : 256	1 : 128

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT Pin interrupts.

Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-5: INTCON REGISTER (ADDRESS 0Bh. 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE oit7	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	1 = Enab	lobal Inter les all un-ı les all inte	nasked in					
bit 6:	1 = Enab	ripheral In les all un-ı lles all per	nasked pe	eripheral ir	nterrupts			
bit 5:	1 = Enab	R0 Overflo les the TM bles the TM	R0 interru	ıpt	bit			
bit 4:	1 = Enab	0/INT Exto les the RE bles the RE	0/INT exte	ernal interi	rupt			
bit 3:	1 = Enab	Port Cha les the RE les the RE	port char	ige interru	pt			
bit 2:	1 = TMR0	R0 Overflo) register t) register o	nas overflo	wed (mus	st be cleare	d in softwa	ıre)	
bit 1:	1 = The F	0/INT Exte RB0/INT ex RB0/INT ex	cternal inte	errupt occi	urred (must	be cleared	d in softwar	re)
bit 0:	1 = At lea		he RB7:R	B4 pins ch	it nanged stat anged state		cleared in	software)

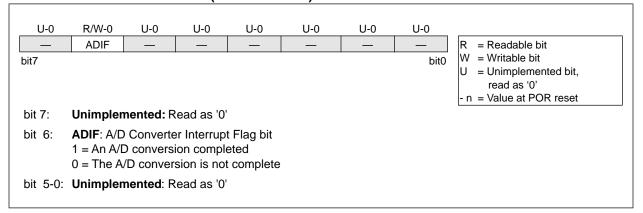
Note:

4.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the Peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

FIGURE 4-6: PIE1 REGISTER (ADDRESS 8Ch)


			— (,		••••			
U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	ADIE	_	_	_	_	_	_	R = Readable bit
bit7	Unimpler	nented: R	Read as '0'				bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 6:	ADIE: A/D 1 = Enabl 0 = Disab	Converte es the A/D	er Interrup D interrupt	t Enable b	it			
bit 5-0:	Unimpler	mented: R	Read as '0'					

4.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the Peripheral interrupts.

Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-7: PIR1 REGISTER (ADDRESS 0Ch)

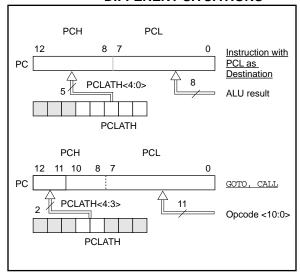
Note:

4.2.2.6 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR), an external $\overline{\text{MCLR}}$ Reset, WDT Reset, Brownout Reset (BOR), and Parity Error Reset (PER). The PCON register also contains a status bit, MPEEN, which reflects the value of the MPEEN bit in the configuration word.

BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-8: PCON REGISTER (ADDRESS 8Eh)


IGURE 4	-8: PC	ON REG	SIER (A	NDDKE 5	S 8En)			
R-U	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q	
MPEEN	_	_	_	_	PER	POR	BOR ⁽¹⁾	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	MPEEN: N Reflects th	,	•	,	Status bit I bit, MPEE	N		
bit 6-3:	Unimplen	nented: R	ead as '0'					
bit 2:		ror occurre	ed			must be s	et in softwa	re after a Parity Error Reset)
bit 1:	POR: Pow 1 = No Po 0 = A Pow	wer-on Re	eset occur	red	e set in sof	tware afte	r a Power-c	on Reset occurs)
bit 0:	BOR : Bro 1 = No Bro 0 = A Brow	own-out R	eset occu	rred	be set in so	ftware afte	er a Brown-	out Reset occurs)

Note:

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-9 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-9: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note "Implementing a Table Read" (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

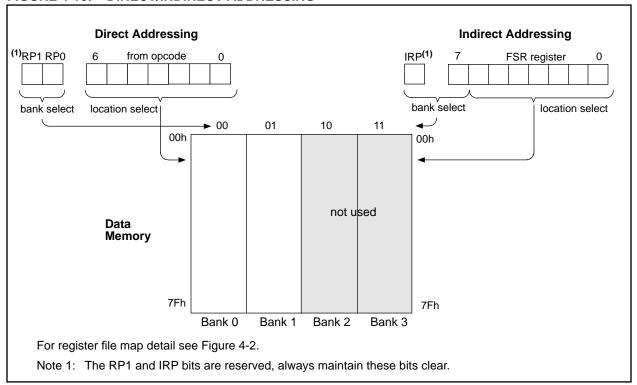
- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
- Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Program Memory Paging

The PIC16C715 ignores both paging bits (PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC16C7X is not recommended since this may affect upward compatibility with future products.

4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-10. However, IRP is not used in the PIC16C715.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

0x20movlw ;initialize pointer movwf FSR ;to RAM NEXT clrf INDF ;clear INDF register FSR,F ;inc pointer incf btfss FSR,4 ;all done? goto NEXT ;no clear next CONTINUE ;yes continue

FIGURE 4-10: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF PORTA ; Initialize PORTA by ; clearing output ; data latches

BSF STATUS, RPO ; Select Bank 1

MOVLW OxCF ; Value used to ; initialize data ; direction

MOVWF TRISA ; Set RA<3:0> as inputs ; RA<4> as outputs

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0

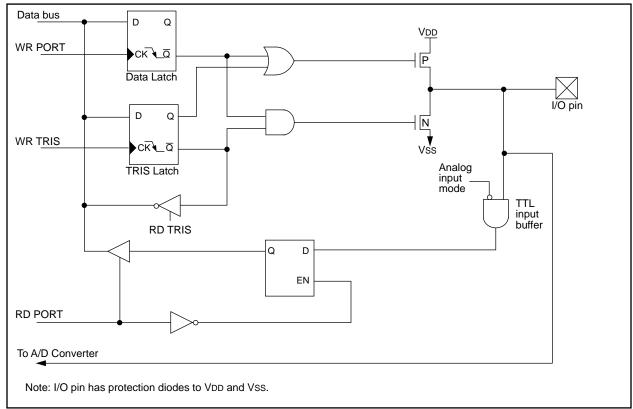


FIGURE 5-2: BLOCK DIAGRAM OF RA4/T0CKI PIN

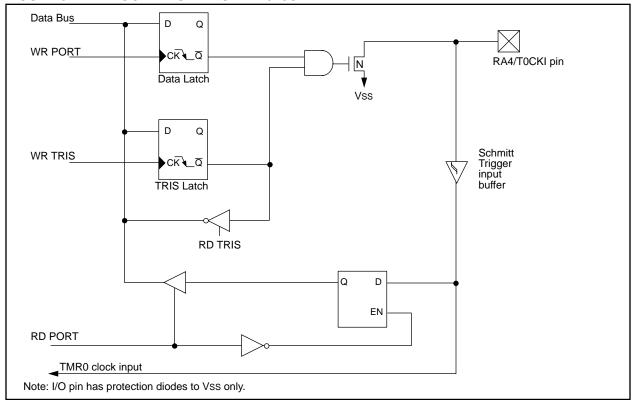


TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type

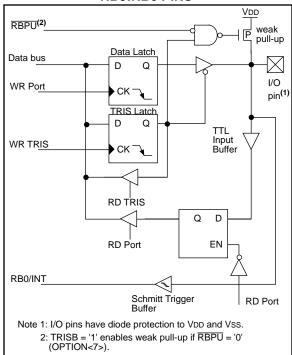
Legend: TTL = TTL input, ST = Schmitt Trigger input.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
9Fh	ADCON1	_	_	_	_	_	_	PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

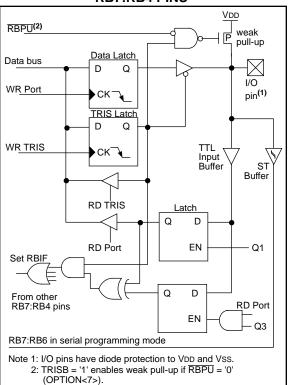
CLRF PORTB ; Initialize PORTB by ; clearing output ; data latches BSF STATUS, RP0 ; Select Bank 1 ; Value used to MOVLW ; initialize data ; direction MOVWF ; Set RB<3:0> as inputs TRISB ; RB<5:4> as outputs ; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:


- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, "Implementing Wake-Up on Key Stroke" (AN552).

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS

TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.3 <u>I/O Programming Considerations</u>

5.3.1 BI-DIRECTIONAL I/O PORTS

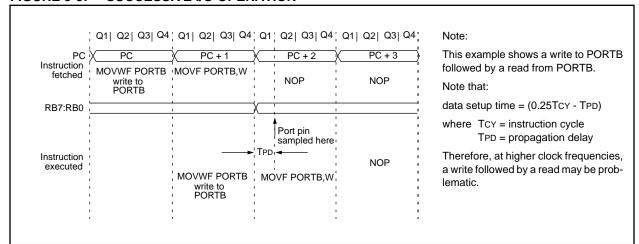
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

```
;Initial PORT settings: PORTB<7:4> Inputs
                        PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
                    PORT latch PORT pins
 BCF PORTB, 7
                  ; 01pp pppp 11pp pppp
 BCF PORTB, 6
                  ; 10pp pppp
                                 11pp pppp
 BSF STATUS, RPO ;
 BCF TRISB, 7
                  ; 10pp pppp
                                 11pp pppp
 BCF TRISB, 6
                  ; 10pp pppp
                                 10pp pppp
```


;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

NOTES:

6.0 TIMERO MODULE

The Timer0 module timer/counter has the following features:

- · 8-bit timer/counter
- · Readable and writable
- · 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- · Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit T0CS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION<4>). Clearing

bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

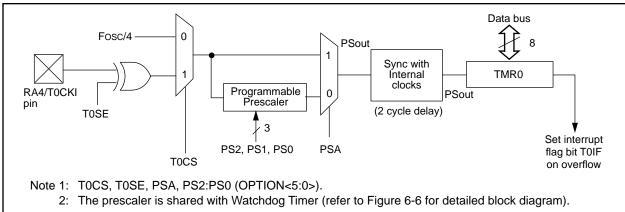


FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

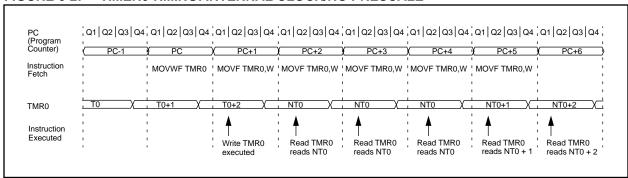
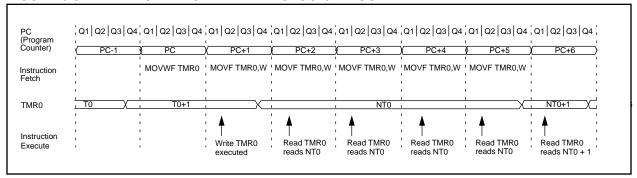
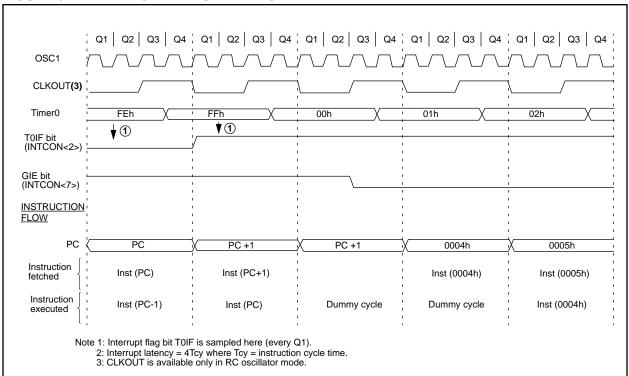




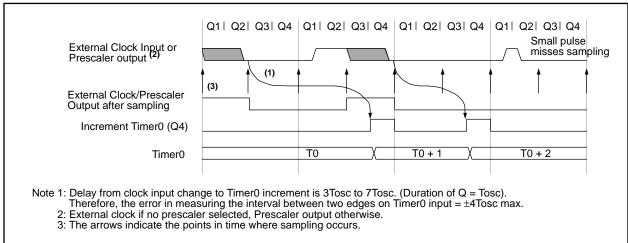
FIGURE 6-3: TIMERO TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMERO INTERRUPT TIMING

6.2 <u>Using Timer0 with an External Clock</u>

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

6.3 **Prescaler**

FIGURE 6-6:

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, 1,x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

CLKOUT (=Fosc/4) Data Bus M 0 U M RA4/T0CKI SYNC Χ U TMR0 reg 0 Χ Cycles T0SE

BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

T₀CS PSA Set flag bit T0IF on Overflow 0 8-bit Prescaler M U Χ Watchdog 8 Timer 8 - to - 1MUX PS2:PS0 **PSA** 0 WDT Enable bit MUXPSA WDT Time-out

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCF STATUS, RPO ;Bank 0

CLRF TMR0 ;Clear TMR0 & Prescaler

BSF STATUS, RPO ;Bank 1

CLRWDT ;Clears WDT

 $\verb"MOVLW" b'xxxx1xxx' ; Select new prescale"$

MOVWF OPTION_REG ;value & WDT BCF STATUS, RPO ;Bank 0

To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT ;Clear WDT and

;prescaler

BSF STATUS, RPO ; Bank 1

MOVLW b'xxxx0xxx'; Select TMR0, new

;prescale value and

MOVWF OPTION_REG ; clock source

BCF STATUS, RPO ; Bank 0

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMERO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	Timer0 module's register								uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 7-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

FIGURE 7-1: ADCONO REGISTER (ADDRESS 1Fh)

R/W-0 ADCS1	R/W-0 ADCS0	R/W-0 CHS2	R/W-0 CHS1	R/W-0 CHS0	R/W-0	U-0	R/W-0 ADON	R = Readable bit
bit7	ADCSU	CHOZ	CHST	CHSU	GO/DONE		bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	ADCS1:AI 00 = FOSC, 01 = FOSC, 10 = FOSC, 11 = FRC (/2 /8 /32			Select bits			
bit 5-3:	CHS2:CHS 000 = char 001 = char 010 = char 011 = char 100 = char 111 = char 111 = char	nnel 0, (F nnel 1, (F nnel 2, (F nnel 3, (F nnel 0, (F nnel 1, (F nnel 2, (F	RAO/ANO) RA1/AN1) RA2/AN2) RA3/AN3) RAO/ANO) RA1/AN1) RA2/AN2)	l Select bi	ts			
bit 2:	GO/DONE: A/D Conversion Status bit If ADON = 1 1 = A/D conversion in progress (setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete)							
bit 1:	Unimplem	ented: F	Read as '0					
bit 0:	ADON : A/I 1 = A/D co 0 = A/D co	nverter n			d consumes no	o operating	g current	

FIGURE 7-2: ADCON1 REGISTER (ADDRESS 88h)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	PCFG1	PCFG0
bit7							bit0

R = Readable bit

W = Writable bit

U = Unimplementedbit, read as '0'- n = Value at POR reset

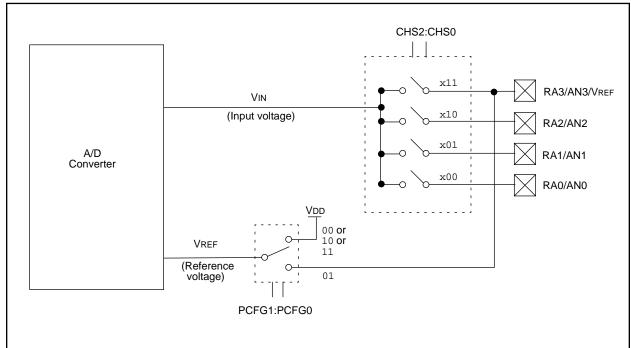
bit 7-2: Unimplemented: Read as '0'

bit 1-0: PCFG1:PCFG0: A/D Port Configuration Control bits

PCFG1:PCFG0	RA1 & RA0	RA2	RA3	VREF
00	Α	Α	Α	VDD
01	Α	Α	VREF	RA3
10	Α	D	D	VDD
11	D	D	D	VDD

A = Analog input

D = Digital I/O


The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagrams of the A/D module are shown in Figure 7-3.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine sample time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - · Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-3: A/D BLOCK DIAGRAM

7.1 A/D Sampling Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (Chold) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor Chold. The sampling switch (Rss) impedance varies over the device voltage (Vdd), see Figure 7-4. The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation assumes that 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

EQUATION 7-1: A/D MINIMUM CHARGING TIME

VHOLD = (VREF - (VREF/512)) • (1 - $e^{(-Tc/CHOLD(Ric + Rss + Rs))}$)

 $Tc = -(51.2 pF)(1 k\Omega + Rss + Rs) ln(1/511)$

Example 7-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.

 $Rs = 10 k\Omega$

1/2 LSb error

 $VDD = 5V \rightarrow Rss = 7 \text{ k}\Omega$

Temp (system max.) = 50°C

VHOLD = 0 @ t = 0

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

Note 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.

Note 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

Note 4: After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 7-1: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ = Amplifier Settling Time +

Holding Capacitor Charging Time +

Temperature Coefficient

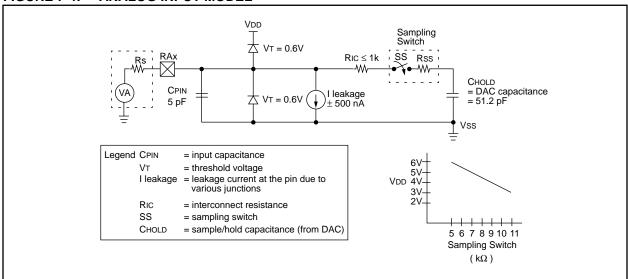
TACQ = $5 \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$

Tc = -CHOLD (Ric + Rss + Rs) In(1/512)

-51.2 pF (1 kΩ + 7 kΩ + 10 kΩ) ln(0.0020)

-51.2 pF (18 kΩ) ln(0.0020)

-0.921 μs (-6.2146)


5.724 μs

TACQ = $5 \mu s + 5.724 \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$

10.724 μs + 1.25 μs

 $11.974 \, \mu s$

FIGURE 7-4: ANALOG INPUT MODEL

7.2 <u>Selecting the A/D Conversion Clock</u>

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- · Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 μ s.

Table 7-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

7.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

Note 1: When reading the port register, all pins configured as analog input channel will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.

Note 2: Analog levels on any pin that is defined as a digital input (including the AN3:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 7-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock Source (TAD)		Device Frequency					
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz		
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 µs	6 μs		
8Tosc	01	400 ns ⁽²⁾	1.6 µs	6.4 μs	24 μs ⁽³⁾		
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾		
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾		

- Note 1: The RC source has a typical TAD time of 4 µs.
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: While in RC mode, with device frequency above 1 MHz, conversion accuracy is out of specification.
 - 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

7.4 A/D Conversions

Example 7-2 show how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RAO channel.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 7-2: DOING AN A/D CONVERSION

```
BSF
          STATUS, RP0
                              ; Select Page 1
  CLRF
                              ; Configure A/D inputs
          ADCON1
          PIE1, ADIE
                             ; Enable A/D interrupts
 BSF
  BCF
          STATUS, RP0
                              ; Select Page 0
  MOVLW
          0xC1
                              ; RC Clock, A/D is on, Channel 0 is selected
          ADCON0
  MOVWF
                              ; Clear A/D interrupt flag bit
  BCF
          PIR1, ADIF
  BSF
          INTCON, PEIE
                              ; Enable peripheral interrupts
          INTCON, GIE
                              ; Enable all interrupts
Ensure that the required sampling time for the selected input channel has elapsed.
Then the conversion may be started.
  BSF
          ADCONO, GO
                              ; Start A/D Conversion
    :
                              ; The ADIF bit will be set and the GO/DONE bit
    :
                              ; is cleared upon completion of the A/D Conversion.
```

7.4.1 FASTER CONVERSION - LOWER RESOLUTION TRADE-OFF

Not all applications require a result with 8-bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the tradeoff of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the clock source of the A/D module may be switched so that the TAD time violates the minimum specified time (see the applicable electrical specification). Once the TAD time violates the minimum specified time, all the following A/D result bits are not valid (see A/D Conversion Timing in the Electrical Specifications section.) The clock sources may only be switched between the three oscillator versions (cannot be switched from/to RC). The equation to determine the time before the oscillator can be switched is as follows:

Conversion time = $2TAD + N \cdot TAD + (8 - N)(2TOSC)$ Where: N = number of bits of resolution required. Since the TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D oscillator may be changed. Example 7-3 shows a comparison of time required for a conversion with 4-bits of resolution, versus the 8-bit resolution conversion. The example is for devices operating at 20 MHz and 16 MHz (The A/D clock is programmed for 32Tosc), and assumes that immediately after 6TAD, the A/D clock is programmed for 2Tosc.

The 2Tosc violates the minimum TAD time since the last 4-bits will not be converted to correct values.

EXAMPLE 7-3: 4-BIT vs. 8-BIT CONVERSION TIMES

	- (200.)(1)	Resolution		
	Freq. (MHz) ⁽¹⁾	4-bit	8-bit	
TAD	20	1.6 μs	1.6 µs	
	16	2.0 μs	2.0 μs	
Tosc	20	50 ns	50 ns	
	16	62.5 ns	62.5 ns	
2TAD + N • TAD + (8 - N)(2TOSC)	20	10 μs	16 μs	
	16	12.5 μs	20 μs	

Note 1: The PIC16C715 has a minimum TAD time of 1.6 μs.

7.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:

For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, the GO/DONE bit must be set, followed by the SLEEP instruction.

7.6 A/D Accuracy/Error

The overall accuracy of the A/D is less than \pm 1 LSb for VDD = $5V \pm 10\%$ and the analog VREF = VDD. This overall accuracy includes offset error, full scale error, and integral error. The A/D converter is guaranteed to be monotonic. The resolution and accuracy may be less when either the analog reference (VDD) is less than 5.0V or when the analog reference (VREF) is less than VDD.

The maximum pin leakage current is \pm 5 μ A.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8~\mu s$ for preferred operation. This is because TAD, when derived from ToSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

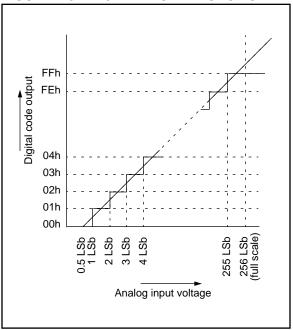
In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

7.7 Effects of a RESET

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

7.8 <u>Connection Considerations</u>

If the input voltage exceeds the rail values (Vss or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.


Note: For the PIC16C715, care must be taken when using the RA0 pin in A/D conversions due to its proximity to the OSC1 pin.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

7.9 Transfer Function

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is 1 LSb (or Analog VREF / 256) (Figure 7-5).

FIGURE 7-5: A/D TRANSFER FUNCTION

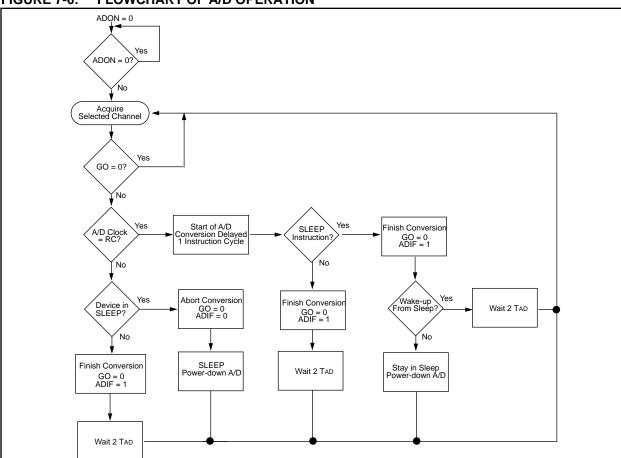


FIGURE 7-6: FLOWCHART OF A/D OPERATION

TABLE 7-2: SUMMARY OF A/D REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF		_	_	_	_	_	-0	-0
8Ch	PIE1	_	ADIE		_	_	_	_	_	-0	-0
1Eh	ADRES	A/D Res	sult Regis	ter		•				xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	_	_	_	_	_	_	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

NOTES:

DS30560A-page 44

8.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
 - Parity Error Reset (PER)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection
- · ID locations
- · In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two

timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD

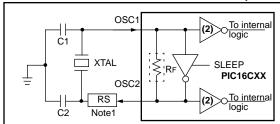
	P0 CP	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1		Register: Address	CONFIG 2007h
bit 13-8 5-4:		P0 : Coo			bits (2)							bit0	Address	200711
	11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected 00 = All memory is code protected													
bit 7:	1 = Me	mory P	arity C	heckin	or Enat g is ena g is disa	abled								
bit 6:	1 = BC	N : Brow R enab R disab	led	Reset	Enable	bit (1)								
bit 3:	1 = PV	E : Powe /RT disa /RT ena	abled	imer E	nable b	_{it} (1)								
bit 2:	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled													
bit 1-0:	11 = R $10 = H$ $01 = X$	I:FOSC C oscilla S oscilla T oscilla P oscilla	ator ator ator	illator	Selection	on bits								
	Ensure	the Po	wer-up	Time	r is enal	oled anyt	ime Br	own-ou	it Reset	is enab	led.		he value of b	

8.2 <u>Oscillator Configurations</u>

8.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power CrystalXT Crystal/Resonator


• HS High Speed Crystal/Resonator

RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-2). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 8-3).

FIGURE 8-2: CRYSTAL/CERAMIC
RESONATOR OPERATION
(HS, XT OR LP
OSC CONFIGURATION)

See Table 8-1 and Table 8-2 for recommended values of C1 and C2.

Note 1: A series resistor may be required for AT strip cut crystals.

2: For the PIC16C710/71/711 the buffer is on the OSC2 pin, all other devices have the buffer on the OSC1 pin.

FIGURE 8-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

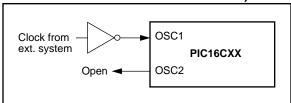


TABLE 8-1: CERAMIC RESONATORS

Ranges To	Ranges Tested:						
Mode	Freq	OSC1	OSC2				
XT	455 kHz	68 - 100 pF	68 - 400 pF				
	2.0 MHz	15 - 68 pF	15-68 pF>				
	4.0 MHz	15 - 68 pF	15/68 pF				
HS	8.0 MHz	10 - 68 pF 🥎	10 68 pF				
	16.0 MHz	10 - 22 pF 📏	10 - 22 pF				
	Note: Recommended values of C1 and C2 are identical to the ranges tested table						
		increases the sta					
		ses the start-up ti					
		n duidance only.					
		vn characteristics, esonator manufac					
	\ \ \ \ \ '	of external compo					
Resonato		<u> </u>					
455 kHz)	Panasonic E	FO-A455K04B	± 0.3%				
2,0-MHz	Murata Erie	Murata Erie CSA2.00MG ± 0.5%					
4.0/MHz	Murata Erie CSA4.00MG ± 0.5%						
8.0 WHz	Murata Erie CSA8.00MT ± 0.5%						
16.0 MHz Murata Erie CSA16.00MX ± 0.5%							
All resonators used did not have built-in capacitors.							

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1	osc2
LP	32 kHz ⁽¹⁾	15 - 47 pF	15 - 47 pF
	200 kHz	15 - 33 pF	15-33 pF
XT	100 kHz	47 - 100 pF	47 - 100 pF
	500 kHz	20 - 68 pF \	20 - 68 pF
	1 MHz	15 - 68 RF \	√15 - 68 pF
	2 MHz	15 - 47 pt	√15 - 47 pF
	4 MHz	15-33 PF	15 - 33 pF
HS	8 MHz	16 47 pF	15 - 47 pF
	20 MHz <	15/-47 pF	15 - 47 pF

Note: Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid even driving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 8-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 $k\Omega$ resistor provides the negative feedback for stability. The 10 $k\Omega$ potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

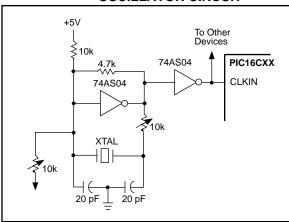
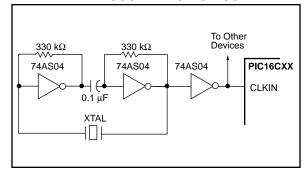
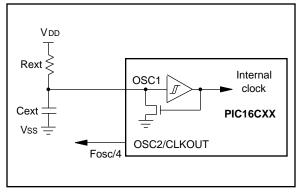



Figure 8-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-5: EXTERNAL SERIES
RESONANT CRYSTAL
OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-6 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

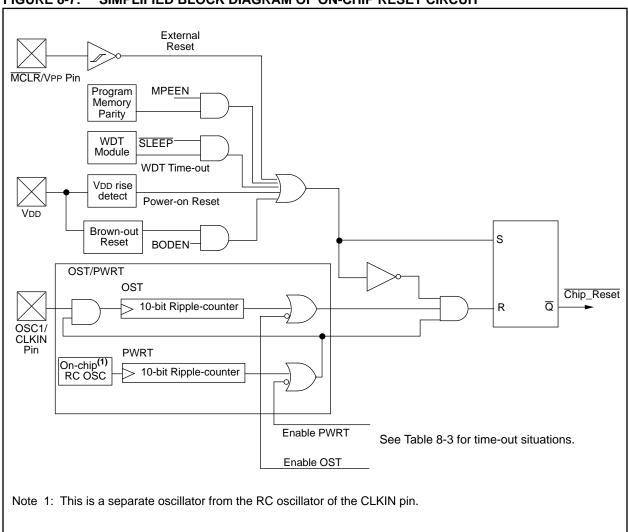
FIGURE 8-6: RC OSCILLATOR MODE

8.3 Reset

The PIC16C715 differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- · WDT Reset (normal operation)
- · Brown-out Reset (BOR)
- Parity Error Reset (PER)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and


WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, Brown-out Reset (BOR), and Parity Error Reset. They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 8-4. These bits are used in software to determine the nature of the reset. See Table 8-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-7.

The PIC16C715 has a \overline{MCLR} noise filter in the \overline{MCLR} reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

8.4 Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST), Brown-out Reset (BOR), and Parity Error Reset (PER)

8.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

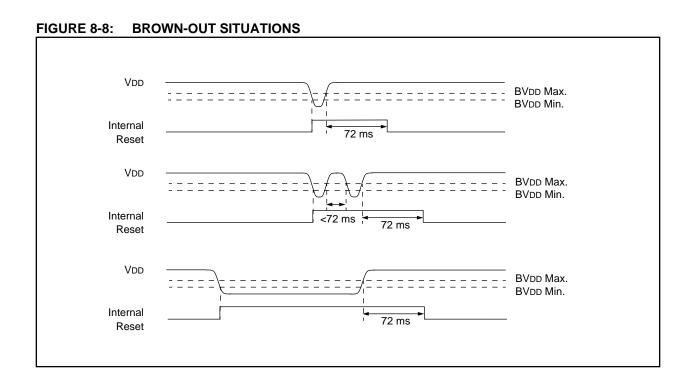
When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting."

8.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.


8.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-8 shows typical brown-out situations.

8.4.5 PARITY ERROR RESET (PER)

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

8.4.6 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-9, Figure 8-10, and Figure 8-11 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high will begin execution immediately (Figure 8-10). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-5 shows the reset conditions for some special function registers, while Table 8-6 shows the reset conditions for all the registers.

8.4.7 POWER CONTROL/STATUS REGISTER (PCON)

The power control/status register, PCON (address 8Eh) has four bits. See Figure 4-8 for register.

Bit0 is BOR (Brown-out Reset). BOR is unknown on a Power-on Reset. It must initially be set by the user and checked on subsequent resets to see if BOR = '0' indicating that a Brown-out Reset has occurred. The BOR status bit is a "don't care" bit and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

Bit1 is POR (Power-on Reset). It is cleared on a Power-on Reset and is unaffected otherwise. The user set this bit following a Power-on Reset. On subsequent resets if POR is '0', it will indicate that a Power-on Reset must have occurred.

Bit2 is PER (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

Bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

TABLE 8-3: TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

TABLE 8-4: STATUS BITS AND THEIR SIGNIFICANCE

PER	POR	BOR	TO	PD	
1	0	х	1	1	Power-on Reset
х	0	х	0	х	Illegal, TO is set on POR
х	0	х	х	0	Illegal, PD is set on POR
1	1	0	x	х	Brown-out Reset
1	1	1	0	1	WDT Reset
1	1	1	0	0	WDT Wake-up
1	1	1	u	u	MCLR Reset during normal operation
1	1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	1	1	1	Parity Error Reset
0	0	х	x	х	Illegal, PER is set on POR
0	х	0	х	х	Illegal, PER is set on BOR

TABLE 8-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	u10x
MCLR Reset during normal operation	000h	000u uuuu	uuuu
MCLR Reset during SLEEP	000h	0001 0uuu	uuuu
WDT Reset	000h	0000 1uuu	uuuu
WDT Wake-up	PC + 1	uuu0 0uuu	uuuu
Brown-out Reset	000h	0001 1uuu	uuu0
Parity Error Reset	000h	uuu1 0uuu	u0uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 8-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu(3)	uuuq quuu(3)
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	x 0000	u 0000	u uuuu
PORTB	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0	-0	_u(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	uuuu uuuu
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
PIE1	-0	-0	-u
PCON	qqq	1uu	1uu
ADCON1	00	00	uu

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', <math>q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

3: See Table 8-5 for reset value for specific condition.

^{2:} When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

FIGURE 8-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

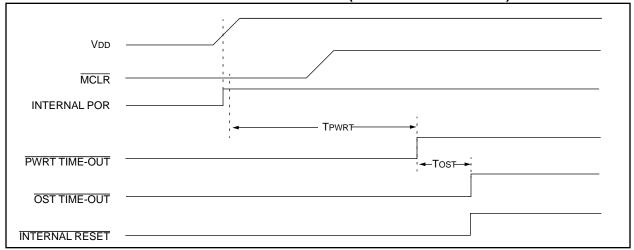


FIGURE 8-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

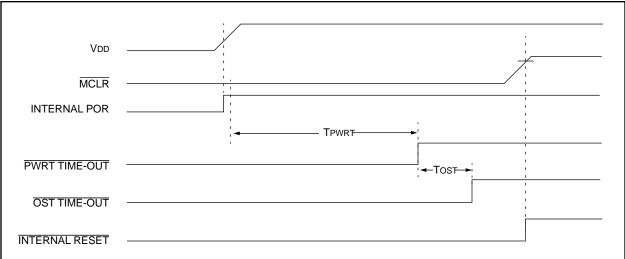


FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

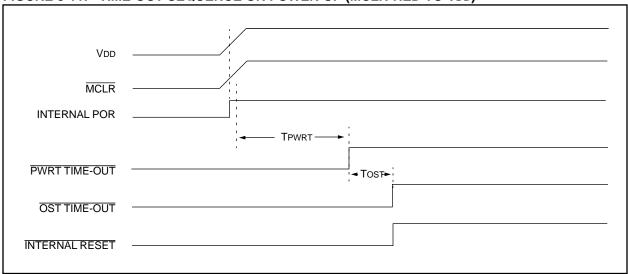
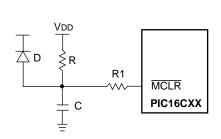
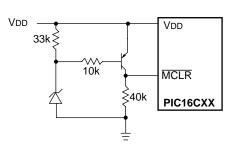




FIGURE 8-12: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

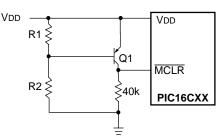

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR} /VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 8-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- Note 1: This circuit will activate reset when VDD goes below (Vz + 0.7V) where Vz = Zener voltage.
 - 2: Internal brown-out detection should be disabled when using this circuit.
 - 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 8-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

8.5 Interrupts

There are four sources of interrupt:

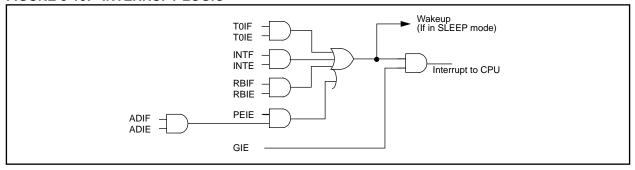
Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

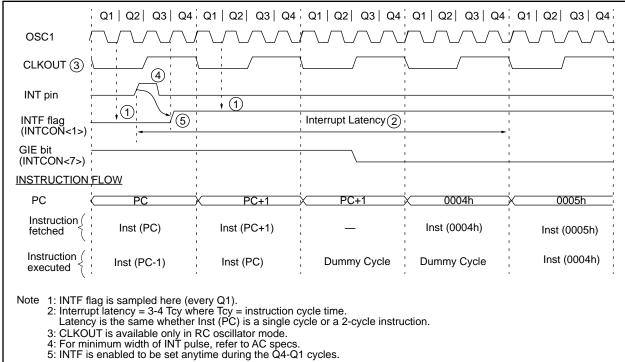
Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.


The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function register PIR1. The corresponding interrupt enable bit is contained in special function register PIE1, and the peripheral interrupt enable bit is contained in special function register INTCON.


When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-16). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

FIGURE 8-15: INTERRUPT LOGIC

FIGURE 8-16: INT PIN INTERRUPT TIMING

8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 8.8 for details on SLEEP mode.

8.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 6.0)

8.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 8-1 store and restore the STATUS and W registers. The register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

```
;Copy W to TEMP register, could be bank one or zero
MOVWF
         W_TEMP
SWAPF
         STATUS, W
                           ;Swap status to be saved into W
BCF
         STATUS, RP0
                           ; Change to bank zero, regardless of current bank
MOVWF
         STATUS_TEMP
                           ; Save status to bank zero STATUS_TEMP register
:
:(ISR)
SWAPF
         STATUS_TEMP, W
                           ;Swap STATUS_TEMP register into W
                           ;(sets bank to original state)
                           ; Move W into STATUS register
MOVWF
         STATUS
SWAPF
         W TEMP, F
                           ; Swap W TEMP
SWAPF
         W_TEMP,W
                           ;Swap W_TEMP into W
```

8.7 Watchdog Timer (WDT)

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 8.1).

8.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

8.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When the prescaler is assigned to the WDT, always execute a CLRWDT instruction before changing the prescale value, otherwise a WDT reset may occur.

FIGURE 8-17: WATCHDOG TIMER BLOCK DIAGRAM

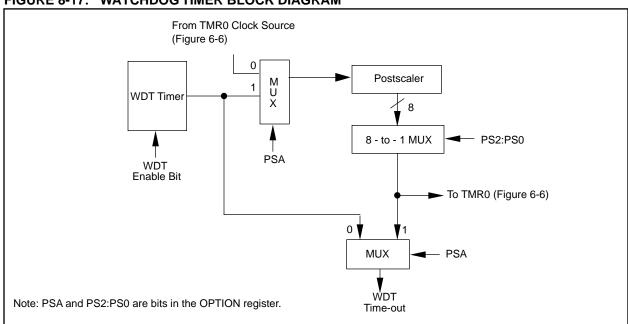


FIGURE 8-18: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	MPEEN	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 8-1 for operation of these bits.

8.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

8.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- Watchdog Timer Wake-up (if WDT was enabled).
- Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

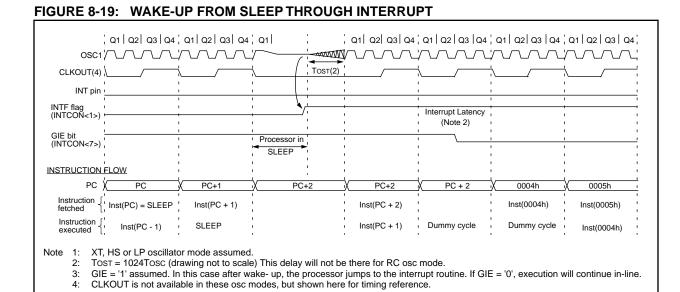
External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupt can wake the device from SLEEP:

1. A/D conversion (when A/D clock source is RC).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.


8.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

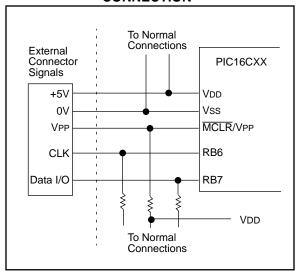
8.9 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

8.10 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.


8.11 <u>In-Circuit Serial Programming</u>

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 8-20: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

NOTES:

9.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 9-2 lists byte-oriented, bit-oriented, and literal and control operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
€	In the set of
italics	User defined term (font is courier)

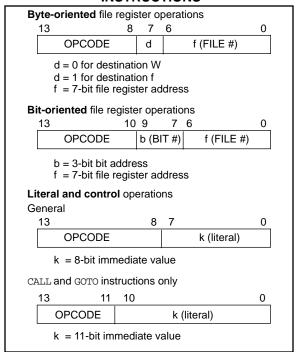
The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs . If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μs .

Table 9-2 lists the instructions recognized by the MPASM assembler.

Figure 9-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

9.1 <u>Special Function Registers as</u> Source/Destination

The PIC16C715's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

9.1.1 STATUS AS DESTINATION

If an instruction writes to STATUS, the Z, C and DC bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF STATUS will clear register STATUS, and then set the Z bit leaving 0000 0100b in the register.

9.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC: $PCL \rightarrow dest$

Write PCL: PCLATH \rightarrow PCH:

8-bit destination value → PCL

Read-Modify-Write: PCL→ ALU operand

PCLATH → PCH; 8-bit result → PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

9.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

TABLE 9-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	Э	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AI	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
NI-1- 4 W		NO serietaria sera differitaria a franctica afritariti (a serie					J 201 1		

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

^{2:} If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

^{3:} If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

9.2 <u>Instruction Descriptions</u>

ADDLW	Add Literal and W				
Syntax:	[label] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ADDLW 0x15				
	Before Instruction $W = 0x10$ After Instruction $W = 0x25$				

ANDLW	And Literal with W				
Syntax:	[label] ANDLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Encoding:	11 1001 kkkk kkkk				
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ANDLW 0x5F				
	Before Instruction W = 0xA3 After Instruction W = 0x03				

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(W) + (f) \to (dest)$				
Status Affected:	C, DC, Z				
Encoding:	00 0111 dfff ffff				
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ADDWF FSR, 0				
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction				

W =

FSR =

0xD9

0xC2

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0101 dfff ffff				
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ANDWF FSR, 1				
	Before Instruction $W = 0x17$ $FSR = 0xC2$ After Instruction $W = 0x17$ $FSR = 0x02$				

PC = address FALSE

BCF	Bit Clear	f			
Syntax:	[label] BCF f,b				
Operands:	$0 \le f \le 127$ $0 \le b \le 7$				
Operation:	$0 \rightarrow (f < b:$	>)			
Status Affected:	None				
Encoding:	01	00bb	bfff	ffff	
Description:	Bit 'b' in re	gister 'f' is	s cleared.		
Words:	1				
Cycles:	1				
Example	BCF	FLAG_	REG, 7		
	After Inst	FLAG_RE	EG = 0xC7		

BTFSC	Bit Test, Skip if Clear				
Syntax:	[label] BTFSC f,b				
Operands:	$0 \le f \le 127$ $0 \le b \le 7$				
Operation:	skip if $(f < b >) = 0$				
Status Affected:	None				
Encoding:	01 10bb bfff ffff				
Description:	If bit 'b' in register 'f' is '0' then the next instruction is skipped. If bit 'b' is '0' then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2 cycle instruction.				
Words:	1				
Cycles:	1(2)				
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •				
	Before Instruction PC = address HERE After Instruction				
	if FLAG<1> = 0, PC = address TRUE if FLAG<1>=1,				

BSF	Bit Set f			
Syntax:	[label] BSF f,b			
Operands:	$0 \le f \le 127$ $0 \le b \le 7$			
Operation:	$1 \rightarrow (f < b)$	>)		
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' i	s set.	
Words:	1			
Cycles:	1			
Example	BSF	FLAG_R	EG, 7	
	After Inst	FLAG_RI	i EG = 0x0 <i>l</i> EG = 0x8 <i>l</i>	

BTFSS	Bit Test f, Skip if Set				
Syntax:	[label] BTFSS f,b				
Operands:	$0 \le f \le 12$ $0 \le b < 7$				
Operation:	skip if (f<	b>) = 1			
Status Affected:	None				
Encoding:	01	11bb	bfff	ffff	
Description:	next instruction in the second	uction iction OP is			
Words:	1				
Cycles:	1(2)				
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	CODE	
	Before In				
	After Inst	ruction if FLAG<1>	· = 0, address F. · = 1,		

CLRF	Clear f			
Syntax:	[label] CLRF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$00h \rightarrow (f)$ $1 \rightarrow Z$			
Status Affected:	Z			
Encoding:	00 0001 1fff ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.			
Words:	1			
Cycles:	1			
Example	CLRF FLAG_REG			
	Before Instruction			
	FLAG_REG = 0x5A After Instruction			
	FLAG_REG = 0x00			
	Z = 1			

CALL	Call Sub	routine		
Syntax:	[label]	CALL k		
Operands:	$0 \le k \le 20$)47		
Operation:	(PC)+1- $k \rightarrow PC < $ (PCLATH)	10:0>,	→ PC<12	:11>
Status Affected:	None			
Encoding:	10	0kkk	kkkk	kkkk
Description:	Call Subro (PC+1) is p eleven bit i into PC bits the PC are CALL is a to	oushed or mmediates s <10:0>. loaded fr	nto the stace address is The upper om PCLAT	ck. The s loaded bits of
Words:	1			
Cycles:	2			
Example	HERE	CALL	THERE	
	After Insti	PC = A ruction PC = A	ddress HE	ERE

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	00 0001 0xxx xxxx
Description:	W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example	CLRW
Example	CLRW Before Instruction
Example	Before Instruction W = 0x5A
Example	Before Instruction

CLRWDT	Clear Wa	tchdog	Timer	
Syntax:	[label] (CLRWD	Т	
Operands:	None			
Operation:	$\begin{array}{c} 00h \rightarrow WI \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$		er,	
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0100
Description:	CLRWDT ins dog Timer. of the WDT are set.			
Words:	1			
Cycles:	1			
Example	CLRWDT			
	Before Ins	NDT cou		?
	\	NDT cou		0x00
		NDT pres ΓΟ	scaler=	0
		<u>PD</u>	=	1

DECF	Decrement f	
Syntax:	[label] DECF f,d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	(f) - 1 \rightarrow (dest)	
Status Affected:	Z	
Encoding:	00 0011 dfff	ffff
Description:	Decrement register 'f'. If 'd' result is stored in the W reis 1 the result is stored back'f'.	is 0 the gister. If 'd' k in register
Words:	1	
Cycles:	1	
Example	DECF CNT, 1	
	Z = 0 After Instruction)x00

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(\overline{f}) o (dest)$
Status Affected:	Z
Encoding:	00 1001 dfff ffff
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	COMF REG1,0
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0
Status Affected:	None
Encoding:	00 1011 dfff ffff
Description:	The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
	Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1

GOTO	Unconditional Branch			
Syntax:	[label]	GOTO	k	
Operands:	$0 \le k \le 20$	047		
Operation:	$k \rightarrow PC < PCLATH$		PC<12:1	1>
Status Affected:	None			
Encoding:	10	1kkk	kkkk	kkkk
Description:	GOTO is an eleven bit into PC bit PC are loa GOTO is a t	immediates <10:0>. Ided from	e value is l The uppe PCLATH<	oaded r bits of :4:3>.
Words:	1			
Cycles:	2			
Example	GOTO TH	IERE		
	After Inst	ruction PC =	Address	THERE

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Encoding:	00 1111 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT≠ 0, PC = address HERE +1

INCF	Increme	nt f			
Syntax:	[label]	INCF	f,d		
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27			
Operation:	(f) + 1 \rightarrow	(dest)			
Status Affected:	Z				
Encoding:	00	1010	dff	f	ffff
Description:	The conte mented. If in the W re placed bac	'd' is 0 th egister. If	e res	ult is p	placed
Words:	1				
Cycles:	1				
Example	INCF	CNT,	1		
	After Inst	CNT Z) = = =	0xFF 0 0x00	

IORLW	Inclusive OR Literal with W
Syntax:	[label] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	IORLW 0x35
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1

Inclusive OR W	with f	
[label] IORWF	f,d	
$0 \le f \le 127$ $d \in [0,1]$		
(W) .OR. (f) \rightarrow (c	lest)	
Z		
00 0100	dfff	ffff
ter 'f'. If 'd' is 0 the the W register. If 'd	esult is pla is 1 the re	ced in
1		
1		
IORWF	RESULT,	0
RESULT W After Instruction	= 0x13 = 0x91	3
	$ [\ label] IORWF \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .OR. (f) \rightarrow (d) \\ Z \\ \hline 00 \qquad 0100 \\ Inclusive OR the W \\ ter 'f'. If 'd' is 0 then the W register. If 'd' placed back in register. If 'd$	$0 \le f \le 127$ $d \in [0,1]$ $(W) .OR. (f) \rightarrow (dest)$ Z $\begin{array}{c ccc} \hline 00 & 0100 & dfff\\ \hline Inclusive OR the W register w ter 'f'. If 'd' is 0 the result is plated the W register. If 'd' is 1 the replaced back in register 'f'. 1 1 IORWF RESULT, Before Instruction RESULT = 0x13 \\ W = 0x93 \\ \hline After Instruction RESULT = 0x13 \\ W = 0x93 \\ \hline W = 0x93 \\ \hline W = 0x93 \\ \hline $

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f) \to (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVLW	Move Literal to W			
Syntax:	[label] MOVLW k			
Operands:	$0 \le k \le 255$			
Operation:	$k\to (W)$	$k \rightarrow (W)$		
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.			
Words:	1			
Cycles:	1			
Example	MOVLW	0x5A		
	After Inst	ruction W =	0x5A	

MOVWF	Move W	to f			
Syntax:	[label] MOVWF f				
Operands:	$0 \le f \le 127$				
Operation:	$(W) \rightarrow (f)$)			
Status Affected:	None				
Encoding:	00 0000 lfff ffff				ffff
Description:	Move data from W register to register 'f'.				
Words:	1				
Cycles:	1				
Example	MOVWF	OPT	CION		
		struction OPTION W	=	0xFF 0x4F	
		ruction OPTION W		0x4F 0x4F	

NOP	No Operation			
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ition		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operati	ion.		
Words:	1			
Cycles:	1			
Example	NOP			

RETFIE	Return from Interrupt		
Syntax:	[label] RETFIE		
Operands:	None		
Operation:	$TOS \rightarrow PC$, $1 \rightarrow GIE$		
Status Affected:	None		
Encoding:	00 0000	0000 1001	
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.		
Words:	1		
Cycles:	2		
Example	RETFIE		
		TOS 1	

OPTION	Load Op	tion Reç	gister	
Syntax:	[label] OPTION			
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description: Words:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.			
Cycles:	1			
Example				
		re PIC16	rd compa CXX production.	•

RETLW	Return with Literal in W			
Syntax:	[label] RETLW k			
Operands:	$0 \le k \le 255$			
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC			
Status Affected:	None			
Encoding:	11 01xx kkkk kkkk			
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example	CALL TABLE			
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;			
	Before Instruction			
	W = 0x07			
	After Instruction W = value of k8			

RETURN	Return fi	Return from Subroutine		
Syntax:	[label] RETURN			
Operands:	None			
Operation:	$TOS \to PC$			
Status Affected:	None			
Encoding:	00	0000	0000	1000
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example	RETURN			
	After Inte	rrupt PC =	TOS	

RRF	Rotate Right f through Carry			
Syntax:	[label]	RRF f,	d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	See desc	cription b	elow	
Status Affected:	С			
Encoding:	00	1100	dfff	ffff
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			
Words:	1			
	·			
Cycles:	1			
Example	RRF		REG1,0)
	Before Instruction			
		REG1	= 1	110 0110
		С	= 0	
	After Inst	ruction REG1	1	110 0110
		W	_	110 0110 111 0011
		C	= 0	111 0011

RLF Rotate Left f through Carry Syntax: [label] RLF f,d Operands: $0 \le f \le 127$ $d \in [0,1]$ Operation: See description below Status Affected: С Encoding: 00 1101 dfff ffff Description: The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'. Register f Words: 1 1 Cycles: Example RLF REG1,0 Before Instruction REG1 1110 0110 С 0 After Instruction REG1 1110 0110 W 1100 1100 С 1

SLEEP			
Syntax:	[label] SLEEP		
Operands:	None		
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}}, \\ \text{0} \rightarrow \overline{\text{PD}} \end{array}$		
Status Affected:	TO, PD		
Encoding:	00 0000 0110 0011		
Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.		
Words:	1		
Cycles:	1		
Example:	SLEEP		

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[label] SUBLW k	Syntax:	[label] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	$(f) - (W) \to (dest)$
Affected:		Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk		00 0010 1555 5555
Description:	The W register is subtracted (2's complement method) from the eight bit literal	Encoding:	00 0010 dfff ffff
	'k'. The result is placed in the W register.	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is
Words:	1		stored in the W register. If 'd' is 1 the
Cycles:	1	Words:	result is stored back in register 'f'. 1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	' SUBWF REG1,1
	W = 1	Example 1.	Before Instruction
	C = ?		REG1 = 3
	After Instruction		W = 2
	W = 1 C = 1; result is positive		C = ?
Example 2:	Before Instruction		After Instruction
	W = 2		REG1 = 1 W = 2
	C = ?		C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0 C = 1; result is zero		REG1 = 2
Example 3:	Before Instruction		W = 2 C = ?
Example 5.	W = 3		After Instruction
	C = ?		REG1 = 0
	After Instruction		W = 2 C = 1: result is zero
	W = 0xFF	Evample 2:	C = 1; result is zero Before Instruction
	C = 0; result is nega- tive	Example 3:	REG1 = 1
			W = 2
			C = ?
			After Instruction
			REG1 = 0xFF W = 2
			C = 0; result is negative

SWAPF	Swap Nibbles in f								
Syntax:	[label] SWAPF f,d								
Operands:	$0 \le f \le 127$ $d \in [0,1]$								
Operation:	$ \begin{array}{l} (\text{f<3:0>}) \rightarrow (\text{dest<7:4>}), \\ (\text{f<7:4>}) \rightarrow (\text{dest<3:0>}) \end{array} $								
Status Affected:	None								
Encoding:	00 1110 dfff ffff								
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.								
Words:	1								
Cycles:	1								
Example	SWAPF REG, 0								
	Before Instruction								
	REG1 = 0xA5								
	After Instruction								
	REG1 = 0xA5 W = 0x5A								

XORLW	Exclusive OR Literal with W
Syntax:	[label] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Encoding:	11 1010 kkkk kkkk
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	XORLW 0xAF
	Before Instruction
	W = 0xB5
	After Instruction
	W = 0x1A

TRIS	Load TR	IS Regis	ter	
Syntax:	[label]	TRIS	f	
Operands:	$5 \le f \le 7$			
Operation:	$(W) \rightarrow TF$	RIS regis	ster f;	
Status Affected:	None			
Encoding:	00	0000	0110	Offf
Description:	The instru compatibil ucts. Since able and waddress the	ity with th ce TRIS re vritable, th	e PIC16Cs egisters are	5X prod- e read-
Words:	1			
Cycles:	1			
Example				
		re PIC16	rd compa CXX production.	•

XORWF	Exclusive OR W with f								
Syntax:	[label]	XORWF	f,d						
Operands:	$0 \le f \le 12$ $d \in [0,1]$.7							
Operation:	(W) .XOF	$R.\;(f)\to(f)$	dest)						
Status Affected:	Z								
Encoding:	00	0110	dffi	ffff					
Description:		th registe ored in th	r 'f'. If e W re						
Words:	1								
Cycles:	1								
Example	XORWF	REG	1						
	Before In	struction							
		REG W	= =	0xAF 0xB5					
	After Inst	ruction							
		REG W	=	0x1A 0xB5					

PIC16C715

NOTES:

15.0 DEVELOPMENT SUPPORT

15.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE® II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]–MP)

15.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> MPLAB IDE

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB™ Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows® 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

15.3 <u>ICEPIC: Low-cost PIC16CXXX</u> In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from $286\text{-AT}^{\circledcirc}$ through PentiumTM based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

15.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

15.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, low-cost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

15.6 <u>PICDEM-1 Low-Cost PIC16/17</u> Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

15.7 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

15.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features

include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals. PICDEM-3 will be available in the 3rd quarter of 1996.

15.9 MPLAB Integrated Development Environment Software

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- · A full featured editor
- · Three operating modes
 - editor
 - emulator
 - simulator
- · A project manager
- · Customizable tool bar and key mapping
- · A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- · Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- · Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

15.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PC-hosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allow full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- · Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

15.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

15.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

15.13 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

fuzzyTECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, fuzzyTECH-MP, edition for implementing more complex systems.

Both versions include Microchip's $fuzzyLAB^{\text{\tiny TM}}$ demonstration board for hands-on experience with fuzzy logic systems implementation.

15.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

15.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials™ and secure serials. The Total Endurance™ Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

15.16 <u>TrueGauge[®] Intelligent Battery</u> Management

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

15.17 <u>Keeloq® Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

TABLE 15-1: DEVELOPMENT TOOLS FROM MICROCHIP

007																
HCS200 HCS300 HCS301										7	7					7
24CXX 25CXX 93CXX							7			7		7				
PIC17CXX	7		7	7	7	7			7	7			7			
PIC16C9XX	7		7	7	>				7	7					~	
PIC16C8X	7	7	7	7	7	7		7	7	7			>			
PIC16C7XX	7	7	>	7	>	>		7	7	7				>		
PIC16C6X	7	7	7	7	7	7		7	7	7				7		
PIC16CXXX	7	7	7	7	7	7			7	7			7			
PIC16C5X	7	7	7	7	7	7		7	7	7			7			
PIC14000	7		7	>	7				7	7						
PIC12C5XX	7	7	>	7	>				>	>						
	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	ICEPIC Low-Cost	MPLAB™ Integrated Development Environment		fuzzyTECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART® Lite Ultra Low-Cost Dev. Kit	PICSTART® Plus Low-Cost Universal Dev. Kit	PRO MATE® II Universal Programmer	KEELOQ® Programmer		PICDEM-1	PICDEM-2	PICDEM-3	KEELOQ® Evaluation Kit

11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C715

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°¢ to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	-0.37 + 0.37 + 0.37
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	046 +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, lok (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = $VDD \times \{IDD - \sum IOH\} + \sum \{(VDD - VOH)\}$	

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

			>								
osc		PIC16C715-04		PIC16C7/15-10		PIC16C715-20		PIC16LC715-04		PIC16C715/JW	_ ~
	VpD:	4.0V to 5.5V	VpD:	4.5V to 5.5V	Vpb:	4.5V to 5.5V	VpD:	3.0V to 5.5V	Vpp:	4.0V to 5.5V	O.L
0	<u> DD</u> :	5 mA max. at 5.5V	: <u>00</u>	2.7 MA typ. at 5.5)	<u>8</u>	2.7 mA typ. at 5.5V	<u> DD</u>	2.0 mA typ. at 3.0V	<u></u>	5 mA max. at 5.5V	
َ دِ	<u>PD:</u>		<u>PD:</u>	1.5 µA typ. at 4V	ZPP.	1.5 µA typ. at 4V	PD:	0.9 μA typ. at 3V	PD:	21 µA max. at 4V	01
	Freq:		Freq:	4 MHz max.	Freq:	•	Freq:		Freq:		
	VpD:	4.0V to 5.5V	VpD:	4.5V to 5.5V	VpD:	4.5V to 5.5V	VpD:	3.0V to 5.5V	Vpp:	4.0V to 5.5V	,
F	:dal		:gal	2.7 mA typ. at 5.5V	: <u>oo</u>	2.7/mAxyp. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V	•
_	PD:	21 µA max. at 4V	<u>PD:</u>	1.5 µA typ. at 4V	:a <u>/</u>	1.5 July typ, at 4V	PD:	0.9 μA typ. at 3V	PD:	21 µA max. at 4V	٠.
	Freq:	. 4 MHz max.	Freq:	4 MHz max.	Freg	. 4 MHz max,	Freq:		Freq:	4 MHz max.	_
	Vpp:	4.5V to 5.5V	VpD:	4.5V to 5.5V	Vago:	V&p /4.5y/to 5,5V/			Vpp:	4.5V to 5.5V	
ú	<u></u>	13.5 mA typ. at 5.5V	<u></u>	30 mA max. at 5.5V	<u></u>	30 m/k max. at 5.5V	Š	0	: <u>DO</u>	30 mA max. at 5.5V	
0	<u>PD:</u>	1.5 µA typ. at 4.5V	<u>PD:</u>	1.5 µA typ. at 4.5V	PD:	1.5 WA typ. 314.5V			<u>PD:</u>	1.5 µA typ. at 4.5V	
	Freq:	Freq: 4 MHz max.	Freq:	10 MHz max.	Freq:	: 20 MHZ-max.	\langle		Freq:	10 MHz max.	,
	VpD:						, 200:	3:QV to 5.5V	VpD:	3.0V to 5.5V	
۵	IDD:	52.5 µA typ. at 32 kHz, 4.0V	2		2	opom O Lai esti ton oO	, 	48 µA max. at 32 kHz, 3.0V	<u> DD</u> :	48 µA max. at 32 kHz, 3.0V	
	<u>B</u>		3		3	or ase III Er IIIoge	<u>%</u>	5.0 μΑ max. at 3.0V	<u>PD</u> :		
	Freq:	Freq: 200 kHz max.					Frød: ,	Frøq: / 200 kHz max.	Freq:	200 kHz max.	
ne sh	aded :	The shaded sections indicate oscillator selections wh	ctions	which are tested for fun	nctiona	lity, but not for MIN/MA	yeds x	nich are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type	hat the	user select the device type	
nat er	sures	that ensures the specifications required.					_				
							/	~ / / /			
								< \> \			
									/		
								\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_		-,
									\	_	
								L \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \	<u>^</u>	

11.1 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Automotive (5))

PIC16C715-10 (Commercial, Industrial, Automotive⁽⁵⁾)

PIC16C715-20 (Commercial, Industrial, Automotive⁽⁵⁾))

Standard Operating Conditions (unless otherwise stated)

μΑ BOR enabled VDD = 5.0V

BOR enabled VDD = 5.0V

VDD = 4.0V, WDT enabled, -40°C to +85°C

VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C

VDD = 4.0V, WDT disabled, -40°C to +85°C

VDD = 4.0V, WDT disabled, -40°C to +125°C

DC CHA	RACTERISTICS		Opera	ating te	mpera		-40° C ≤ TA ≤ +125°C for automotive, -40° C ≤ TA ≤ +85°C for industrial and -40° C ≤ TA ≤ +70°C for commercial
Param. No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA.	XT, RC osc configuration (PIC16C715-04) FOSC = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration (PIC16C715-20) Fosc = 20 MHz, VDD = 5.5V

300*

10.5

ት.5

1.5

1.5

300*

* These parameters are characterized but not tested.

IPD

Brown-out Reset Current | Albor

Brown-out Reset Current Albor

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

¥12

24

ТBD

500

úΑ

μΑ

μΑ

μΑ

μΑ

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Automotive operating range is Advance Information for this device.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

D015

D020

D021

D021A

D021B

D023

(Note 6)

(Note 3)

(Note 6)

Power-down Current

11.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAR										
Param No.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions			
D001	Supply Voltage	VDD	3.0	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	V	BODEN configuration bit is enabled			
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC oso configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	48	μÀ	P ose configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D015	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μА	BOR enabled VDD = 3.0V			
D020 D021 D021A	Power-down Current (Note 3)	IPD	- (7.5 0.9 0.9	30	μA μA μA	VDD = 3.0V, WDT enabled, -40°C to +85°C VDD = 3.0V, WDT disabled, 0°C to +70°C VDD = 3.0V, WDT disabled, -40°C to +85°C			
D023	Brown-out Reset Cur- rent (Note 5)	ΔIBOR		300*	500	μΑ	BOR enabled VDD = 3.0V			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for alMDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD, WDT enabled/disabled as specified.
 - 3. The power-slown current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4. For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: The Acurrent is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

11.3 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Automotive⁽⁴⁾)

PIC16C715-10 (Commercial, Industrial, Automotive⁽⁴⁾)

PIC16C715-20 (Commercial, Industrial, Automotive⁽⁴⁾)

PIC16LC715-04 (Commercial, Industrial))

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive, $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and

 0° C \leq TA \leq +70 $^{\circ}$ C for commercial

Operating voltage VDD range as described in DC spec Section 11.1

and Section 11.2.

Param No.	Characteristic	Sym	Min	Typ	Max	Units	Conditions
140.	I			-			
	Input Low Voltage	VII					
D000	I/O ports	VIL	1/00		0.51/	V	
D030	with TTL buffer		Vss	-	0.5V		
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V	
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2Vdd	V	
Door	(in RC mode)		\/		0.01/		
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage	.,					$\langle \rangle \sim \rangle$
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	VQD/		4.5 ≤ VDD ≤ 5.5V
D040A			0.8VDD		VDD	k \	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8VDD	/	ABD	V	For entire VDD range
D042	MCLR, RA4/T0CKI RB0/INT		0.8V6D	\ <u>-</u>	VDQ	V	
D042A	OSC1 (XT, HS and LP)		0:7VDD	\ -/	(DQV		Note1
D043	OSC1 (in RC mode)		0.9VBD	1	VDD	V	
D070	PORTB weak pull-up current	IPURB	50	250	√ 400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)			$\langle \rangle$			
D060	I/O ports	Jr ,	(/3/)	`-	±1	μΑ	Vss ≤ Vpin ≤ Vdd, Pin at hi-
		\ \					impedance
D061	MCLR, RA4/T0CKI		\ <u>\</u>	-	±5		Vss ≤ Vpin ≤ Vdd
D063	OSC1		-	-	±5	μΑ	$Vss \le VPIN \le VDD$, XT, HS and LP
		\wedge					osc configuration
	Output Low Voltage						
D080	I/O ports	VoL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
							-40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V,
							-40°C to +125°C
D083	OSC2/CLKOUT-(RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V,
							-40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V,
	$h \downarrow \downarrow \downarrow$						-40°C to +125°C

(† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as coming out of the pin.
- 4: Automotive operating range is Advance Information for this device.

DC CHARACTERISTICS

DC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive,

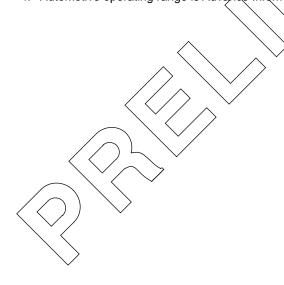
-40°C \leq TA \leq +85°C for industrial and

 $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Operating voltage $\ensuremath{\mathsf{VDD}}$ range as described in DC spec Section 11.1

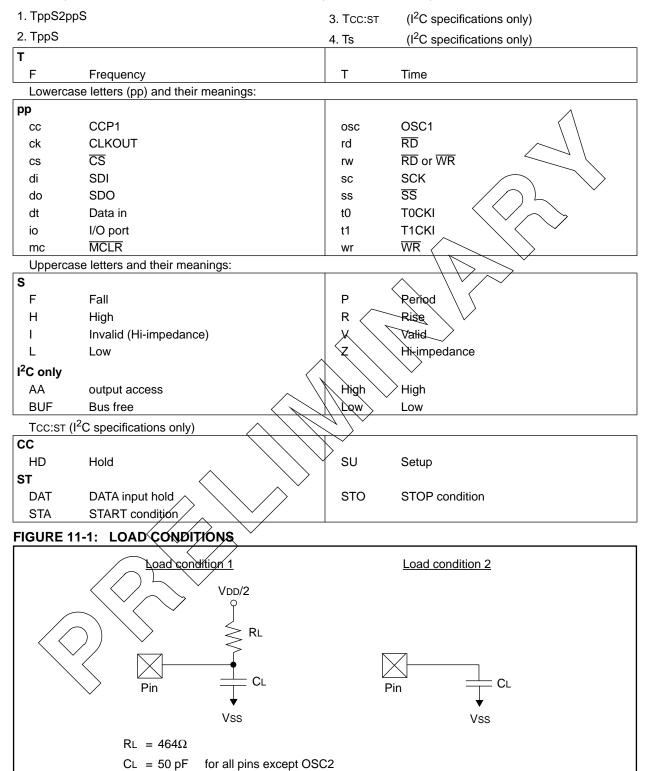
and Section 11.2.

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD - 0.7	-	-	V	IOH = -3.0 mA , VDD = 4.5V ,
							-40°C to +85°C
D090A			VDD - 0.7	-	-	V	IOH = -2.5 mA, VDD\= 4.5V,
							-40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		VDD - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V,
							-40°C,to +85°C
D092A			VDD - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V,
							-40°C to *125°C
	Capacitive Loading Specs on						
	Output Pins						
D100	OSC2 pin	Cosc ₂	-	-	15	pF/	In XT, HS and LP modes when
					^		external clock is used to drive
						\	Q8C1.
D101	All I/O pins and OSC2 (in RC mode)	Cıo	-		_ 50\ `	√pF \	


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC prode.

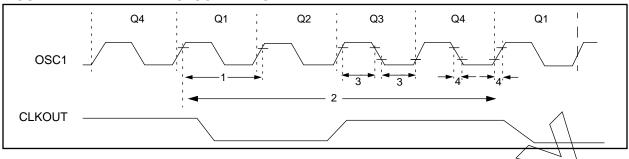
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.

4: Automotive operating range is Advance Information for this device.

11.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:



for OSC2 output

15 pF

11.5 <u>Timing Diagrams and Specifications</u>

FIGURE 11-2: EXTERNAL CLOCK TIMING

TABLE 11-2: CLOCK TIMING REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.							
	Fos	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	–	4	MHz,	HS osc mode (PIC16C715-04)
			DC	–	20	MHz	HS osc mode (PIC16C715-20)
			DC	_	200⁄ \	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	– ,	4	MHz	XT osc mode
			4		1	MHz	HS osc mode (PIC16C715-04)
			4	$ $ \leftarrow \setminus	10/	MHz	HS osc mode (PIC16C715-10)
			4 <	1	20	MHz	HS osc mode (PIC16C715-20)
			\^5 \	1/1/	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	17/	/ -	ns	XT and RC osc mode
		(Note 1)	250		_	ns	HS osc mode (PIC16C715-04)
			100	\ <u> </u>	_	ns	HS osc mode (PIC16C715-10)
			500		–	ns	HS osc mode (PIC16C715-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	-	–	ns	RC osc mode
		(Note 1)	250	-	10,000	ns	XT osc mode
			250	-	250	ns	HS osc mode (PIC16C715-04)
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100	_	250	ns	HS osc mode (PIC16C715-10)
			50	_	250	ns	HS osc mode (PIC16C715-20)
			5	_	_	μs	LP osc mode
2	TCX	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_	_	ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	₹osR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	_	50	ns	LP oscillator
	~			_	15	ns	HS oscillator

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C715.

FIGURE 11-3: CLKOUT AND I/O TIMING

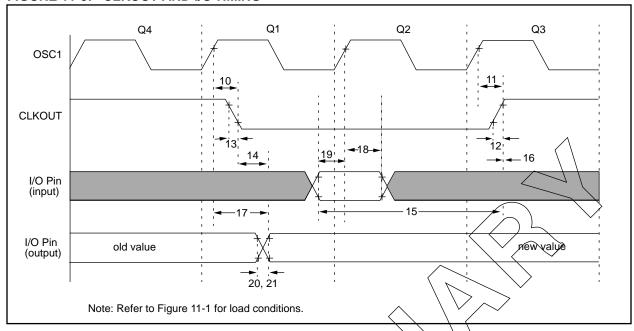


TABLE 11-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
No.		onaracioneno		1	.			Contantions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		\ <u>-</u> \	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑	, ///	\rightarrow	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		<u> </u>	5	15	ns	Note 1
13*	TckF	CLKOUT fall time	1/1/1/	_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	Port in valid before CLKOUT ↑				ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT	Port in hold after CLKOUT ↑				ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	_	_	80 - 100	ns		
18*	TosH2iol	OSC11 (Q2 eycle) to Port input invalid (I/Q in hol	d time)	TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC11 (I	I/O in setup time)	TBD			ns	
20*	TioR	Port output rise time	PIC16C715	_	10	25	ns	
			PIC16LC715	_	_	60	ns	
21*	TioF	Port output fall time	PIC16C715	_	10	25	ns	
			PIC16LC715	_	_	60	ns	
22/1*	Tinp)	1917 pin high or low time	20	_	_	ns		
23††*	Trbp	RB7:RB4 change INT high	or low time	20			ns	

These parameters are characterized but not tested.

[†] Data in Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP **TIMER TIMING**

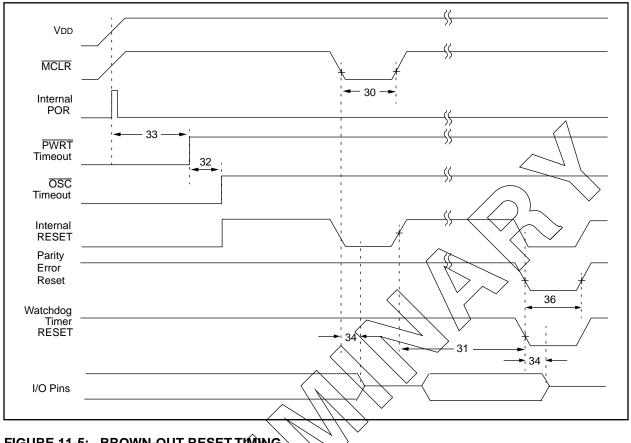
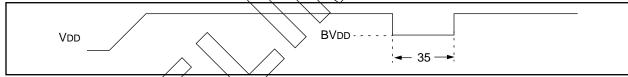



FIGURE 11-5: BROWN-OUT RESET TIMING

RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, **TABLE 11-4:** AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
30	TrncL	MCLR Pulse Width (low)	2	_	_	μs	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
31*	1wdf /	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
32 🗸	Tost	Oscillation Start-up Timer Period		1024Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	1		2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	VDD ≤ BVDD (D005)
36	TPER	Parity Error Reset	_	TBD	_	μs	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 11-6: TIMERO CLOCK TIMINGS

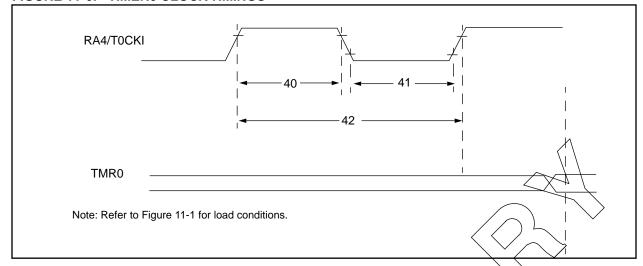


TABLE 11-5: TIMERO CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Typt	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TcY + 20*		_	ns	
			With Prescaler 5	10-1	\ <u>\</u>	_	ns	
41	TtOL	T0CKI Low Pulse Width	No Prescaler	0.5Toy + 20*	_	_	ns	
			With Prescaler	10*	_		ns	
42	Tt0P	TOCKI Period		Greater of: 20µs or <u>Tcy + 40</u> * N	_	_		N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge	to timer increment	2Tosc	_	7Tosc	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C715

TABLE 11-6: A/D CONVERTER CHARACTERISTICS:

PIC16C715-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE $^{(3)}$) PIC16C715-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE $^{(3)}$) PIC16C715-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE $^{(3)}$)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution	_	_	8-bits	_	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	NINT	Integral error	_	_	less than ±1 LSb	_	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	NDIF	Differential error	_		less than ±1 LSb	_	VREF = VDD = 5.12V, V\$\$ \(\frac{1}{2} \) AIN \(\le \) VREF
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	_	VREF = VDO = 5.12V, VSS ≤ AIN & VREF
	_	Monotonicity	_	guaranteed	_	_	VSS SAIN VREE
	VREF	Reference voltage	3.0V	_	VDD + 0.3	٧	
	Vain	Analog input voltage	Vss - 0.3	_	VREF + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	lad	A/D conversion current (VDD)	_	180		μΑ	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_	- <	10	mA μA	During sampling All other times

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDD pin, whicheven is selected as reference input.
 - 3: Automotive operating range is Advance Information for this device.

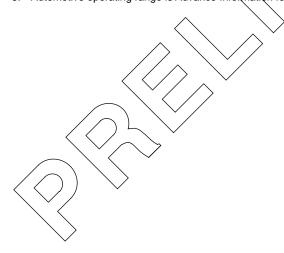


TABLE 11-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽⁴⁾)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution	_	_	8-bits	_	VREF = VDD = 3.0V (Note 1)
	NINT	Integral error	_	_	less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	NDIF	Differential error	_	_	less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	NFS	Full scale error	_	_	less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	Noff	Offset error	_	_	less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	_	Monotonicity	_	guaranteed	_	_	VSS S AIN S VREF
	VREF	Reference voltage	3.0V	_	VDD + 0.3	V	
	Vain	Analog input voltage	Vss - 0.3	_	VREF + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	lad	A/D conversion current (VDD)	_	90		μA	Average current consumption when A/D is on. (Note 2)
	IREF	VREF input current (Note 3)	_	_	10	mA p.A	During sampling All other times

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested
- Note 1: These specifications apply if VREF = 3.0V and if VDQ ≥ 3.0V. VIN must be between Vss and VREF
 - 2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
 - 4: Automotive operating range is Advance information for this device.

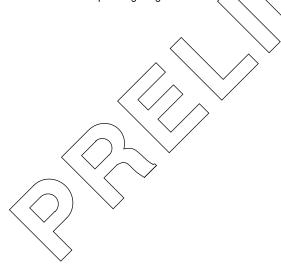


FIGURE 11-7: A/D CONVERSION TIMING

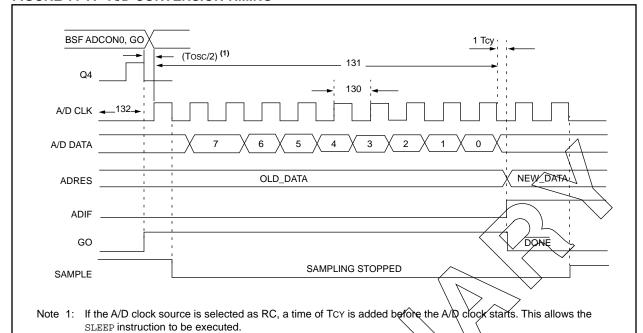
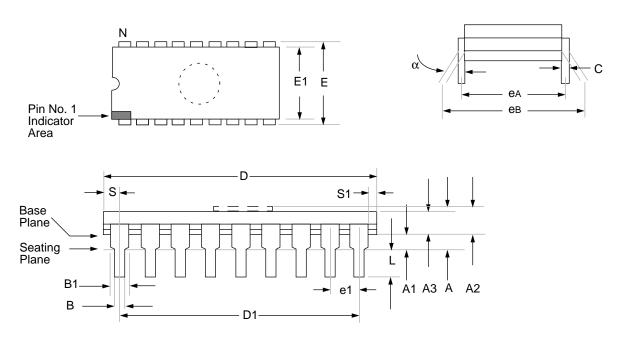
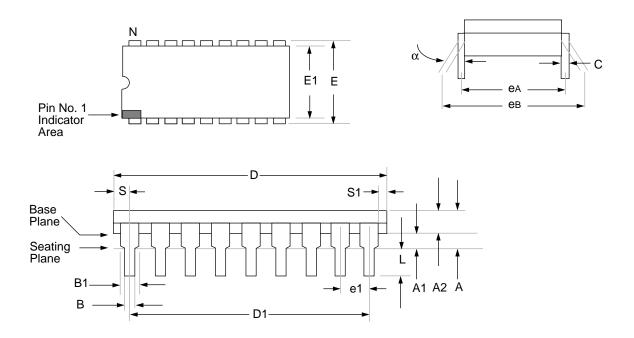


TABLE 11-8: A/D CONVERSION REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typt	Max	Units	Conditions
No.							
130	TAD	A/D clock period	1.6		\rightarrow $-$	μs	VREF ≥ 3.0V
			2.0	11/11/	\vee –	μs	VREF full range
130	TAD	A/D Internal RC					ADCS1:ADCS0 = 11
		Oscillator source					(RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		. < `	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time		9.5TAD	_	_	
		(not including S/H	\				
		time) Note 1					
132	TACQ	Acquisition time	Note 2	20	_	μs	

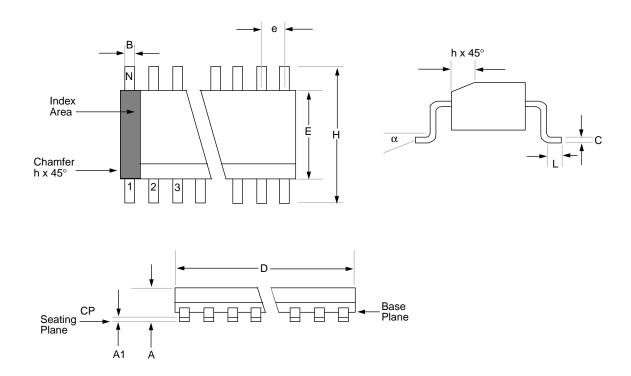

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

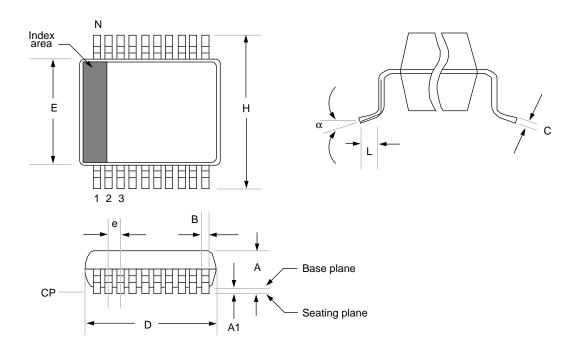

12.0 PACKAGING INFORMATION

12.1 <u>18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)</u>

Package Group: Ceramic CERDIP Dual In-Line (CDP)									
		Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
Α	_	5.080		_	0.200				
A1	0.381	1.7780		0.015	0.070				
A2	3.810	4.699		0.150	0.185				
A3	3.810	4.445		0.150	0.175				
В	0.355	0.585		0.014	0.023				
B1	1.270	1.651	Typical	0.050	0.065	Typical			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	22.352	23.622		0.880	0.930				
D1	20.320	20.320	Reference	0.800	0.800	Reference			
E	7.620	8.382		0.300	0.330				
E1	5.588	7.874		0.220	0.310				
e1	2.540	2.540	Reference	0.100	0.100	Reference			
eA	7.366	8.128	Typical	0.290	0.320	Typical			
eB	7.620	10.160		0.300	0.400				
L	3.175	3.810		0.125	0.150				
N	18	18		18	18				
S	0.508	1.397		0.020	0.055				
S1	0.381	1.270		0.015	0.050				

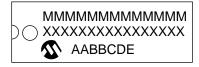

12.2 <u>18-Lead Plastic Dual In-line (300 mil)</u>

	Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
Α	_	4.064		_	0.160					
A1	0.381	_		0.015	_					
A2	3.048	3.810		0.120	0.150					
В	0.355	0.559		0.014	0.022					
B1	1.524	1.524	Reference	0.060	0.060	Reference				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	22.479	23.495		0.885	0.925					
D1	20.320	20.320	Reference	0.800	0.800	Reference				
E	7.620	8.255		0.300	0.325					
E1	6.096	7.112		0.240	0.280					
e1	2.489	2.591	Typical	0.098	0.102	Typical				
eA	7.620	7.620	Reference	0.300	0.300	Reference				
eB	7.874	9.906		0.310	0.390					
L	3.048	3.556		0.120	0.140					
N	18	18		18	18					
S	0.889	_		0.035	_					
S1	0.127	_		0.005	_					


© 1996 Microchip Technology Inc.

12.3 <u>18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)</u>

	Package Group: Plastic SOIC (SO)									
		Millimeters			Inches					
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	8°		0°	8°					
Α	2.362	2.642		0.093	0.104					
A1	0.101	0.300		0.004	0.012					
В	0.355	0.483		0.014	0.019					
С	0.241	0.318		0.009	0.013					
D	11.353	11.735		0.447	0.462					
E	7.416	7.595		0.292	0.299					
е	1.270	1.270	Reference	0.050	0.050	Reference				
Н	10.007	10.643		0.394	0.419					
h	0.381	0.762		0.015	0.030					
L	0.406	1.143		0.016	0.045					
N	18	18		18	18					
СР	_	0.102		_	0.004					

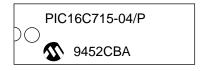

12.4 <u>20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)</u>

	Package Group: Plastic SSOP									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	8°		0°	8°					
Α	1.730	1.990		0.068	0.078					
A1	0.050	0.210		0.002	0.008					
В	0.250	0.380		0.010	0.015					
С	0.130	0.220		0.005	0.009					
D	7.070	7.330		0.278	0.289					
Е	5.200	5.380		0.205	0.212					
е	0.650	0.650	Reference	0.026	0.026	Reference				
Н	7.650	7.900		0.301	0.311					
L	0.550	0.950		0.022	0.037					
N	20	20		20	20					
CP	-	0.102		-	0.004					

12.5 Package Marking Information

18-Lead PDIP

18-Lead SOIC


18-Lead CERDIP Windowed

20-Lead SSOP

Example

Example

Example

Example

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A.					
	D ₁ E	S = Tempe, Arizona, U.S.A. Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.					
Note:	line, it will	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.					

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIC16C715

NOTES:

APPENDIX A:

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits.
 This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (192 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- OPTION and TRIS registers are made addressable.
- Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- Wake up from SLEEP through interrupt is added.
- Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight bit register.
- 15. "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- PCON status register is added with a Power-on Reset status bit (POR), a Brown-out Reset status bit (BOR), a Parity Error Reset (PER), and a Memory Parity Enable (MPEEN) bit.
- Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. Brown-out protection circuitry has been added. Controlled by configuration word bit BODEN. Brown-out reset ensures the device is placed in a reset condition if VDD dips below a fixed setpoint.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

PIC16C715

NOTES:

APPENDIX C: PIC16/17 MICROCONTROLLERS

C.1 PIC12C5XX Family of Devices

		PIC12C508	PIC12C509
Clock	Maximum Frequency of Operation (MHz)	4	4
Memory	EPROM Program Memory	512	1024
Wellioty	Data Memory (bytes)	25	41
Peripherals	Timer Module(s)	TMR0	TMR0
	Wake-up from SLEEP on pin change	Yes	Yes
	I/O Pins	5	5
	Input Pins	1	1
	Internal Pull-ups	Yes	Yes
Features	Voltage Range (Volts)	2.5-5.5	2.5-5.5
	In-Circuit Serial Programming	Yes	Yes
	Number of Instructions	33	33
	Packages	8-pin PDIP, 8-pin SOIC	8-pin PDIP, 8-pin SOIC

C.2 PIC14000 Devices

		PIC14000
Clock	Maximum Frequency of Operation (MHz)	20
	EPROM Program Memory (x14 words)	4K
Memory	Data Memory (bytes)	192
	Timer Module(s)	TMR0 ADTMR
Peripherals	Serial Port(s) (SPI/I ² C, USART	I ² C with SMBus Support
	Slope A/D Converter Channels	8 External 6 Internal
	Interrupt Sources	11
	I/O Pins	22
	Voltage Range (Volts)	2.7-6.0
	In-Circuit Serial Programming	Yes
Features	Additional On-chip Features	Internal Oscillator, Bandgap Reference, Temperature Sensor, Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE, Comparators with Programmable References (2)
	Packages	28-pin DIP, SOIC, SSOP (.300 mil)

C.3 PIC16C5X Family of Devices

		PIC16C52	PIC16C54	PIC16C54A	PIC16CR54A	PIC16C55	PIC16C56
Clock	Maximum Frequency of Operation (MHz)	4	20	20	20	20	20
	EPROM Program Memory (x12 words)	384	512	512	_	512	1K
Memory	ROM Program Memory (x12 words)	_	_	_	512	_	_
	RAM Data Memory (bytes)	25	25	25	25	24	25
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	20	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.0-6.25	2.5-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33	33	33
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP

		PIC16C57	PIC16CR57B	PIC16C58A	PIC16CR58A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
	EPROM Program Memory (x12 words)	2K	_	2K	_
Memory	ROM Program Memory (x12 words)	_	2K	_	2K
	RAM Data Memory (bytes)	72	72	73	73
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
	I/O Pins	20	20	12	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33
	Packages	28-pin DIP, SOIC, SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

C.4 PIC16CXXX Family of Devices

		PIC16C554	PIC16C556	PIC16C558	PIC16C620	PIC16C621	PIC16C622
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	2K	512	1K	2K
	Data Memory (bytes)	80	80	128	80	80	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
Peripherals	Comparators(s)	_	_	_	2	2	2
	Internal Reference Voltage		_	_	Yes	Yes	Yes
	Interrupt Sources	3	3	3	4	4	4
	I/O Pins	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	Brown-out Reset		_	_	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP					

		PIC16C641 ⁽¹⁾	PIC16C642	PIC16C661 ⁽¹⁾	PIC16C662
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	2K	4K	2K	4K
	Data Memory (bytes)	128	176	128	176
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
Peripherals	Comparators(s)	2	2	2	2
	Internal Reference Voltage	Yes	Yes	Yes	Yes
	Interrupt Sources	4	4	5	5
	I/O Pins	22	22	33	33
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-6.0
Features	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin PDIP, SOIC, Windowed CDIP	28-pin PDIP, SOIC, Windowed CDIP	40-pin PDIP, Windowed CDIP; 44-pin PLCC, MQFP	40-pin PDIP, Windowed CDIP; 44-pin PLCC, MQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

C.5 PIC16C6X Family of Devices

		PIC16C62 ⁽¹⁾	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K	2K	_	4K	_
Memory	ROM Program Memory (x14 words)	_	_	2K	_	4K
	Data Memory (bytes)	128	128	128	192	192
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	1	1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	_	_	_	_	_
	Interrupt Sources	7	7	7	10	10
	I/O Pins	22	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages		28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

		PIC16C64 ⁽¹⁾	PIC16C64A	PIC16CR64	PIC16C65 ⁽¹⁾	PIC16C65A	PIC16CR65
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K	2K	_	4K	4K	_
Memory	ROM Program Memory (x14 words)	_	_	2K	_	_	4K
	Data Memory (bytes)	128	128	128	192	192	192
	Timer Module(s)	,	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	1	1	1	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	8	8	8	11	11	11
	I/O Pins	33	33	33	33	33	33
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	3.0-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	_	Yes	Yes
	Packages	44-pin PLCC,	40-pin DIP; 44-pin PLCC, MQFP, TQFP		40-pin DIP; 44-pin PLCC, MQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

C.6 PIC16C7XX Family of Devices

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	1K	2K	2K
	Data Memory (bytes)	36	36	68	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	_	_	_	_	1
	Serial Port(s) (SPI/I ² C, USART)	_	_	_	_	SPI/I ² C
	Parallel Slave Port	_	_	_	_	_
	A/D Converter (8-bit) Channels	4	4	4	4	5
	Interrupt Sources	4	4	4	4	8
	I/O Pins	13	13	13	13	22
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-5.5	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	_	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP

		PIC16C73 ⁽¹⁾	PIC16C73A	PIC16C74 ⁽¹⁾	PIC16C74A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	4K	4K
	Data Memory (bytes)	192	192	192	192
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	_	_	Yes	Yes
	A/D Converter (8-bit) Channels	5	5	8	8
	Interrupt Sources	11	11	12	12
	I/O Pins	22	22	33	33
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	3.0-6.0	2.5-6.0
Footower	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
Features	Brown-out Reset	_	Yes	_	Yes
	Packages	28-pin SDIP, SOIC	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7X Family devices use serial programming with clock pin RB6 and data pin RB7.

C.7 PIC16C8X Family of Devices

		PIC16F83	PIC16CR83	PIC16C84 ⁽¹⁾	PIC16F84	PIC16CR84
Clock	Maximum Frequency of Operation (MHz)	10	10	10	10	10
	Flash Program Memory	512	_	_	1K	_
	EEPROM Program Memory	_	_	1K	_	_
Memory	ROM Program Memory	_	512	_	_	1K
	Data Memory (bytes)	36	36	36	68	68
	Data EEPROM (bytes)	64	64	64	64	64
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0
	Interrupt Sources	4	4	4	4	4
	I/O Pins	13	13	13	13	13
Features	Voltage Range (Volts)	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.

C.8 PIC16C9XX Family Of Devices

		PIC16C923	PIC16C924
Clock	Maximum Frequency of Operation (MHz)	8	8
Memory	EPROM Program Memory	4K	4K
Welliory	Data Memory (bytes)	176	176
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Capture/Compare/ PWM Module(s)	1	1
Peripherals	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	_	_
	A/D Converter (8-bit) Channels	_	5
	LCD Module	4 Com, 32 Seg	4 Com, 32 Seg
	Interrupt Sources	8	9
	I/O Pins	25	25
	Input Pins	27	27
	Voltage Range (Volts)	3.0-6.0	3.0-6.0
Features	In-Circuit Serial Programming	Yes	Yes
	Brown-out Reset	_	_
	Packages	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip representative for availability of this package.

C.9 PIC17CXX Family of Devices

		PIC17C42A	PIC17CR42	PIC17C43	PIC17CR43	PIC17C44
Clock	Maximum Frequency of Operation (MHz)	33	33	33	33	33
	EPROM Program Memory (words)	2K	_	4K	_	8K
Memory	ROM Program Memory (words)	_	2K	_	4K	_
	RAM Data Memory (bytes)	232	232	454	454	454
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3
	Captures/PWM Module(s)	2	2	2	2	2
	Serial Port(s) (USART)	Yes	Yes	Yes	Yes	Yes
	Hardware Multiply	Yes	Yes	Yes	Yes	Yes
	External Interrupts	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	11	11	11	11	11
	I/O Pins	33	33	33	33	33
Features	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	Number of Instructions	58	58	58	58	58
	Packages	44-pin PLCC,	44-pin PLCC,	44-pin PLCC,	44-pin PLCC,	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

PIN COMPATIBILITY

Devices that have the same package type and VDD, Vss and $\overline{\text{MCLR}}$ pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

TABLE C-1: PIN COMPATIBLE DEVICES

Pin Compatible Devices	Package
PIC12C508, PIC12C509	8-pin
PIC16C54, PIC16C54A, PIC16CR54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73A	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16C74A	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin

INDEX		BTFSS Instruction	66
A		С	
A/D		C bit	15
Accuracy/Error	12	C Compiler (MP-C	
ADCON0 Register		CALL Instruction	66
ADIF bit		Carry bit	
Analog Input Model Block Diagram		Clocking Scheme	
Analog-to-Digital Converter		CLRF Instruction	
Configuring Analog Port Pins		CLRW Instruction	
Configuring Arialog For Fins		CLRWDT Instruction	
Configuring the Module		Code Examples	
Connection Considerations		Changing Prescaler (Timer0 to WDT)	33
Conversion Clock		Changing Prescaler (WDT to Timer0)	
Conversion Time		I/O Programming	
Conversions		Indirect Addressing	
Converter Characteristics		Initializing PORTA	
Delays		Initializing PORTB	
		Code Protection	
Effects of a Reset		COMF Instruction	,
Equations		Computed GOTO	
Faster Conversion - Lower Resolution Tradeoff		Configuration Bits	
Flowchart of A/D Operation		Configuration bits	43
GO/DONE bit		D	
Internal Sampling Switch (Rss) Impedence		DC bit	15
Operation During Sleep		DC Characteristics	10
Sampling Requirements		PIC16C715	81
Sampling Time		DECF Instruction	
Source Impedence		DECFSZ Instruction	_
Time Delays		Development Support	
Transfer Function		·	
Absolute Maximum Ratings		Development Tools	73
ADDLW Instruction		Diagrams - See Block Diagrams	7
ADDWF Instruction		Digit Carry bit	
ADIE bit	18	Direct Addressing	22
ADIF bit	-	E	
ADRES Register 13, 35		Electrical Characteristics	
ALU	7	PIC16C715	70
ANDLW Instruction	64	External Brown-out Protection Circuit	
ANDWF Instruction	64	External Power-on Reset Circuit	
Application Notes		External Fower-on Neset Offcult	55
AN546	35	F	
AN552	25	Family of Devices	
AN556	21	PIC12C5XX	101
Architecture		PIC14000	
Harvard	7	PIC16C5X	
Overview	7	PIC16C5X	
von Neumann	7		
Assembler	76	PIC16C6X	
n		PIC16C7XX	
В		PIC16C8X	
BCF Instruction	65	PIC16C9XX	
Bit Manipulation	62	PIC17CXX	
Block Diagrams		FSR Register	
Analog Input Model	38	Fuzzy Logic Dev. System (fuzzyTECH®-MP)	75, 77
On-Chip Reset Circuit		G	
PIC16C715			
RA3:RA0 Port Pins		General Description	
RA4/T0CKI Pin		GIE bit	
RB3:RB0 Port Pins		GOTO Instruction	68
RB7:RB4 Pins		I	
Timer0		• !/o.b. /	
Timer0/WDT Prescaler		I/O Ports	_
Watchdog Timer		PORTA	
BOR bit		PORTB	
BSF Instruction		I/O Programming Considerations	
BTFSC Instruction		INCF Instruction	
DTI GO IIISU UCUOTI	00	INCFSZ Instruction	68

In-Circuit Serial Programming	45 59	Program Memory	11
INDF Register		Program Memory Map	•
Indirect Addressing		PIC16C715	11
Initialization Condition for all Register		Register File Map	
Instruction Cycle		PIC16C715	12
Instruction Flow/Pipelining		MOVF Instruction	
Instruction Format	01	MOVLW Instruction	
Instruction Set		MOVWF Instruction	
ADDLW	_	MPASM Assembler	
ADDWF	-	MP-C C Compiler	
ANDLW	64	MPSIM Software Simulator 75,	77
ANDWF	64	N	
BCF	65	N	
BSF	65	NOP Instruction	70
BTFSC	65		
BTFSS		0	
CALL		Opcode	61
CLRF		OPTION Instruction	
CLRW		OPTION Register	
-		Orthogonal	
CLRWDT	_	OSC selection	
COMF	_		43
DECF	_	Oscillator	
DECFSZ	67	HS	
GOTO	68	LP 46,	
INCF	68	RC	46
INCFSZ	68	XT 46,	50
IORLW	68	Oscillator Configurations	46
IORWF	69	D.	
MOVF		P	
MOVLW		Packaging	
MOVWF		18-Lead CERDIP w/Window	93
NOP		18-Lead PDIP	
		18-Lead SOIC	
OPTION	_	20-Lead SSOP	
RETFIE	_	Paging, Program Memory	
RETLW	70		
RETURN		PCL	-
RLF	71	PCL Register	
RRF	71	PCLATH	
SLEEP	71	PCLATH Register 13, 14,	
SUBLW	72	PCON Register	50
SUBWF	72	PD bit 15,	48
SWAPF		PICDEM-1 Low-Cost PIC16/17 Demo Board 75,	76
TRIS	_	PICDEM-2 Low-Cost PIC16CXX Demo Board 75,	76
XORLW	_	PICDEM-3 Low-Cost PIC16C9XXX Demo Board	76
		PICMASTER® RT In-Circuit Emulator	75
XORWF		PICSTART® Low-Cost Development System	
Summary Table		PIE1 Register	
INT Interrupt		Pin Compatible Devices	
INTCON Register	17	•	10
INTEDG bit	16, 56	Pin Functions	_
Internal Sampling Switch (Rss) Impedence	38	MCLR/Vpp	
Interrupts	45	OSC1/CLKIN	. 9
A/D		OSC2/CLKOUT	. 9
PortB Change		RA0/AN0	. 9
PSP		RA1/AN1	. 9
RB7:RB4 Port Change		RA2/AN2	. 9
g .		RA3/AN3/Vref	. 9
TMR0		RA4/T0CKI	
IORLW Instruction		RB0/INT	_
IORWF Instruction		RB1	
IRP bit	15		
1		RB2	
L		RB3	
Loading of PC	21	RB4	
		RB5	. 9
М		RB6	. 9
MCLR	48, 51	RB7	. 9
Memory	, -	Pinout Descriptions	
Data Memory	11	PIC16C715	. 9
······ j ·······			-

PIR1 Register	19
POP	
POR	
Oscillator Start-up Timer (OST)	49
Power Control Register (PCON)	
Power-on Reset (POR) 45, 49,	
Power-up Timer (PWRT)	
Power-up-Timer (PWRT)	
Time-out Sequence	
Time-out Sequence on Power-up	
TO	
POR bit 20,	
Port RB Interrupt	
PORTA	
PORTA Register	-
PORTB	
PORTB Register	
Power-down Mode (SLEEP)	
Prescaler, Switching Between Timer0 and WDT	
PRO MATE® Universal Programmer	75
Program Branches	
Program Memory	. 1
Paging	24
	21
Program Memory Maps	
PIC16C715	
Program Verification	
PS1 bit	
PSA bit	16
PUSH	21
R	
RBIF bit	EC
RBPU bit	
RBPU bit	16 50
RBPU bit	16 50 27
RBPU bit	16 50 27
RBPU bit	16 50 27 11
RBPU bit	16 50 27 11
RBPU bit	16 50 27 11 51
RBPU bit	16 50 27 11 51
RBPU bit	16 50 27 11 51
RBPU bit	16 50 27 11 51 12 51 48
RBPU bit	16 50 27 11 51 12 51 48
RBPU bit	16 50 27 11 51 12 51 48 51
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 247, Register File 247, Register File 247, Registers 247, Initialization Conditions 248, Maps 245, Reset Conditions for Special Registers 245,	16 50 27 11 51 48 51 70
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 247, Register File 248, Registers 249, Initialization Conditions 249, Maps 240, PIC16C715 245, Reset 45, Reset Conditions for Special Registers 245, RETFIE Instruction 245, RETLW Instruction 245,	16 50 27 11 51 12 51 48 51 70
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 247, Register File 247, Registers 247, Initialization Conditions 248, Maps 245, Reset 45, Reset Conditions for Special Registers 245, RETFIE Instruction 247,	16 50 27 11 51 12 51 48 51 70 70
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions 45, Reset Conditions for Special Registers RETFIE Instruction RETLW Instruction RETURN Instruction RLF Instruction RLF Instruction	16 50 27 11 51 12 51 48 51 70 70 71
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, Reset Conditions for Special Registers RETFIE Instruction RETLW Instruction RETURN Instruction RLF Instruction RP0 bit 11,	16 50 27 11 51 12 51 48 51 70 71 71 15
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, Reset Conditions for Special Registers RETFIE Instruction RETLW Instruction RETURN Instruction RLF Instruction RP0 bit 11, RP1 bit 11,	16 50 27 11 51 12 51 48 51 70 71 71 15 15
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, RESTFIE Instruction RETLW Instruction RETURN Instruction RETURN Instruction RLF Instruction RP0 bit 11, RP1 bit RRF Instruction	16 50 27 11 51 12 51 48 51 70 71 71 15 15
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, Reset Conditions for Special Registers RETFIE Instruction RETLW Instruction RETURN Instruction RLF Instruction RP0 bit 11, RP1 bit 11,	16 50 27 11 51 12 51 48 51 70 71 71 15 15
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, RESTFIE Instruction RETLW Instruction RETURN Instruction RETURN Instruction RLF Instruction RP0 bit 11, RP1 bit RRF Instruction	16 50 27 11 51 12 51 48 51 70 71 71 15 15
RBPU bit 47, Rc Oscillator 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, Reset Conditions for Special Registers RETFIE Instruction RETLW Instruction RETURN Instruction RET Instruction RLF Instruction RP0 bit 11, RRF Instruction RRF Instruction S Services	16 50 27 11 51 51 48 51 70 71 71 15 15 71
RBPU bit 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, Reset Conditions for Special Registers RETFIE Instruction RETLW Instruction RETURN Instruction REF Instruction RP0 bit 11, RPF Instruction 11, RRF Instruction S Services One-Time-Programmable (OTP)	16 50 27 11 51 12 51 48 51 70 71 71 15 71 5
RBPU bit 47, Read-Modify-Write 47, Register File Registers Initialization Conditions Maps PIC16C715 Reset Conditions Reset Conditions for Special Registers 45, Rest Conditions for Special Registers RETFIE Instruction RETLW Instruction RETURN Instruction RET URN Instruction RLF Instruction RP0 bit 11, RP1 bit RRF Instruction S Services One-Time-Programmable (OTP) Quick-Turnaround-Production (QTP)	16 50 27 11 51 51 48 51 70 71 71 15 71 5
RBPU bit	16 50 27 11 51 12 51 48 51 70 70 71 71 15 71 5 5
RBPU bit	16 50 27 11 51 51 51 51 51 70 70 71 71 55 71 55 71 55 71 71 71 71 71 71 71 71 71 71 71 71 71
RBPU bit	16 50 27 11 51 12 51 48 51 70 71 15 15 71
RBPU bit	16 50 27 11 51 12 51 48 51 70 71 15 15 15 62 62 48
RBPU bit	16 50 27 11 51 51 51 51 51 51 51 51 70 71 71 71 71 71 71 71 71 71 71 71 71 71
RBPU bit	16 50 27 1 51 51 51 51 51 51 51 51 51 51 51 51 5
RBPU bit	16 50 27 1 51 12 548 51 70 71 15 15 15 62 62 48 71 77 45

Stack	2′
Overflows	2′
Underflow	
STATUS Register	
SUBLW Instruction	
SUBWF Instruction	
SWAPF Instruction	73
т	
•	
TOCS bit	
TAD	39
Timer0	_
RTCC	5
Timers	
Timer0	
Block Diagram	
External Clock	
External Clock Timing	
Increment Delay	
Interrupt	
Interrupt Timing	
Prescaler	
Prescaler Block Diagram	
Section	
Switching Prescaler Assignment	
Synchronization	
T0CKI	3′
T0IF	
Timing	29
TMR0 Interrupt	56
Timing Diagrams	
A/D Conversion	92
Brown-out Reset4	19, 88
CLKOUT and I/O	87
External Clock Timing	86
Power-up Timer	88
Reset	88
Start-up Timer	
Time-out Sequence	
Timer0 2	
Timer0 Interrupt Timing	
Timer0 with External Clock	
Wake-up from Sleep via Interrupt	
Watchdog Timer	
TO bit	
TRIS Instruction	
TDICA Degister	

TRISB Register
U
UV Erasable Devices 5
W
W Register 7 ALU 7 Wake-up from SLEEP 58 Watchdog Timer (WDT) 45, 48, 51, 57 WDT 51 Block Diagram 57 Period 57 Programming Considerations 57 Timeout 51
X
XORLW Instruction
Z
Z bit
Zero bit

LIST OF EX	KAMPLES	
Example 3-1:	Instruction Pipeline Flow	10
Example 4-1:	Indirect Addressing	
Example 5-1:	Initializing PORTA	
Example 5-2:	Initializing PORTB	
Example 5-3:	Read-Modify-Write Instructions	
	on an I/O Port	27
Example 6-1:	Changing Prescaler (Timer0→WDT)	33
Example 6-2:	Changing Prescaler (WDT→Timer0)	
Example 7-1:	Calculating the Minimum Required	
	Sample Time	38
Example 7-2:	Doing an A/D Conversion	40
Example 7-3:	4-bit vs. 8-bit Conversion Times	41
Example 8-1:	Saving STATUS and W Registers	
	in RAM	56
LICT OF F	OUDEC	
LIST OF FI	GURES	
Figure 3-1:	PIC16C715 Block Diagram	
Figure 3-2:	Clock/Instruction Cycle	10
Figure 4-1:	PIC16C715 Program Memory Map	
	and Stack	11
Figure 4-2:	PIC16C715 Register File Map	12
Figure 4-3:	Status Register (Address 03h, 83h)	15
Figure 4-4:	OPTION Register (Address 81h)	16
Figure 4-5:	INTCON Register (Address 0Bh, 8Bh)	17
Figure 4-6:	PIE1 Register (Address 8Ch)	18
Figure 4-7:	PIR1 Register (Address 0Ch)	19
Figure 4-8:	PCON Register (Address 8Eh)	
Figure 4-9:	Loading of PC In Different Situations	
Figure 4-10:	Direct/Indirect Addressing	
Figure 5-1:	Block Diagram of RA3:RA0	
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	
Figure 5-3: Figure 5-4:	Block Diagram of RB3:RB0 Pins	
Figure 5-4: Figure 5-5:	Block Diagram of RB7:RB4 Pins	
Figure 6-1:	Successive I/O Operation Timer0 Block Diagram	
Figure 6-1.	Timer0 Timing: Internal Clock/	29
rigule 0-2.	No Prescale	29
Figure 6-3:	Timer0 Timing: Internal Clock/	23
riguic 0 5.	Prescale 1:2	30
Figure 6-4:	Timer0 Interrupt Timing	
Figure 6-5:	Timer0 Timing with External Clock	
Figure 6-6:	Block Diagram of the Timer0/	-
9	WDT Prescaler	32
Figure 7-1:	ADCON0 Register (Address 1Fh)	
Figure 7-2:	ADCON1 Register (Address 88h)	
Figure 7-3:	A/D Block Diagram	
Figure 7-4:	Analog Input Model	38
Figure 7-5:	A/D Transfer Function	42
Figure 7-6:	Flowchart of A/D Operation	43
Figure 8-1:	Configuration Word	45
Figure 8-2:	Crystal/Ceramic Resonator Operation	
	(HS, XT or LP OSC Configuration)	46
Figure 8-3:	External Clock Input Operation	
	(HS, XT or LP OSC Configuration)	46
Figure 8-4:	External Parallel Resonant Crystal	
	Oscillator Circuit	47
Figure 8-5:	External Series Resonant Crystal	
	Oscillator Circuit	47
Figure 8-6:	RC Oscillator Mode	47
Figure 8-7:	Simplified Block Diagram of On-chip	
F: 0.0	Reset Circuit	48
Figure 8-8:	Brown-out Situations	49
Figure 8-9:	Time-out Sequence on Power-up	ΕO
	(MCLR not Tied to VDD): Case 1	52

Figure 8-10:	Time-out Sequence on Power-up (MCLR Not Tied To VDD): Case 2	52
Figure 8-11:	Time-out Sequence on Power-up	
Eiguro 9 12:	(MCLR Tied to VDD) External Power-on Reset Circuit	52
Figure 8-12:	(for Slow VDD Power-up)	53
Figure 8-13:	External Brown-out Protection Circuit 1	
Figure 8-14:	External Brown-out Protection Circuit 2	
Figure 8-15:	Interrupt Logic	54
Figure 8-16:	INT Pin Interrupt Timing	55
Figure 8-17:	Watchdog Timer Block Diagram	
Figure 8-18:	Summary of Watchdog Timer Registers	57
Figure 8-19:	Wake-up from Sleep Through Interrupt	59
Figure 8-20:	Typical In-Circuit Serial Programming	
Figure 9-1:	Connection	
Figure 9-1.	Load Conditions	-
Figure 11-1:	External Clock Timing	
Figure 11-3:	CLKOUT and I/O Timing	
Figure 11-4:	Reset, Watchdog Timer,	٠.
G	Oscillator Start-up Timer and	
	Power-up Timer Timing	
Figure 11-5:	Brown-out Reset Timing	
Figure 11-6:	Timer0 Clock Timings	
Figure 11-7:	A/D Conversion Timing	92
LIST OF TA	BLES	
Table 1-1:	PIC16C715 Family of Devices	
Table 3-1:	PIC16C715 Pinout Description	. 9
Table 4-1:	PIC16C715 Special Function Register	
Toblo F 1:	Summary PORTA Functions	
Table 5-1: Table 5-2:	Summary of Registers Associated	24
Table 3-2.	with PORTA	24
Table 5-3:	PORTB Functions	
Table 5-4:	Summary of Registers Associated	
	with PORTB	26
Table 6-1:	Registers Associated with Timer0	
Table 7-1:	TAD vs. Device Operating Frequencies	
Table 7-2:	Summary of A/D Registers	
Table 8-1:	Ceramic Resonators	
Table 8-2:	Capacitor Selection for Crystal Oscillator	
Table 8-3: Table 8-4:	Time-out in Various Situations	
	Status Bits and Their Significance	
Table 8-5: Table 8-6:	Reset Condition for Special Registers	JΙ
Table 9-1:	Initialization Conditions for all Registers	
Table 9-2:	Initialization Conditions for all Registers Opcode Field Descriptions	51
	Opcode Field Descriptions	51 61
Table 10-1:		51 61 63
Table 10-1: Table 11-1:	Opcode Field Descriptions	51 61 63
	Opcode Field DescriptionsPIC16CXX Instruction Set	51 61 63
	Opcode Field Descriptions	51 61 63 78
Table 11-1:	Opcode Field Descriptions	51 61 63 78
Table 11-1:	Opcode Field Descriptions	51 61 63 78 80 86
Table 11-1: Table 11-2: Table 11-3:	Opcode Field Descriptions	51 61 63 78 80 86
Table 11-1:	Opcode Field Descriptions	51 61 63 78 80 86
Table 11-1: Table 11-2: Table 11-3:	Opcode Field Descriptions	51 61 63 78 80 86 87
Table 11-1: Table 11-2: Table 11-3: Table 11-4:	Opcode Field Descriptions	51 61 63 78 80 86 87
Table 11-1: Table 11-2: Table 11-3: Table 11-4: Table 11-5:	Opcode Field Descriptions	51 61 63 78 80 86 87
Table 11-1: Table 11-2: Table 11-3: Table 11-4:	Opcode Field Descriptions	51 61 63 78 80 86 87
Table 11-1: Table 11-2: Table 11-3: Table 11-4: Table 11-5:	Opcode Field Descriptions	51 61 63 78 80 86 87
Table 11-1: Table 11-2: Table 11-3: Table 11-4: Table 11-5:	Opcode Field Descriptions	51 61 63 78 80 86 87
Table 11-1: Table 11-2: Table 11-3: Table 11-4: Table 11-5:	Opcode Field Descriptions	51 61 63 78 80 86 87
Table 11-1: Table 11-2: Table 11-3: Table 11-4: Table 11-5:	Opcode Field Descriptions	51 61 63 78 80 86 87 88 89

Table 11-7:	A/D Converter Characteristics:
	PIC16LC715-04 (Commercial, Industrial,
	Automotive ⁽⁴⁾)
Table 11-8:	A/D Conversion Requirements 9

NOTES:

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- · Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe® communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS.

The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modern to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-602-786-7302 for the rest of the world.

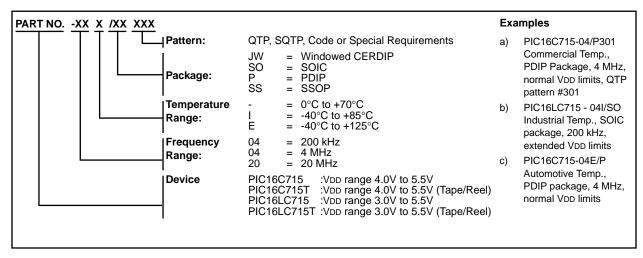
960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE


It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

IO: RE:	Toomingar i abnoatione Manager	Total Pages Sent			
Froi	CompanyAddressCity / State / ZIP / Country				
	pplication (optional):				
Wou	ould you like a reply?YN				
Dev	evice: PIC16C715 Literature Num	ber: DS30560A			
Que	uestions:				
1.	What are the best features of this document?				
2.	2. How does this document meet your hardware and software development needs?				
3.	B. Do you find the organization of this data sheet easy to follow? If not, why?				
4.	What additions to the data sheet do you think wo	ould enhance the structure and subject?			
5.	What deletions from the data sheet could be made	de without affecting the overall usefulness?			
6.	Is there any incorrect or misleading information (what and where)?			
_					
7.	How would you improve this document?				
8.	How would you improve our software, systems, a	and eilicon products?			
0.		and sillour products:			

PIC16C715 Product Identification System

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

^{*} JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office (see below)
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602 786-7200 Fax: 602 786-7277 Technical Support: 602 786-7627 Web: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770 640-0034 Fax: 770 640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508 480-9990 Fax: 508 480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 708 285-0071 Fax: 708 285-0075

Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 972 991-7177 Fax: 972 991-8588

Dayton

Microchip Technology Inc. Suite 150 Two Prestige Place Miamisburg, OH 45342 Tel: 513 291-1654 Fax: 513 291-9175

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 714 263-1888 Fax: 714 263-1338

New York

Microchip Technmay Inc. 150 Motor Parkway, Suite 416 Hauppauge, NY 11788 Tel: 516 273-5305 Fax: 516 273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408 436-7950 Fax: 408 436-7955

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905 405-6279 Fax: 905 405-6253

ASIA/PACIFIC

Hong Kong

Microchip Technology RM 3801B, Tower Two Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852 2 401 1200 Fax: 852 2 401 3431

Microchip Technology No. 6, Legacy, Convent Road Bangalore 560 025 India Tel: 91 80 526 3148 Fax: 91 80 559 9840

Korea

Microchip Technology 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku, Seoul, Korea

Tel: 82 2 554 7200 Fax: 82 2 558 5934

Shanghai

Microchip Technology Unit 406 of Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hongiao District Shanghai, Peoples Republic of China Tel: 86 21 6275 5700

Fax: 86 21 6275 5060 Singapore

Microchip Technology 200 Middle Road #10-03 Prime Centre Singapore 188980 Tel: 65 334 8870 Fax: 65 334 8850

Taiwan, R.O.C

Microchip Technology 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd. Unit 6, The Courtyard Meadow Bank, Furlong Road Bourne End, Buckinghamshire SL8 5AJ Tel: 44 1628 850303 Fax: 44 1628 850178

Arizona Microchip Technology SARL Zone Industrielle de la Bonde 2 Rue du Buisson aux Fraises 91300 Massy - France Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Muenchen, Germany Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Arizona Microchip Technology SRL Centro Direzionale Colleone Pas Taurus 1 Viale Colleoni 1 20041 Agrate Brianza Milan Italy Tel: 39 39 6899939 Fax: 39 39 689 9883

JAPAN

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shin Yokohama Kohoku-Ku, Yokohama Kanagawa 222 Japan Tel: 81 45 471 6166 Fax: 81 45 471 6122

9/3/96

All rights reserved. © 1996, Microchip Technology Incorporated, USA.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.