

8-Bit CMOS Microcontrollers

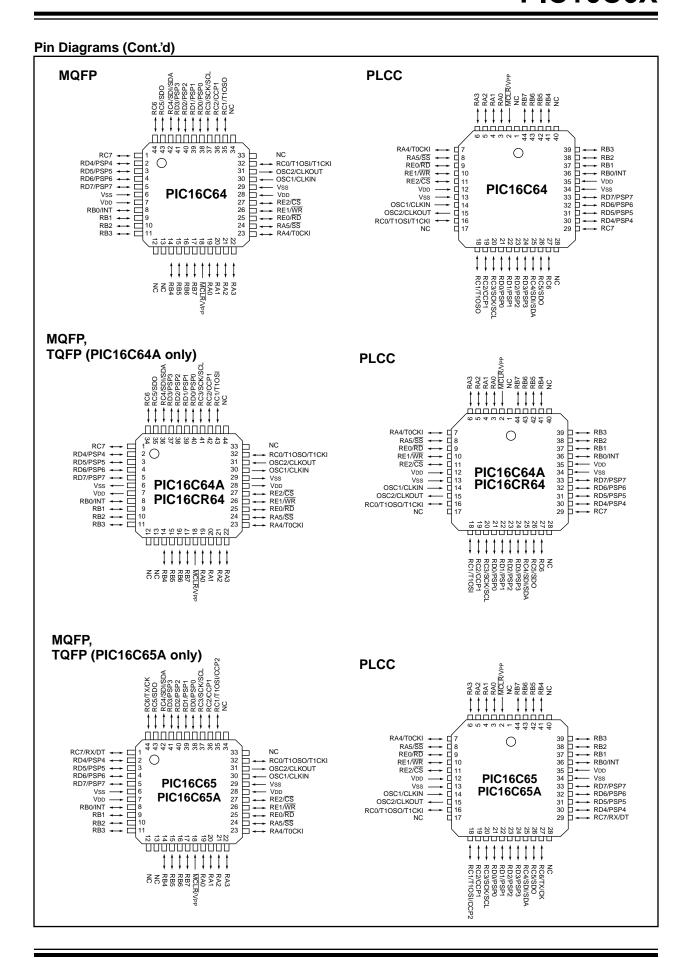
Devices included in this data sheet:

- PIC16C61
- PIC16C62
- PIC16C62A
- PIC16CR62
- PIC16C63
- PIC16C64
- PIC16C64A
- PIC16CR64
- PIC16C65
- PIC16C65A

PIC16C6X Microcontroller Core Features:

- High performance RISC CPU
- · Only 35 single word instructions to learn
- All single cycle instructions (200 ns) except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- · Interrupt capability
- · Eight level deep hardware stack
- · Direct, indirect, and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- Power saving SLEEP mode

- · Selectable oscillator options
- Low-power, high-speed CMOS EPROM/ROM technology
- · Fully static design
- Wide operating voltage range: 2.5V to 6.0V
- Commercial, Industrial, and Automotive Temperature Range
- Low-power consumption:
 - < 2 mA @ 5V. 4 MHz
 - 15 μA typical @ 3V, 32 kHz
 - < 1 μA typical standby current


PIC16C6X Peripheral Features:

- Timer0: 8-bit timer/counter with prescaler
- Timer1: 16-bit timer/counter with prescaler. TMR1 can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with period register, prescaler and postscaler
- Capture/Compare/PWM module(s)
- Capture is 16-bit, max resolution 12.5 ns, compare is 16-bit, max resolution 200 ns, max. PWM resolution is 10-bit.
- Synchronous Serial Port (SSP) with SPI and P[™]C
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel Slave Port (PSP) 8-bits wide, with external \overline{RD} , \overline{WR} and \overline{CS} controls
- Brown-out detection circuitry for Brown-out Reset (BOR)

PIC16C6X Features	61	62	62A	R62	63	64	64A	R64	65	65A
Program Memory (EPROM)	1K	2K	2K	_	4K	2K	2K	_	4K	4K
(ROM)	_	_	_	2K	_	_	_	2K	_	_
Data Memory (Bytes)	36	128	128	128	192	128	128	128	192	192
I/O Pins	13	22	22	22	22	33	33	33	33	33
Parallel Slave Port	_			_	_	Yes	Yes	Yes	Yes	Yes
Capture/Compare/PWM Module	_	1	1	1	2	1	1	1	2	2
Timer Modules	1	3	3	3	3	3	3	3	3	3
Serial Communication	_	SPI/ I ² C	SPI/ I ² C	SPI/ I ² C	SPI/I ² C, USART	SPI/ I ² C	SPI/ I ² C	SPI/ I ² C	SPI/I ² C, USART	SPI/I ² C, USART
In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset	_	_	Yes	Yes	Yes	_	Yes	Yes	_	Yes
Interrupt Sources	3	7	7	7	10	8	8	8	11	11
Sink/Source Current (mA)	25/20	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25

I²C is a trademark of Philips Corporation SPI is a trademark of Motorola Corporation.

Pin Diagrams PDIP, SOIC, Windowed CERDIP SDIP, SOIC, SSOP, Windowed CERDIP 28 ☐ ← → RB7 27 → RB6 RA3 26 ☐ ← RB5 **PIC16C61** RA1 3 RA4/T0CKI OSC1/CLKIN RA2 25 🗆 🖚 **PIC16C62** OSC2/CLKOUT RA3 -24 ☐ ← RB3 14 VDD RA4/T0CKL 23 🗖 🛨 → RB2 RA5/SS 22 □ ----- RB1 RB0/INT 21 ☐ ← RB0/INT RB1 -7 RB6 20 ☐ ← VDD OSC1/CLKIN RB2 ← ■ 8 RR5 OSC2/CLKOUT -19 🗖 🕶 - Vss RB3 RB4 RC0/T1OSI/T1CKI -11 RC1/T1OSO ◆ 12 13 RC5/SDO RC3/SCK/SCL -→ RC4/SDI/SDA SDIP, SOIC, SSOP, Windowed CERDIP SDIP, SOIC, Windowed CERDIP RB7 F ← RB6 → RB6 RA1 RA1 26 **PIC16CR62** 25 RA2 □ ← → RB4 RA2 25 ☐ ← → RB4 PIC16C63 RA3 -C16C62A 24 □ ← RB3 RA3 -5 24 🗆 🖚 → RB3 RA4/T0CKI RA4/T0CKI RB2 → RB2 RA5/SS RA5/SS Vss 21 ☐ ← RB0/INT Vss 21 ☐ ← → RB0/INT 20 VDD 19 VSS OSC1/CLKIN 20 -OSC1/CLKIN – Vnn – Vnn 10 --- Vss OSC2/CLKOUT OSC2/CLKOUT 18 ☐ ← RC7/RX/DT RC1/T1OSI → RC6 RC1/T1OSI/CCP2 12 RC6/TX/CK RC2/CCP1 → 13 → RC5/SDO RC2/CCP1 13 → RC5/SDO RC3/SCK/SCL -→ RC4/SDI/SDA RC3/SCK/SCL → RC4/SDI/SDA PDIP, Windowed CERDIP MCI R/VPP MCI R/VPP 39 日 ← 39 RA0 RB6 RB5 RA1 38 🗖 ◄ RA1 → 3 4 38 🗖 ◄ → RB5 RA1 38 🗖 → → RB5 RA2 TOCKI TOCKI 36 → RB3 35 → RB2 36 RB3 35 RB2 36 RB3 35 RB2 RA3 5 OCKI 6 RA3 ← 5 OCKI ← 6 RA4/T0CKI RA4/T0CKI RA5/SS RB1 RE1/WR ← □ 9 RE2/CS ← □ 10 VDD ← □ 11 Vss ← □ 12 32 - VDD 31 - VSS C16C64 30 -→ RD7/PSP7 → RD7/PSP7 → RD5/PSP5 → RD5/PSP5 28 🗖 🗖 OSC1/CLKIN 13 14 OSC1/CLKIN OSC2/CLKOUT -OSC2/CLKOUT -RD4/PSP4 RC7/RX/DT 26 □ ← RC7 RC0/T1OSI/T1CKI → 15 RC0/T1OSO/T1CKI -25 RC6 24 RC5 → | 16 → | 17 25 ☐ ← RC6/TX/CF 24 ☐ ← RC5/SDO 16 17 RC1/T1OSO RC1/T1OSI/CCP2 → RC5/SDO RC2/CCP1 ← RC2/CCP1 ◄ RC3/SCK/SCL - C RD0/PSP0 - C RD1/PSP1 - C 23 ☐ ← RC4/SDI/SDA 23 ☐ ← RC4/SDI/SDA RC3/SCK/SCL ← □ 23 ☐ ← RC4/SDI/SDA 22 RD3/PSP3 21 RD2/PSP2 22 RD3/PSP3 21 RD2/PSP2 22 RD3/PSP3 21 RD2/PSP2 19 RD0/PSP0 -19

TABLE OF CONTENTS

1.0	General Description	5
2.0	PIC16C6X Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	19
5.0	I/O Ports	47
6.0	Overview of Timer Modules	59
7.0	Timer0 Module	61
8.0	Timer1 Module	67
9.0	Timer2 Module	71
10.0	Capture/Compare/PWM (CCP) Module(s)	73
11.0	Synchronous Serial Port (SSP) Module	79
12.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	95
13.0	Special Features of the CPU	111
14.0	Instruction Set Summary	131
15.0	Development Support	143
16.0	Electrical Characteristics for PIC16C61	149
17.0	DC and AC Characteristics Graphs and Tables for PIC16C61	159
18.0	Electrical Characteristics for PIC16C62/64	171
19.0	DC and AC Characteristics Graphs and Tables for PIC16C62/64	187
20.0	Electrical Characteristics for PIC16C62A/R62/64A/R64	
21.0	DC and AC Characteristics Graphs and Tables for PIC16C62A/R62/64A/R64	207
22.0	Electrical Characteristics for PIC16C65	
23.0	DC and AC Characteristics Graphs and Tables for PIC16C65	225
24.0	Electrical Characteristics for PIC16C63/65A	227
25.0	DC and AC Characteristics Graphs and Tables for PIC16C63/65A	243
26.0	Packaging Information	245
	Index	271
	List of Examples	277
	List of Figures	
	List of Tables	
	Connecting to Microchip BBS	
	Reader Response	282

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC16C62A, PIC16CR62, PIC16C63, PIC16C64A, PIC16CR64, and PIC16C65A are described in this section.

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available.

The **PIC16C62/62A/R62** devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI™) or the two-wire Inter-Integrated Circuit (I²C) bus.

The **PIC16C63** device has 192 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI.

The **PIC16C64/64A/R64** devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided.

The **PIC16C65/65A** devices have 192 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided.

The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and reset(s).

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications).

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B).

1.2 <u>Development Support</u>

The PIC16CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer, and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available.

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

					Ĺ	Memory	Jry			Peripherals	erals			Features
			Tollands	13/18/80/1	TOURN LIE BOLD TO GLANDS	1 19/10	GARSON SINGS ST. SON SERVICES ST. SINGS ST. SINGS ST. SINGS SERVICES SERVIC	A STORY	TOOM OF THE ST	Color to or	[] []	SIDN BURG	(SHOV) S	001/01/01
	TEN	LEINELL	Modes!	100	10UH	b. (1)	Selvide?	00	Splei	TOTAL	18/2	1902 H	Molis	Se Betoe > Ino. Unio
PIC16C61	20	1K	Ι	36	TMR0	Τ	-	I	3	13	3.0-6.0	Yes	_	18-pin DIP, SOIC
PIC16C62	20	2K	I	128	TMR0, TMR1, TMR2	_	SPI/I²C	I	7	22	3.0-6.0	Yes	Ι	28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	2K	I	128	TMR0, TMR1, TMR2	_	SPI/I²C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20		2K	128	TMR0, TMR1, TMR2	1	SPI/I²C		7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63 ⁽¹⁾	20	4K	I	192	TMR0, TMR1, TMR2	2	SPI/I²C, USART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K	I	128	TMR0, TMR1, TMR2	-	SPI/I²C	Yes	8	33	3.0-6.0	Yes	Ι	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K	I	128	TMR0, TMR1, TMR2	1	SPI/I²C	Yes	8	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	1	2K	128	TMR0, TMR1, TMR2	-	SPI/I²C	Yes	8	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65	20	4K	I	192	TMR0, TMR1, TMR2	7	SPI/I²C, USART	Yes	1	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4	I	192	TMR0, TMR1, TMR2	7	SPI/I²C, USART	Yes		33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability. All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7. Please contact your local sales office for availability of these devices. Note

..

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC16C64. These devices have EPROM type memory and operate over the standard voltage range.
- LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- CR, as in PIC16CR64. These devices have ROM program memory and operate over the standard voltage range.
- LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PICSTART[®] and PRO MATE™ programmers both support the PIC16C6X. Third party programmers also are available; refer to the *Microchip Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

NOTES:

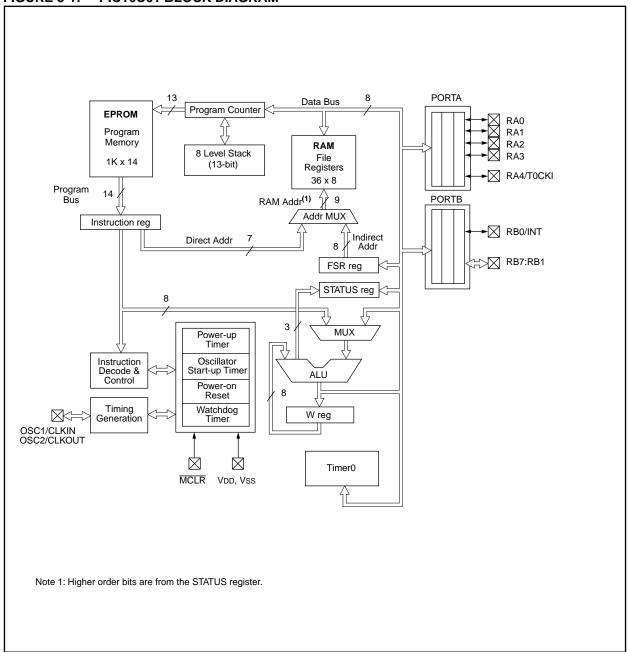
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data may be fetched from the same memory using the same bus. Separating program and data busses further allows instructions to be sized differently than 8-bit wide data words. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C61 addresses 1K x 14 of program memory. The PIC16C62/62A/R62/64/64A/R64 addresses 2K x 14 of program memory, and the PIC16C63/65/65A devices address 4K x 14 of program memory. All program memory is internal.

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of "special optimal situations" makes programming with the PIC16CXX simple yet efficient, thus significantly reducing the learning curve.

The PIC16CXX device contains an 8-bit ALU and working register (W). The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.


The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending upon the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. Bits C and DC operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

© 1996 Microchip Technology Inc.

FIGURE 3-1: PIC16C61 BLOCK DIAGRAM

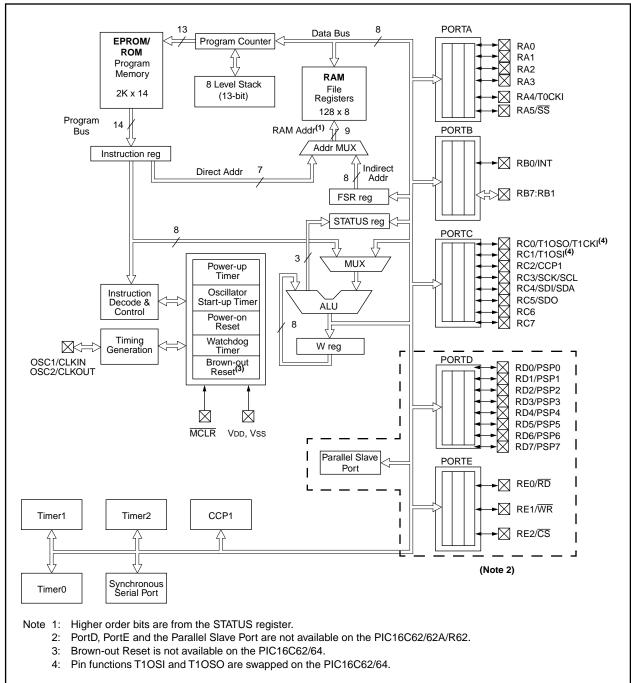


FIGURE 3-2: PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM

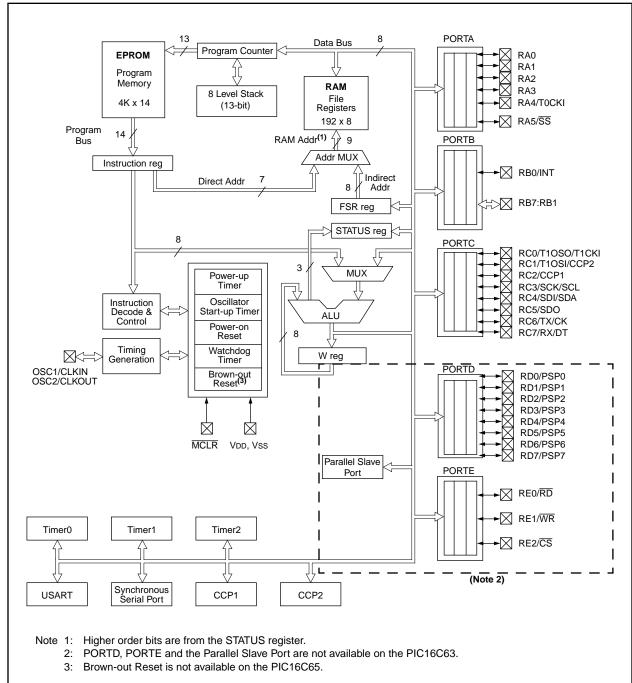


FIGURE 3-3: PIC16C63/65/65A BLOCK DIAGRAM

TABLE 3-1: PIC16C61 PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	16	16	I	ST/CMOS ⁽¹⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0	17	17	I/O	TTL	
RA1	18	18	I/O	TTL	
RA2	1	1	I/O	TTL	
RA3	2	2	I/O	TTL	
RA4/T0CKI	3	3	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	6	6	I/O	TTL/ST ⁽²⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	I/O	TTL	
RB2	8	8	I/O	TTL	
RB3	9	9	I/O	TTL	
RB4	10	10	I/O	TTL	Interrupt on change pin.
RB5	11	11	I/O	TTL	Interrupt on change pin.
RB6	12	12	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming clock.
RB7	13	13	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming data.
Vss	5	5	Р	_	Ground reference for logic and I/O pins.
VDD	14	14	Р	_	Positive supply for logic and I/O pins.

Legend: I = input

O = output — = Not used I/O = input/output

P = power

TTL = TTL input ST = Schmitt Trigger input Note 1: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
2: This buffer is a Schmitt Trigger input when configured as the external interrupt.

3: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-2: PIC16C62/62A/R62/63 PINOUT DESCRIPTION

Pin Name	DIP, SSOP Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
				PORTA is a bi-directional I/O port.
RA0	2	I/O	TTL	
RA1	3	I/O	TTL	
RA2	4	I/O	TTL	
RA3	5	I/O	TTL	
RA4/T0CKI	6	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/SS	7	I/O	TTL	Slave select for the synchronous serial port.
				PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	I/O	TTL/ST(4)	RB0/INT can also be selected as an external interrupt pin.
RB1	22	I/O	TTL	
RB2	23	I/O	TTL	
RB3	24	I/O	TTL	
RB4	25	I/O	TTL	Interrupt on change pin.
RB5	26	I/O	TTL	Interrupt on change pin.
RB6	27	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming clock.
RB7	28	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming data.
		., -		PORTC is a bi-directional I/O port.
RC0/T1OSO ⁽¹⁾ /T1CKI	11	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer1 oscillator output ⁽¹⁾ /Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	12	I/O	ST	RC1/T1OSI can also be selected as a Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ .
RC2/CCP1	13	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SPI mode).
RC6/TX/CK ⁽²⁾	17	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Transmit ⁽²⁾ or USART Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	18	I/O	ST	RC7/RX/DT can also be selected as the Asynchronous Receive ⁽²⁾ or USART Synchronous Data ⁽²⁾ .
Vss	8,19	Р	_	Ground reference for logic and I/O pins.
VDD	20	Р	_	Positive supply for logic and I/O pins.
Legend: I = input O =	output	I/	O = input/outpu	t P = power

— = Not used

I/O = input/output TTL = TTL input

ST = Schmitt Trigger input

- Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C62.
 - 2: The USART and CCP2 are not available on the PIC16C62/62A/R62.
 - 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 - 4: This buffer is a Schmitt Trigger input when configured as the external interrupt.
 - 5: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-3: PIC16C64/64A/R64/65/65A PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	MQFP Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	ı	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	2	18	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0	2	3	19	I/O	TTL	
RA1	3	4	20	I/O	TTL	
RA2	4	5	21	I/O	TTL	
RA3	5	6	22	I/O	TTL	
RA4/T0CKI	6	7	23	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/SS	7	8	24	I/O	TTL	Slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽⁴⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3	36	39	11	I/O	TTL	
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming data.
RC0/T1OSO ⁽¹⁾ /T1CKI	15	16	32	I/O	ST	PORTC is a bi-directional I/O port. RC0/T1OSO/T1CKI can also be selected as a Timer1 oscillator output ⁽¹⁾ /Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	16	18	35	I/O	ST	RC1/T1OSI/CCP2 can also be selected as a Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ .
RC2/CCP1	17	19	36	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3/SCK/SCL can also be selected as the synchro- nous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SPI mode).
RC6/TX/CK ⁽²⁾	25	27	44	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Transmit ⁽²⁾ or USART Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	26	29	1	I/O	ST	RC7/RX/DT can also be selected as the Asynchronous Receive ⁽²⁾ or USART Synchronous Data ⁽²⁾ .
Legend: L=input O	= Outou		1/0	= input/c		P = nower

Legend: I = input

O = output— = Not used I/O = input/output

P = power

TTL = TTL input ST = Schmitt Trigger input

- Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64.
 - 2: CCP2 and the USART are not available on the PIC16C64/64A/R64.
 - 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 - 4: This buffer is a Schmitt Trigger input when configured as the external interrupt.
 - 5: This buffer is a Schmitt Trigger input when used in serial programming mode.
 - 6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

TABLE 3-3: PIC16C64/64A/R64/65/65A PINOUT DESCRIPTION (Cont.'d)

Pin Name	DIP Pin#	PLCC Pin#	MQFP Pin#	Pin Type	Buffer Type	Description
						PORTD can be a bi-directional I/O port or parallel slave port for interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽⁶⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽⁶⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽⁶⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽⁶⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽⁶⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽⁶⁾	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽⁶⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽⁶⁾	
						PORTE is a bi-directional I/O port.
RE0/RD	8	9	25	I/O	ST/TTL ⁽⁶⁾	RE0/RD read control for parallel slave port.
RE1/WR	9	10	26	I/O	ST/TTL ⁽⁶⁾	RE1/WR write control for parallel slave port.
RE2/CS	10	11	27	I/O	ST/TTL ⁽⁶⁾	RE2/CS select control for parallel slave port.
Vss	12,31	13,34	6,29	Р	_	Ground reference for logic and I/O pins.
VDD	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	_	1,17, 28,40	12,13, 33,34	_	_	These pins are not internally connected. These pins should be left unconnected.

Legend: I = input O = output

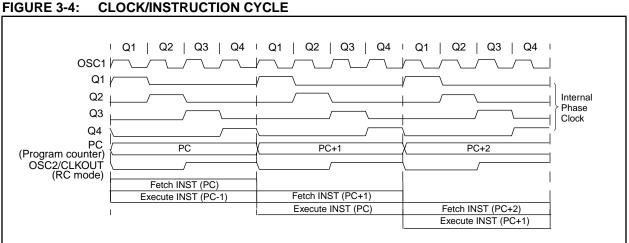
— = Not used

I/O = input/output TTL = TTL input P = power ST = Schmitt Trigger input

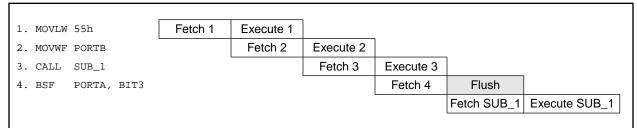
Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64.

- 2: CCP2 and the USART are not available on the PIC16C64/64A/R64.
- 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
- 4: This buffer is a Schmitt Trigger input when configured as the external interrupt.
- 5: This buffer is a Schmitt Trigger input when used in serial programming mode.
- 6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

3.1 **Clocking Scheme/Instruction Cycle**


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-4.

3.2 **Instruction Flow/Pipelining**


An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

INSTRUCTION PIPELINE FLOW EXAMPLE 3-1:

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

NOTES:

4.0 MEMORY ORGANIZATION

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

4.1 Program Memory Organization

The PIC16C6X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC16C61, only the first 1K x 14 (0000h-03FFh) is physically implemented. For the PIC16C62/62A/R62/64/64A/R64, only the first 2K x 14 (0000h-07FFh) are physically implemented, and for the PIC16C63/65/65A, only the first 4K x 14 (0000h-0FFFh) are physically implemented. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C61 PROGRAM MEMORY MAP AND STACK

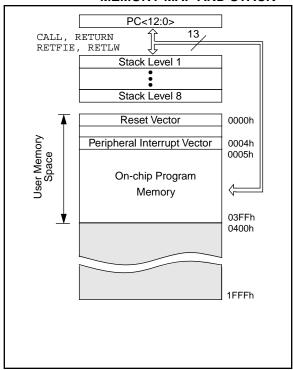


FIGURE 4-2: PIC16C62/62A/R62/64/64A/ R64 PROGRAM MEMORY MAP AND STACK

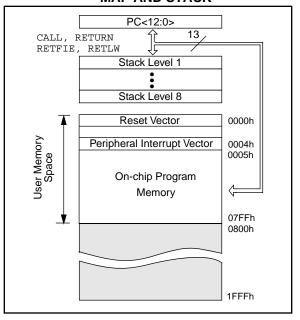
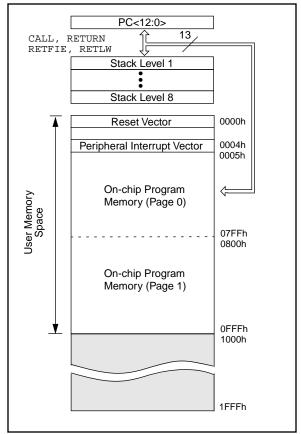



FIGURE 4-3: PIC16C63/65/65A PROGRAM MEMORY MAP AND STACK

4.2 **Data Memory Organization**

Applicable Devices 61 62 62 A R 62 63 64 64 A R 64 65 65 A

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow Bank 1$

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 **GENERAL PURPOSE REGISTERS**

These registers are accessed either directly or indirectly through the file select register (FSR) (Section 4.5).

The general purpose register locations 8Ch-AFh of Bank 1 on the PIC16C61 are not physically implemented. These locations are mapped into 0Ch-2Fh of Bank 0.

FIGURE 4-4: **PIC16C61 REGISTER FILE** MAP

File Address	s	File	Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch			8Ch
	General Purpose Register	Mapped in Bank 0 ⁽²⁾	
2Fh			AFh
30h			B0h
7Fh			FFh
/ / / /] [[
_	Bank 0	Bank 1	
Unimple Note 1	emented data memensis Not a physical re		s '0'.
2	: These locations	are unimplemented	
	bank 1. Any acce	ess to these location	ns will

access the corresponding bank 0 register.

FIGURE 4-5: PIC16C62/62A/R62/64/64A/ **R64 REGISTER FILE MAP**

File Addre	ess	F	ile Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
1Fh			9Fh
20h	General	General Purpose Register	A0h
	Purpose Register	. togicio:	BFh C0h
7Fh			FFh
	e 1: Not a physica 2: Pin PORTD a	Bank 1 emory location; read al register. and PORTE are not C62/62A/R62.	

FIGURE 4-6: **PIC16C63/65/65A REGISTER FILE MAP**

File Addre	ess		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	PORTD ⁽²⁾ PORTE ⁽²⁾	TRISD ⁽²⁾ TRISE ⁽²⁾	88h
09h	PORTE	PCLATH	89h
0Ah	INTCON	INTCON	8Ah 8Bh
0Bh			
0Ch	PIR1	PIE1	8Ch
0Dh	PIR2	PIE2	8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h	RCSTA	TXSTA	98h
19h	TXREG	SPBRG	99h
1Ah	RCREG		9Ah
1Bh	CCPR2L		9Bh
1Ch	CCPR2H		9Ch
1Dh	CCP2CON		9Dh
1Eh			9Eh
1Fh			9Fh
20h	General	General	A0h
7Fh	Purpose Register	Purpose Register	FFh
՝	Bank 0	Bank 1	_
☐ Unin Note			

able on the PIC16C63.

4.2.2 SPECIAL FUNCTION REGISTERS:

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). The registers associated with the "core" functions are described in this section and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1: SPECIAL FUNCTION REGISTERS FOR THE PIC16C61

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other resets ⁽³⁾
Bank 0		•					•				
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x xxxx	u uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	RTB pins wl	nen read				xxxx xxxx	uuuu uuuu
07h	_	Unimpleme	nted							_	_
08h	_	Unimpleme	nted							_	_
09h	_	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u
Bank 1			<u>- </u>								
80h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r	•				xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	_	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	ta Direction C	Control Regis	ster					1111 1111	1111 1111
87h	-	Unimpleme	nted							_	_
88h	-	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	_
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented locations read as '0'. Shaded locations are unimplemented and read as '0'

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer Reset.
 - 4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physica	l register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	ldress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	ı		PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins wi	hen read				xxxx xxxx	uuuu uuuu
08h	_	Unimpleme	nted							_	_
09h	_	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(6)	(6)	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted							_	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	TISYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	ıs Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.

Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾					
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	a Direction R	egister				11 1111	11 11111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction F	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	ı
89h	_	Unimpleme	nted							_	ı
8Ah ^(1,2)	PCLATH	_	_	1	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	(6)	(6)	-	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	_	_	_	_	_	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	nted		•	•				_	-
90h	_	Unimpleme	nted							_	1
91h	_	Unimpleme	nimplemented								_
92h	PR2	Timer2 Peri	imer2 Period Register								1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	_		D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	nted							_	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through $\overline{\text{MCLR}}$ and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physica	l register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac		xxxx xxxx	uuuu uuuu					
05h	PORTA	_	_		xx xxxx	uu uuuu					
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	a Latch whe		xxxx xxxx	uuuu uuuu					
08h	_	Unimplemer	nted							_	_
09h	_	Unimplemer	nted							_	_
0Ah ^(1,2)	PCLATH	_		_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	RBIF	0000 000x	0000 000u					
0Ch	PIR1	(5)	(5)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	PIR2	_	_	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding regi	ister for the L	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding regi	ister for the N	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	s Serial Port	t Receive Bu	ıffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	-	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	RX9D	0000 -00x	0000 -00x				
19h	TXREG	USART Trar	ART Transmit Data Register								0000 0000
1Ah	RCREG	USART Red	SART Receive Data Register								0000 0000
1Bh	CCPR2L	Capture/Co	apture/Compare/PWM2 (LSB)								uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							_	_
						condition	- unimplo				

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 5: PIE1<7:6> and PIR1<7:6> are reserved, always maintain these bits clear.

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63 (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte			•		0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac		xxxx xxxx	uuuu uuuu					
85h	TRISA	_	_	PORTA Dat	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register		1111 1111	1111 1111				
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	_
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	RBIF	0000 000x	0000 000u				
8Ch	PIE1	(5)	(5)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	_	_	_	_	_	_	CCP2IE	0	0
8Eh	PCON	_	_	_	_	_	_	POR	BOR	qq	uu
8Fh	_	Unimpleme	nted			•				_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	1	Unimpleme	nted							_	1
96h	_	Unimpleme	nted							_	_
97h	_	Unimpleme	nted							_	_
98h ⁽²⁾	TXSTA	CSRC	TX9	TXEN	TX9D	0000 -010	0000 -010				
99h ⁽²⁾	SPBRG	Baud Rate	Generator R		0000 0000	0000 0000					
9Ah	_	Unimpleme	nted		_	_					
9Bh	_	Unimpleme	nted		_	_					
9Ch	_	Unimpleme	nted		_	_					
9Dh	_	Unimpleme	nted		_	_					
9Eh	_	— Unimplemented									_
9Fh	_	Unimpleme	nted							_	_

 $\label{eq:location} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{q} = \textbf{value} \ \textbf{depends} \ \textbf{on condition}, \ \textbf{-} = \textbf{unimplemented location read as '0'}.$

Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through $\overline{\text{MCLR}}$ and the Watchdog Timer reset.
 - 4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 5: PIE1<7:6> and PIR1<7:6> are reserved, always maintain these bits clear.

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac		xxxx xxxx	uuuu uuuu					
05h	PORTA	ı			xx xxxx	uu uuuu					
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins wi	nen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins wi	nen read				xxxx xxxx	uuuu uuuu
09h	PORTE				_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted						!	_	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	ne 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	Most Signific	ant Byte of th	e 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	1	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port		xxxx xxxx	uuuu uuuu					
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	apture/Compare/PWM1 (LSB)								uuuu uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM1 (MSB)								uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The \overline{BOR} bit is reserved on the PIC16C64, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C6X, always maintain these bits clear.

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64 (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾			
Bank 1	l	1			I		l			l	
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	ddress pointe	er	•		•	•	xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction I	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	TRISD	PORTD Da	ta Direction I	Register						1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	_	_	_	_	_	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	nted			•			•	_	_
90h	_	Unimpleme	Jnimplemented								_
91h	_	Unimpleme	Jnimplemented								_
92h	PR2	Timer2 Peri	Timer2 Period Register								1111 1111
93h	SSPADD	Synchronou	Synchronous Serial Port (I ² C mode) Address Register							0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through $\overline{\text{MCLR}}$ and the Watchdog Timer reset.
 - 4: The \overline{BOR} bit is reserved on the PIC16C64, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C6X, always maintain these bits clear.

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac		xxxx xxxx	uuuu uuuu					
05h	PORTA	_	_	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins w	nen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins w	nen read				xxxx xxxx	uuuu uuuu
09h	PORTE	_	_	RE0	xxx	uuu					
0Ah ^(1,2)	PCLATH	_	_	-	Write Buffer	for the uppe	r 5 bits of the	Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	s Serial Por	t Receive Bu	ıffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON			CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	RX9D	0000 -00x	0000 -00x					
19h	TXREG	USART Tran	SART Transmit Data Register								0000 0000
1Ah	RCREG	USART Red	SART Receive Data Register								0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	ССР2М3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							_	_

 $\label{eq:location} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{q} = \textbf{value} \ \textbf{depends} \ \textbf{on condition}, \ \textbf{-} = \textbf{unimplemented location read as '0'}.$

Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through $\overline{\text{MCLR}}$ and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C6X, always maintain these bits clear.

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conte	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	С	0001 1xxx	000q quuu					
84h ⁽¹⁾	FSR	Indirect data	a memory ac	dress point	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	TRISD	PORTD Da	ta Direction F	Register						1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	_	_	_	_	_	_	CCP2IE	0	0
8Eh	PCON	_	_	_	_	_	_	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	nted		-					_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	jister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	_	Unimpleme	nted							_	_
96h	_	Unimpleme	nted							_	_
97h	_	Unimpleme	nted							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator R		0000 0000	0000 0000					
9Ah	_	Unimpleme	nted		_	_					
9Bh	_	Unimpleme	nted		_	_					
9Ch	_	Unimpleme	nted		_	_					
9Dh	_	Unimpleme		_	_						
9Eh	_	— Unimplemented									_
9Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C6X, always maintain these bits clear.

4.2.2.1 STATUS REGISTER

Applicable Devices
61 62 62 A R62 63 64 64 A R64 65 65 A

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16C6X and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	D D 111 12
IRP bit7	RP1	RP0	TO	PD	Z	DC	bit0	R = Readable bit W = Writable bit - n = Value at POR reset x = unknown
bit 7:	1 = Bank 2 0 = Bank 0	2, 3 (100h - 1), 1 (00h - Ff	IFFh) ⁼ h)		ect addressir		ways mainta	in this bit clear.
bit 6-5:	11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	3 (180h - 1F 2 (100h - 17 1 (80h - FFF 0 (00h - 7FF is 128 bytes	FFh) /Fh) n) n) s.	·	or direct addı RP1 bit is re	o,	ays maintain	this bit clear.
bit 4:				uction, or S	LEEP instruc	ction		
bit 3:		-down bit ower-up or t cution of the	•		etion			
bit 2:		sult of an ari		• .	ation is zero ation is not ze	ero		
bit 1:	1 = A carry	•	e 4th low	order bit of	the result oc		nstructions) (For borrow the polarity is reversed
bit 0:	1 = A carry 0 = No car Note: a sub	r-out from th ry-out from to traction is e	e most sig the most s executed b	nificant bit ignificant bi y adding th	of the result t of the resul e two's comp	occurred t olement of th	ne second op	orrow the polarity is reversed). Derand. Downorder bit of the source register

4.2.2.2 OPTION REGISTER

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0 register, assign the prescaler to the Watchdog Timer by setting the PSA (OPTION<3>) bit.

FIGURE 4-8: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	RBPU: POR 1 = PORTB 0 = PORTB	pull-ups a	re disabled		al port latch	values		
bit 6:	INTEDG: Interruption of the Interruption of th	t on rising	edge of RE	30/INT pin				
bit 5:	TOCS : TMR 1 = Transitio 0 = Internal	n on RA4/	T0CKI pin		-)			
bit 4:		nt on high-	to-low tran	sition on R	A4/T0CKI pir A4/T0CKI pir			
bit 3:	PSA: Prescale 1 = Prescale 0 = Prescale	er is assigr	ned to the \		lule			
bit 2-0:	PS2:PS0 : P	rescaler R	ate Select	bits				
	Bit Value	TMR0 R	ate WD	ΓRate				
	000 001 010 011 100 101 110	1:2 1:4 1:8 1:16 1:32 1:64 1:12	8 1 :	2 4				

4.2.2.3 INTCON REGISTER

Applicable Devices
61 62 62 A R62 63 64 64 A R64 65 65 A

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-9: INTCON REGISTER FOR PIC16C61 (ADDRESS 0Bh, 8Bh)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset x = unknown
bit 7:	GIE: Global 1 = Enable 0 = Disable	s all un-ma	sked interr					
bit 6:	Unimplem	ented : Rea	ıd as '0'					
bit 5:	T0IE: TMR 1 = Enable 0 = Disable	s the TMR0	overflow in	nterrupt				
bit 4:	INTE: RB0 1 = Enable 0 = Disable	s the RB0/I	NT externa	ıl interrupt				
bit 3:	RBIE: RB I 1 = Enable 0 = Disable	s the RB po	ort change	interrupt				
bit 2:	T0IF: TMR0 1 0 = TMR0 1	register ove	rflowed (m	ust be clea	ed in softwa	re)		
bit 1:	INTF: RB0, 1 = The RE 0 = The RE	30/INT exte	rnal interru	pt occurred	(must be cle	eared in soft	ware)	
bit 0:	RBIF: RB F 1 = At leas 0 = None o	t one of the	RB7:RB4	pins change	ed state (see d state	Section 5.2	to clear inte	errupt)
Note 1:								onally be re-enabled by the RETFIE ailed description.

FIGURE 4-10: INTCON REGISTER FOR PIC16C62/62A/R62/63/64/64A/R64/65/65A (ADDRESS 0Bh, 8Bh)

R/W-0									
bit7: GIE: Global Interrupt Enable bit ⁽¹⁾ 1 = Enables all un-masked interrupts 0 = Disables all interrupt Enable bit 1 = Enables all un-masked preipheral interrupts 0 = Disables all interrupts 0 = Disables all interrupts bit 6: PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts bit 5: TOIE: TMRO Overflow Interrupt Enable bit 1 = Enables the TMRO overflow interrupt 0 = Disables the TMRO overflow interrupt 0 = Disables the RBO/INT external Interrupt bit 4: INTE: RBO/INT External Interrupt Enable bit 1 = Enables the RBO/INT external interrupt 0 = Disables the RBO/INT external interrupt 0 = Disables the RBO/INT external interrupt 0 = Disables the RBO/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt bit 2: TOIF: TMRO Overflow Interrupt Flag bit 1 = TMRO register overflowed (must be cleared in software) 0 = TMRO register did not overflow bit 1: INTF: RBO/INT external interrupt coccurred (must be cleared in software) 0 = The RBO/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = The RBO/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state to Section 15.5 for a detailed							1		
bit 7: GIE: Global Interrupt Enable bit (1) 1 = Enables all un-masked interrupts 5 = Disables all interrupts 5 = Disables all interrupts 6 = PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 5 = Disables all peripheral interrupts 6 = Disables all peripheral interrupts 6 = Disables all peripheral interrupts 7 = Disables all peripheral interrupts 8 = Disables all peripheral interrupts 8 = Disables the TMR0 overflow interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 9 = Disables the TMR0 overflow interrupt 10 = Disables the RB0/INT external interrupt 11 = Enables the RB0/INT external interrupt 12 = Disables the RB0/INT external interrupt 13 = RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 10 = Disables the RB port change interrupt 11 = TMR0 register overflowed (must be cleared in software) 12 = TMR0 register overflowed (must be cleared in software) 13 = TMR0 register overflowed (must be cleared in software) 14 = TMR0 register overflowed (must be cleared in software) 15 = TMR0 RB0/INT external interrupt Gid not occur 15 = TMR0 RB0/INT external interrupt Gid not occur 15 = TMR0 RB1F: RB Port Change Interrupt Flag bit 1 = TMR RB0/INT external interrupt did not occur 16 = TMR0 RB1F: RB Port Change Interrupt Flag bit 1 = TMR0 RB0/INT external interrupt occurred (must be cleared in software) 10 = TMR0 RB1F: RB Port Change Interrupt Flag bit 10 = RB1F: RB Port Change Interrupt Flag bit 11 = TMR0 RB1F: RB Port Change Interrupt Flag bit 12 = TMR0 RB1F: RB Port Change Interrupt Flag bit 13 = TMR0 RB1F: RB Port Change Interrupt Flag bit 14 = TMR0 RB1F: RB Port Change Interrupt Flag bit 15 = TMR0 RB1F: RB Port Change Interrupt Flag bit 16 = TMR0/INT external interrupt occurred (must be cleared in software) 17 = TMR0 RB1F: RB Port Change Interrupt Flag bit 18 = TMR0/INT external interrupt occurred (must be cleared in software) 19 = TMR0/INTERRB1 Port Change Interrupt Flag bit 20 = TMR0/INTERRB1 Port Change		PEIE	TOIE	INTE	RBIE	TOIF	INTF		
bit 7: GIE: Global Interrupt Enable bit ⁽¹⁾ 1 = Enables all un-masked interrupts 0 = Disables all interrupts bit 6: PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts bit 5: TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: TOIF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTE: RB0/INT external interrupt cocurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETETE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit/							bitO	
bit 7: GIE: Global Interrupt Enable bit (1) 1 = Enables all un-masked interrupts 0 = Disables all interrupts bit 6: PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts bit 5: TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: TOIF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed									
bit 7: GIE: Global Interrupt Enable bit ⁽¹⁾ 1 = Enables all un-masked interrupts 0 = Disables all interrupts bit 6: PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts bit 5: TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt contained by the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: TOIF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt flag bit 1 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed									
1 = Enables all un-masked interrupts 0 = Disables all interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts bit 5: Tole: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt 1 = Enables the RB0/INT external interrupt 2 = Disables the RB0/INT external interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 2 = TMR0 register did not overflow bit 1: INTF: RB0/INT external Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 2 = The RB0/INT external interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 2 = None of the RB7:RB4 pins changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 7:	GIE: Globa	al Interrupt	Enable bit ⁽¹)				X = UIRHOWH
1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts bit 5: T0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state	2	1 = Enable	es all un-ma	sked interr					
bit 5: ToIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: ToIF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 6:	PEIE: Peri	pheral Inter	rupt Enable	e bit				
bit 5: TollE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: TollF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed						ıpts			
1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed									
bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 5:								
1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed									
bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: TOIF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 4:	INTE: RBC)/INT Extern	nal Interrup	Enable bit				
bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed									
1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: TolF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed					•				
0 = Disables the RB port change interrupt bit 2: TolF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 3:		U						
1 = TMR0 register overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed				•					
0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 2:	TOIF: TMR	0 Overflow	Interrupt F	ag bit				
bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed						red in softwa	ire)		
1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed			•						
0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 1:					(must he cla	ared in soft	ware)	
1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed							cared iii soil	.waie)	
0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed	bit 0:	RBIF: RB	Port Chang	e Interrupt	Flag bit				
Note 1: For the PIC16C62/64/65 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed							e Section 5.2	2 to clear the	interrupt)
be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed		U = None (of the RB7:	KB4 pins ha	ave change	d state			
· · · · · · · · · · · · · · · · · · ·	Note 1:			•				•	
<u> </u>			•	RETFIE ins	truction in t	he user's Int	errupt Servi	ice Routine. F	Refer to Section 13.5 for a detailed

4.2.2.4 PIE1 REGISTER

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

FIGURE 4-11: PIE1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 8Ch)

RW-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit7	_		_	SSPIE	CCP1IE	TMR2IE	TMR1IE bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	Reserved:	Always ma	intain these	e bits clear.				
bit 5-4:	Unimpleme	ented: Rea	ıd as '0'					
bit 3:	SSPIE: Syr 1 = Enables 0 = Disable	s the SSP i	nterrupt	Interrupt Er	nable bit			
bit 2:	CCP1IE: C0 1 = Enables 0 = Disable	s the CCP1	interrupt	bit				
bit 1:	TMR2IE: TM 1 = Enables 0 = Disable	s the TMR2	to PR2 ma	atch interru	ot			
bit 0:	TMR1IE: TM 1 = Enables 0 = Disable	s the TMR1	overflow in	nterrupt	t			

FIGURE 4-12: PIE1 REGISTER FOR PIC16C63 (ADDRESS 8Ch)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 TMR2IE TMR1IE **RCIE** TXIE **SSPIE** CCP1IE R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset bit 7-6: Reserved: Always maintain these bits clear. bit 5: RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt bit 4: TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt bit 3: SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2: 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 1: TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt bit 0: TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt

FIGURE 4-13: PIE1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 8Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIE	_	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit
oit7 bit 7:	U = Unimpler read as ' - n = Value at PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit 1 = Enables the PSP read/write interrupt							
	0 = Disables the PSP read/write interrupt							
bit 6:	Reserved: Always maintain this bit clear.							
bit 5-4:	Unimplemented: Read as '0'							
bit 3:	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt							
bit 2:	CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt							
bit 1:	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt							
bit 0:	TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt							

FIGURE 4-14: PIE1 REGISTER FOR PIC16C65/65A (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
PSPIE	_	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit					
bit7							bit0	W = Writable bit					
								U = Unimplemented bit, read as '0'					
								- n = Value at POR reset					
bit 7:	1 = Enable	s the PSP i	ead/write i	nterrupt	upt Enable b	it		··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··					
1.77	0 = Disables the PSP read/write interrupt												
bit 6:	Reserved:	Reserved: Always maintain this bit clear.											
bit 5:	RCIE: USA												
	1 = Enable 0 = Disable												
1-20 A				•									
bit 4:	TXIE: USA 1 = Enable												
	0 = Disable												
bit 3:	SSPIE: Syr			•	nahle hit								
DIL O.	1 = Enable			interrupt Er	iabic bit								
	0 = Disable												
bit 2:	CCP1IE: C	CP1 Interru	upt Enable	bit									
	1 = Enable		•										
	0 = Disable	s the CCP	1 interrupt										
bit 1:	TMR2IE: T	MR2 to PR	2 Match Int	errupt Enal	ole bit								
	1 = Enable												
	0 = Disable	es the TMR	2 to PR2 m	atch interru	pt								
bit 0:	TMR1IE: T				t								
	1 = Enable			•									
	0 = Disable	s the IMR	1 overflow i	nterrupt									

4.2.2.5 PIR1 REGISTER

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

This register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an

interrupt.

FIGURE 4-15: PIR1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit			
it7		bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset Reserved: Always maintain these bits clear.									
oit 7-6:	Reserved:	Always ma	intain thes	e bits clear.							
oit 5-4:	Unimplemented: Read as '0'										
oit 3:	SSPIF: Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive										
oit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode										
	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred										
oit 1:	1 = TMR2 to	PR2 mat	ch occurre	d (must be		ftware)					

FIGURE 4-16: PIR1 REGISTER FOR PIC16C63 (ADDRESS 0Ch)

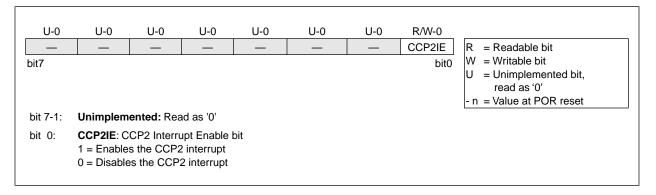
R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
bit7		RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R = Readable bitW = Writable bitU = Unimplemented bit,			
								read as '0' - n = Value at POR reset			
bit 7-6:	Reserved:	Always ma	intain thes	e bits clear.							
bit 5:	RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (must be cleared in software) 0 = The USART receive buffer is empty										
bit 4:	1 = The US	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is full (must be cleared in software) 0 = The USART transmit buffer is empty									
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive										
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode										
bit 1:	1 = TMR2 t	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred									
bit 0:	TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) 0 = No TMR1 register overflow occurred										

FIGURE 4-17: PIR1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIF	K/W-0	U-0	U-0	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit				
bit7				00111	001111	TWINZII	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7:		or a write	peration h		ace (Must be ce	cleared in s	software)					
bit 6:	Reserved:	Always ma	aintain this	bit clear.								
bit 5-4:	Unimplem	Unimplemented: Read as '0'										
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive											
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode											
bit 1:		to PR2 mat	ch occurre		bit cleared in so	ftware)						
bit 0:	TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) 0 = No TMR1 register occurred											

FIGURE 4-18: PIR1 REGISTER FOR PIC16C65/65A (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	_				
PSPIF bit7	_	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	U	 = Readable bit = Writable bit = Unimplemented bit, read as '0' = Value at POR reset 			
bit 7:	PSPIF: Par 1 = A read 0 = No read	or a write c	peration ha	as taken pla	ce (Must be	cleared in s	oftware)					
bit 6:	Reserved: Always maintain this bit clear.											
bit 5:	RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (must be cleared in software) 0 = The USART receive buffer is empty											
bit 4:	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is full (must be cleared in software) 0 = The USART transmit buffer is empty											
bit 3:	SSPIF : Syr 1 = The train 0 = Waiting	nsmission/ı	reception is	•	ag bit (must I	oe cleared ir	n software)					
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode											
bit 1:	TMR2IF : TN 1 = TMR2 t 0 = No TMR	o PR2 mat	ch occurred	d (must be o	bit cleared in so	ftware)						
bit 0:	TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) 0 = No TMR1 register overflow occurred											

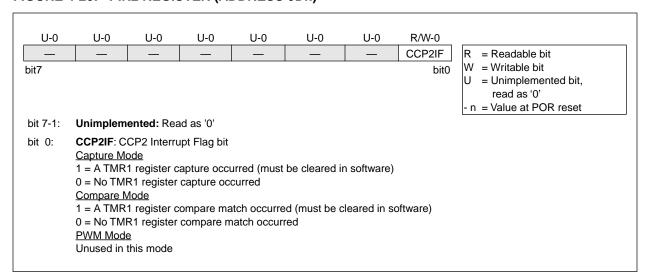

PIC16C6X

4.2.2.6 PIE2 REGISTER

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

This register contains the CCP2 interrupt enable bit.

FIGURE 4-19: PIE2 REGISTER (ADDRESS 8Dh)


4.2.2.7 PIR2 REGISTER

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

This register contains the CCP2 interrupt flag bit.

Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-20: PIR2 REGISTER (ADDRESS 0Dh)

Note:

4.2.2.8 PCON REGISTER

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Power Control register (PCON) contains a flag bit to allow differentiation between a Power-on Reset to an external $\overline{\text{MCLR}}$ reset or WDT reset. The PIC16C62A/R62/63/64A/R64/65A contains an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

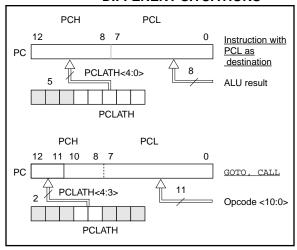
BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-21: PCON REGISTER FOR PIC16C62/64/65 (ADDRESS 8Eh)

U-0 U-0 U-0 U-0 U-0 U-0 R/W-q R/W-q **POR** = Readable bit = Writable bit bit0 bit7 = Unimplemented bit, read as '0' n = Value at POR reset = value depends on conditions bit 7-2: Unimplemented: Read as '0' POR: Power-on Reset Status bit bit 1: 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0: This bit should be set upon a Power-on Reset by user software and maintained as set. Use of this bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products.

Note:

FIGURE 4-22: PCON REGISTER FOR PIC16C62A/R62/63/64A/R64/65A (ADDRESS 8Eh)


U-0 U-0 U-0 U-0 U-0 U-0 R/W-q R/W-q BOR **POR** = Readable bit = Writable bit hit∩ bit7 = Unimplemented bit, read as '0' = Value at POR reset = value depends on conditions bit 7-2: Unimplemented: Read as '0' bit 1: POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) BOR: Brown-out Reset Status bit bit 0: 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

4.3 **PCL and PCLATH**

Applicable Devices |61|62|62A|R62|63|64|64A|R64|65|65A|

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) not directly readable or writable and comes from PCLATH. On any reset, the high byte of the PC is cleared. Figure 4-23 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-23: LOADING OF PC IN **DIFFERENT SITUATIONS**

COMPUTED GOTO 4.3.1

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note "Implementing a Table Read" (AN556).

4.3.2 **STACK**

The PIC16CXX family has an 8 deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or a POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address

4.4 **Program Memory Paging**

Applicable Devices 61|62|62A|R62|63|64|64A|R64|65|65A

The PIC16C63/65/65A devices have 4K of program memory, but the CALL and GOTO instructions only have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 4K program memory address range, there must be another bit to specify the program memory page. This paging bit comes from the PCLATH<3> bit (Figure 4-23). When doing a CALL or GOTO instruction, the user must ensure that this page select bit (PCLATH<3>) is programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions (which POPs the address from the stack).

Note:

The PIC16C6X ignores the PCLATH<4> bit, which is used for program memory pages 2 and 3 (1000h - 1FFFh). The use of PCLATH<4> as a general purpose read/ write bit is not recommended since this may affect upward compatibility with future products.

Devices with 2K or less program memory ignore the PCLATH<3> bit, which is used for program memory page 1 (0800h-0FFFh). The use of PCLATH<3> as a general purpose read/write bit for these devices is not recommended since this may affect upward compatibility with future products.

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that the PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

```
ORG 0x500
BSF PCLATH,3 ;Select page 1 (800h-FFFh)
CALL SUB1_P1 ;Call subroutine in
: ;page 1 (800h-FFFh)
:
:
ORG 0x900
SUB1 P1: ;called subroutine
: ;page 1 (800h-FFFh)
:
RETURN ;return to Call subroutine
;in page 0 (000h-7FFh)
```

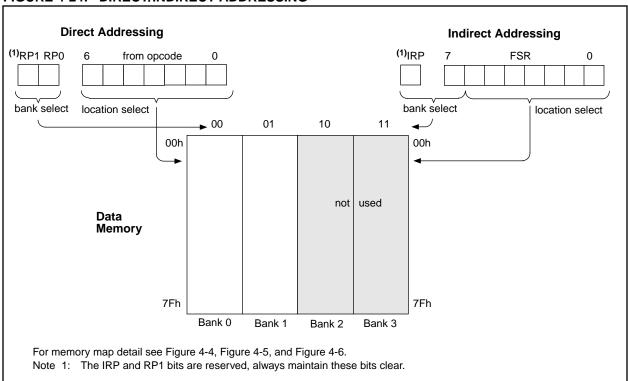
4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-24. However, IRP is not used in the PIC16C6X.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-2.


EXAMPLE 4-2: INDIRECT ADDRESSING

```
movlw 0x20 ;initialize pointer
movwf FSR ; to RAM

NEXT clrf INDF ;clear INDF register
incf FSR,F ;inc pointer
btfss FSR,4 ;all done?
goto NEXT ;NO, clear next

CONTINUE
: ;YES, continue
```

FIGURE 4-24: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Register

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

All devices have a 6-bit wide PORTA, except for the PIC16C61 which has a 5-bit wide PORTA.

Pin RA4/T0CKI is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefor, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch

Pin RA4 is multiplexed with Timer0 module clock input to become the RA4/T0CKI pin.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF PORTA ; Initialize PORTA by ; setting output ; data latches BSF STATUS, RPO ; Select Bank 1 MOVLW 0xCF ; Value used to ; initialize data ; direction ; Set RA<3:0> as inputs MOVWF TRISA ; RA<5:4> as outputs ; TRISA<7:6> are always ; read as 'O'.

FIGURE 5-1: BLOCK DIAGRAM OF THE RA3:RA0 PINS AND THE RA5 PIN

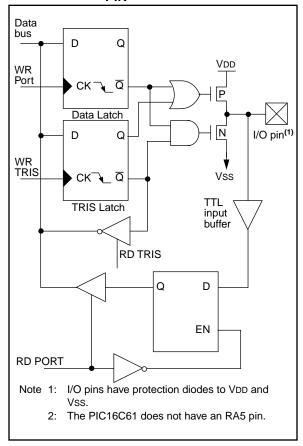
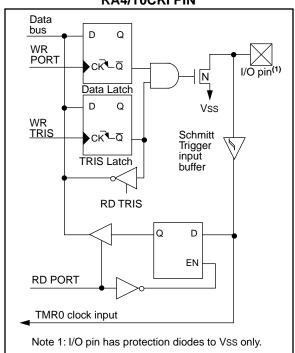



FIGURE 5-2: BLOCK DIAGRAM OF THE RA4/T0CKI PIN

PIC16C6X

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS (1)	bit5	TTL	Input/output, slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
05h	PORTA	_	_	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	_	_	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

 $\label{eq:locations} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{-} = \textbf{unimplemented locations read as '0'}. \ \textbf{Shaded cells are not used by PORTA}.$

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

5.2 PORTB and TRISB Register

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by
		; setting output
		; data latches
BSF	STATUS, RP0	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are also disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB port change interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, Application Note, "Implementing Wake-up on Key Stroke" (AN552).

Note: For PIC16C61/62/64/65 only, if a change on the I/O pin should occur when a read operation is being executed (start of the Q2 cycle), then interrupt flag bit RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-3: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C61/62/64/65

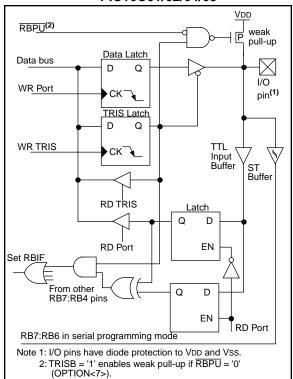


FIGURE 5-4: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C62A/63/64A/65A

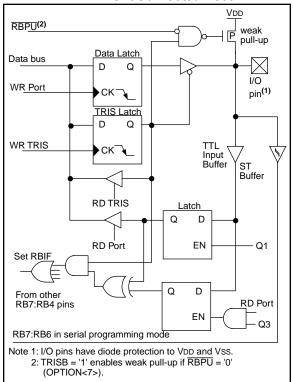


FIGURE 5-5: BLOCK DIAGRAM OF THE RB3:RB0 PINS

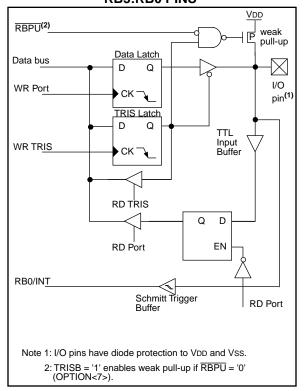


TABLE 5-3: PORTB FUNCTIONS

IABLE 0 0.			
Name	Bit#	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

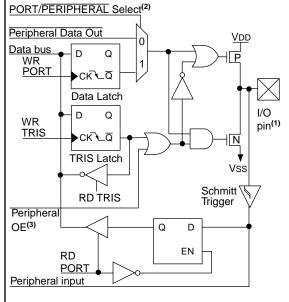
TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.3 PORTC and TRISC Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


PORTC is an 8-bit bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 5-3: INITIALIZING PORTC

CLRF PORTC ; Initialize PORTC by ; setting output ; data latches BSF STATUS, RPO ; Select Bank 1 MOVLW 0xCF ; Value used to ; initialize data ; direction MOVWF TRISC ; Set RC<3:0> as inputs ; RC<5:4> as outputs ; RC<7:6> as inputs

FIGURE 5-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

- Note 1: I/O pins have diode protection to VDD and Vss.
 - 2: Port/Peripheral select signal selects between port data and peripheral output.
 - Peripheral OE (output enable) is only activated if peripheral select is active.

TABLE 5-5: PORTC FUNCTIONS FOR PIC16C62/64

Name	Bit#	Buffer Type	Function
RC0/T1OSI/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator input or Timer1 clock input
RC1/T1OSO	bit1	ST	Input/output port pin or Timer1 oscillator output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O ($\rm I^2C$ mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger Input

TABLE 5-6: PORTC FUNCTIONS FOR PIC16C62A/R62/64A/R64

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture input/Compare output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O ($\rm I^2C$ mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger Input

TABLE 5-7: PORTC FUNCTIONS FOR PIC16C63/65/65A

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin, Timer1 oscillator input, Capture2 input/Compare2 output/PWM2 output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O ($\rm I^2C$ mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6/TX/CK	bit6	ST	Input/output port pin, USART Asynchronous Transmit, or USART Synchronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin, USART Asynchronous Receive, or USART Synchronous Data

Legend: ST = Schmitt Trigger Input

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

5.4 PORTD and TRISD Register

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as input or output.

PORTD can be configured as an 8-bit wide microprocessor port (or parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

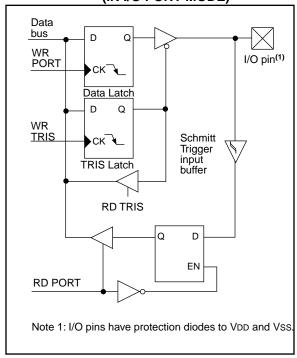


TABLE 5-9: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

Legend: ST = Schmitt Trigger Input, TTL = TTL input

Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

 $\label{eq:locations} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{-} = \textbf{unimplemented locations read as '0'}. \ \textbf{Shaded cells are not used by PORTD}.$

5.5 PORTE and TRISE Register

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

PORTE has three pins, RE2/ \overline{CS} , RE1/ \overline{WR} , and RE0/ \overline{RD} which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which also controls the parallel slave port operation.

TRISE controls the direction of the RE pins.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

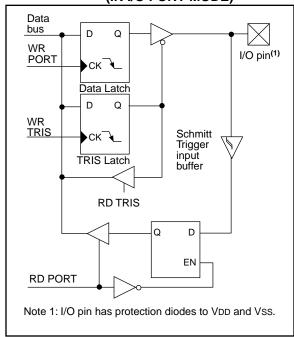


FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	
IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7 :	IBF: Input I 1 = A word 0 = No wor	has been	received and	s waiting t	o be read by	the CPU		
bit 6:	1 = The ou	tput buffer	ull Status bit still holds a pi has been read	•	ritten word			
bit 5:		occurred v					(must be cle	ared in software)
bit 4:	PSPMODE 1 = Paralle 0 = Genera	l slave por		de Select b	oit			
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	TRISE2 : Di 1 = Input 0 = Output		entrol bit for pir	n RE2/CS				
bit 1:	TRISE1 : Di 1 = Input 0 = Output		entrol bit for pir	n RE1/WR				
bit 0:	TRISE0 : Di 1 = Input 0 = Output		entrol bit for pir	n RE0/RD				

TABLE 5-11: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD	bit0	ST/TTL ⁽¹⁾	Input/output port pin, Read control input in parallel slave port mode. RD 1 = Not a read operation 0 = Read operation. The system reads the PORTD register (if chip selected)
RE1/WR	bit1	ST/TTL ⁽¹⁾	Input/output port pin, Write control input in parallel slave port mode. WR 1 = Not a write operation 0 = Write operation. The system writes to the PORTD register (if chip selected)
RE2/CS	bit2	ST/TTL ⁽¹⁾	Input/output port pin, Chip select control input in parallel slave port mode. CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger Input, TTL = TTL input

Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port (PSP) mode.

TABLE 5-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells not used by PORTE.

5.6 <u>I/O Programming Considerations</u>

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

5.6.1 BI-DIRECTIONAL I/O PORTS

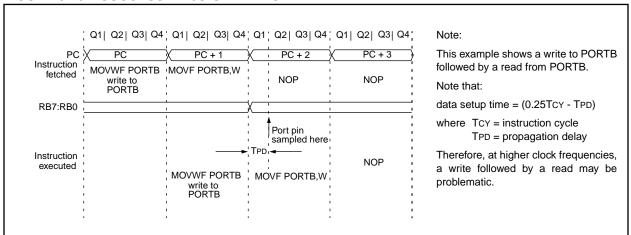
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry PORT latch PORT pins BCF PORTB, 7 ; 01pp pppp 11pp pppp BCF PORTB, 6 ; 10pp pppp 11pp pppp BSF STATUS, RPO BCF TRISB, 7 ; 10pp pppp 11pp pppp BCF TRISB, 6 ; 10pp pppp 10pp pppp ;Note that the user may have expected the ;pin values to be 00pp pppp. The 2nd BCF ; caused RB7 to be latched as the pin value


A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

; (high).

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

5.7 Parallel Slave Port

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

PORTD operates as an 8-bit wide parallel slave port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input (RE0/ \overline{RD}) and \overline{WR} control input pin (RE1/ \overline{WR}).

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting PSPMODE enables port pin RE0/ \overline{RD} to be the \overline{RD} input, RE1/ \overline{WR} to be the \overline{WR} input and RE2/ \overline{CS} to be the \overline{CS} (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the microprocessor is controlling the direction of data flow.

Input Buffer Full Status Flag bit IBF (TRISE<7>) is set if a received word is waiting to be read by the CPU. Once the PORTD input latch is read, bit IBF is cleared. IBF is a read only status bit. Output Buffer Full Status Flag bit OBF (TRISE<6>) is set if a word written to PORTD latch is waiting to be read by the external bus. Once the PORTD output latch is read by the microprocessor, bit OBF is cleared. Input Buffer Overflow Status flag bit IBOV (TRISE<5>) is set if a second write to the microprocessor port is attempted when the previous word has not been read by the CPU (the first word is retained in the buffer).

When not in Parallel Slave Port mode, bits IBF (TRISE<7>) and OBF (TRISE<6>) are held clear. However if flag bit IBOV (TRISE<5>) was previously set, it must be cleared in software.

An interrupt is generated and latched into flag bit PSPIF (PIR1<7>) when a read or a write operation is completed. Flag bit PSPIF must be cleared by user software and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE AS A PARALLEL SLAVE PORT

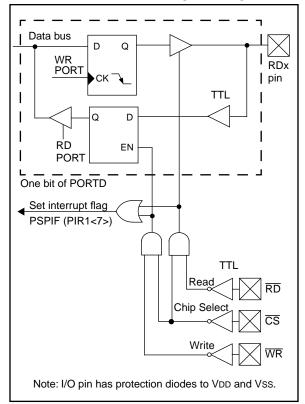


TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C63/65/65A only.

PIC16C6X

NOTES:

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are:

- Timer0 module (Section 7.0)
- Timer1 module (Section 8.0)
- Timer2 module (Section 9.0)

6.1 <u>Timer0 Overview</u>

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The Timer0 module (previously known as RTCC) is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u>

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

TImer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device.

6.3 Timer2 Overview

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP1 module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.

The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 CCP Overview

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCP1 can be forced to a given state (High or Low) and Timer1 can be reset (CCP1). This depends on control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register value as well as to an 8-bit Period Register (PR2). When TMR2 register = PR2 register, the TMR2 register is cleared to 00h, an interrupt may be generated, and the CCPx pin (if an output) will be forced high. When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low.

PIC16C6X

NOTES:

7.0 TIMERO MODULE

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Timer0 module has the following features:

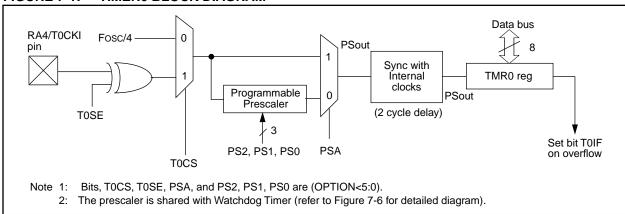
- 8-bit timer/counter register, TMR0
 - Read and write capability
 - Interrupt on overflow from FFh to 00h
- 8-bit software programmable prescaler
- · Internal or external clock select
 - Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

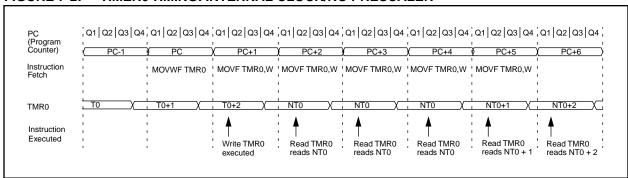
Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge select bit T0SE

(OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.


The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>


Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The TMR0 interrupt is generated when the register (TMR0) overflows from FFh to 00h. This overflow sets interrupt flag bit T0IF (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). Flag bit T0IF must be cleared in software by the TImer0 interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

FIGURE 7-1: TIMERO BLOCK DIAGRAM

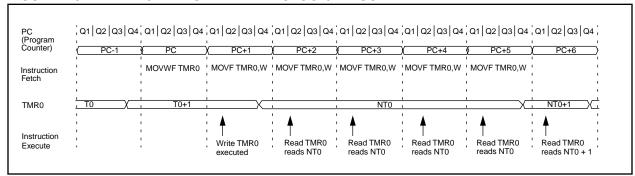
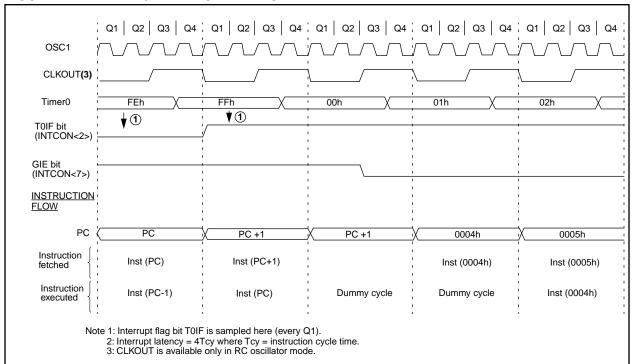


FIGURE 7-2: TIMERO TIMING: INTERNAL CLOCK/NO PRESCALER



© 1996 Microchip Technology Inc.

FIGURE 7-3: TIMERO TIMING: INTERNAL CLOCK/PRESCALE 1:2

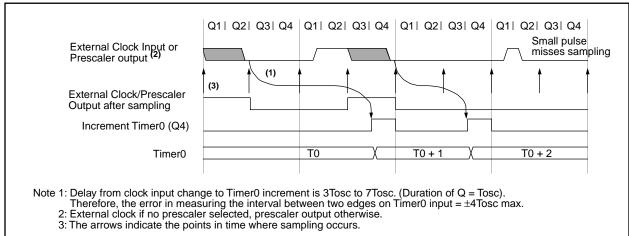
FIGURE 7-4: TIMERO INTERRUPT TIMING

7.2 <u>Using Timer0 with External Clock</u>

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

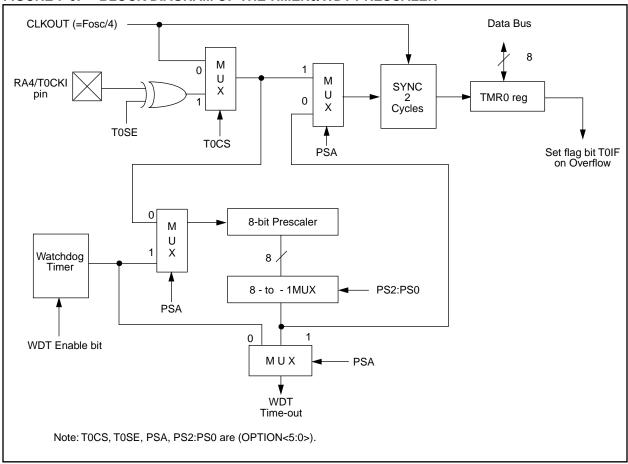
When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMERO INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMERO TIMING WITH EXTERNAL CLOCK

7.3 Prescaler


Applicable Devices
61 62 62 A R62 63 64 64 A R64 65 65 A

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1,x) will clear the prescaler count. When assigned to Watchdog Timer, a CLRWDT instruction will clear the prescaler count along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This precaution must be followed even if the WDT is disabled.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0→WDT)

BCF STATUS, RPO ; Bank 0

CLRF TMR0 ;Clear TMR0 & Prescaler

BSF STATUS, RPO ;Bank 1 CLRWDT ;Clears WDT

MOVLW b'xxxx1xxx' ; Select new prescale

MOVWF OPTION_REG ; value & WDT BCF STATUS, RPO ; Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT ;Clear WDT and

;prescaler

BSF STATUS, RPO ; Bank 1

MOVLW b'xxxx0xxx'; Select TMR0, new

;prescale value and

MOVWF OPTION_REG ;clock source

BCF STATUS, RPO ; Bank 0

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMERO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
01h	TMR0	Timer0	Timer0 module's register								uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE ⁽¹⁾	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

Note 1: TRISA<5> and bit PEIE are not implemented on the PIC16C61, read as '0'.

PIC16C6X

NOTES:

8.0 TIMER1 MODULE

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H + TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled or disabled using the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be turned on or off using the control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/64A/R64/65A, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	R = Readable bit
oit7							bit0	W = Writable bit U = Unimplemented bit read as '0' - n = Value at POR reset
bit 7-6:	Unimpler	nented : Rea	nd as '0'					
bit 5-4:	11 = 1:8 F 10 = 1:4 F 01 = 1:2 F	:T1CKPS0: Prescale valu Prescale valu Prescale valu Prescale valu	ne ne ne	ut Clock Pre	escale Selec	t bits		
bit 3:	1 = Oscilla 0 = Oscilla	N: Timer1 Os ator is enabl ator is shut o oscillator in	ed off			ned off to e	liminate pow	ver drain.
bit 2:	T1SYNC:	Timer1 Exte	rnal Clock	Input Synch	ronization C	Control bit		
		<u>= 1</u> t synchroniz ronize exter						
	TMR1CS This bit is	<u>= 0</u> ignored. Tin	ner1 uses t	ne external o	clock when ⁻	ΓMR1CS = (0.	
bit 1:	1 = Exterr	Timer1 Cloonal clock from al clock (Fos	n T1OSI (o		edge) (See	pinouts for p	oin with T1O	SI function)
			bit					

© 1996 Microchip Technology Inc.

DS30234B-page 67

8.1 Timer1 Operation in Timer Mode

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

Timer mode is selected by clearing bit TMR1CS (T1CON<1>). In this mode, the input clock to the timer is Fosc/4. The synchronize control bit $\overline{T1SYNC}$ (T1CON<2>) has no effect since the internal clock is always in sync.

8.2 <u>Timer1 Operation in Synchronized</u> Counter Mode

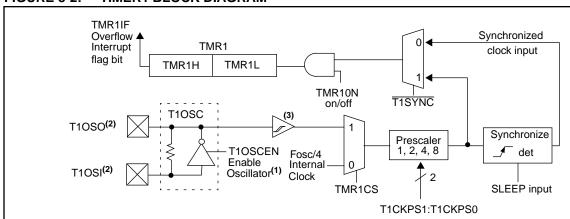
Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on T1OSI when enable bit T1OSCEN is set or pin with T1CKI when bit T1OSCEN is cleared.

Note: The T1OSI function is multiplexed to different pins, depending on the device. See the pinout descriptions to see which pin has the T1OSI function.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if an external clock is present, since the synchronization circuit is shut off. The prescaler, however, will continue to increment.


8.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to appropriate electrical specification section, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to applicable electrical specification section, parameters 40, 42, 45, 46, and 47.

FIGURE 8-2: TIMER1 BLOCK DIAGRAM

Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.

2: See pinouts for pins with T1OSO and T1OSI functions.

3: For the PIC16C62/64/65, the Schmitt Trigger is not implemented in external clock mode.

8.3 <u>Timer1 Operation in Asynchronous</u> Counter Mode

Applicable Devices											
61	62	62A	R62	63	64	64A	R64	65	65A		

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{\text{T1SYNC}}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All Interrupts are disabled
   MOVF
          TMR1H, W
                         ;Read high byte
   MOVWF
          TMPH
                         ;
          TMR1L, W
   MOVF
                         ;Read low byte
   MOVWF
          TMPL
   MOVF
           TMR1H, W
                         ;Read high byte
   SUBWF
          TMPH, W
                         ;Sub 1st read
                         ;with 2nd read
   BTFSC STATUS,Z
                        ;is result = 0
          CONTINUE
                        ;Good 16-bit read
; TMR1L may have rolled over between the read
; of the high and low bytes. Reading the high
; and low bytes now will read a good value.
   MOVF
          TMR1H, W
                        ;Read high byte
   MOVWF
          TMPH
          TMR1L, W
   MOVF
                         ;Read low byte
   MOVWF TMPL
   Re-enable Interrupt (if required)
CONTINUE
                         ;Continue with
                         ;your code
```

8.4 <u>Timer1 Oscillator</u>

Applicable Devices											
61	62	62A	R62	63	64	64A	R64	65	65A		

A crystal oscillator circuit is built in-between T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz ⁽¹⁾ 100 kHz	15 pF 15 pF	15 pF 15 pF
	200 kHz	0 - 15 pF	0 - 15 pF

Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only.

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

Crystals	Tested.
Oi y Stais	i Colcu.

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
100 kHz	Epson C-2 100.00 KC-P	± 20 PPM
200 kHz	STD XTL 200.000 kHz	± 20 PPM

8.5 Resetting Timer1 using a CCP Trigger Output

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

CCP2 is implemented on the PIC16C63/65/65A only.

If CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCPxM3:CCPxM0 = 1011), this signal will reset Timer1.

Note: The "special event trigger" from the CCP1and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If the Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for the Timer1 module.

8.6 Resetting of TMR1 Register Pair (TMR1H + TMR1L)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The TMR1H and TMR1L registers are not reset on a POR or any other reset except by the CCP1 special event trigger.

T1CON register is reset to 00h on Power-on Reset or a Brown-out Reset. In all other resets, the register is unaffected.

8.7 Timer1 Prescaler

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR		Value on all other resets	
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
0Eh	TMR1L	1L Holding register for the Least Significant Byte of the 16-bit TMR1 register								xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding register for the Most Significant Byte of the 16-bit TMR1 register								xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Timer1 module.

- Note 1: The USART is implemented on the PIC16C63/65/65A only.
 - 2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

9.0 TIMER2 MODULE

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

Timer2 is an 8-bit timer with a prescaler and a postscaler. It is especially suitable as PWM time-base for PWM mode of CCP module(s). TMR2 is a readable and writable register, and is cleared on any device reset.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16 (selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is set during a reset.

The match output of the TMR2 register goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling, inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF (PIR1<1>).

The Timer2 module can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

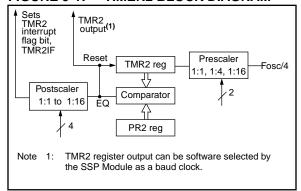
Figure 9-2 shows the Timer2 control register.

9.1 Timer2 Prescaler and Postscaler

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The prescaler and postscaler counters are cleared when any of the following occurs:

- · a write to the TMR2 register
- · a write to the T2CON register
- any device reset (POR, BOR, MCLR Reset, or WDT Reset).


TMR2 register will not clear when T2CON is written, only for a WDT, BOR, POR, and MCLR reset.

9.2 Output of TMR2

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 9-1: TIMER2 BLOCK DIAGRAM

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R = Readable bit
oit7		and all David	d 101				bit0	W = Writable bitU = Unimplemented bit, read as '0'- n = Value at POR reset
bit 7:	Unimpleme	ented: Rea	d as 'U'					
bit 6-3:	0000 = 1:1 0001 = 1:2 • • 1111 = 1:10	postscale postscale 6 postscale		tput Postsca	ale Select bi	S		
bit 2:	TMR2ON : 7 1 = Timer2 0 = Timer2	is on	oit					
bit 1-0:	T2CKPS1: 00 = 1:1 pro 01 = 1:4 pro 1x = 1:16 p	escale escale	Timer2 Clo	ck Prescale	Select bits			

© 1996 Microchip Technology Inc.

DS30234B-page 71

PIC16C6X

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR		Value on all other resets	
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2	Timer2 module's register									0000	0000	0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2 Period register										1111	1111

 $\label{eq:locations} \textbf{Legend:} \ \ \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \ - = \textbf{unimplemented locations read as '0'}. \ \textbf{Shaded cells are not used by Timer2}.$

- Note 1: The USART is implemented on the PIC16C63/65/65A only.
 - 2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

10.0 CAPTURE/COMPARE/PWM (CCP) MODULE(s)

Аp	plic	cable	Dev	rice	s					
										CCP1
61	62	62A	R62	63	64	64A	R64	65	65A	CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM master/slave duty cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP modules(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the *Embedded Control Handbook*, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CCPxM0 CCPxX **CCPxY** CCPxM3 CCPxM1 R = Readable bit CCPxM2 W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' - n =Value at POR reset bit 7-6: Unimplemented: Read as '0' bit 5-4: CCPxX:CCPxY: PWM Least Significant bits Capture Mode

Unused

Compare Mode

Unused

PWM Mode

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0: CCPxM3:CCPxM0: CCPx Mode Select bits

0000 = Capture/Compare/PWM off (resets CCPx module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, set output on match (bit CCPxIF is set)

1001 = Compare mode, clear output on match (bit CCPxIF is set)

1010 = Compare mode, generate software interrupt on match (bit CCPxIF is set, CCPx pin is unaffected)

1011 = Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1)

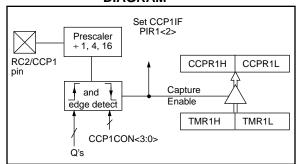
11xx = PWM mode

10.1 **Capture Mode**

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- · A falling edge
- A rising edge
- · Every 4th rising edge
- · Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be reset in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In capture mode, the RC2/CCP1 pin should be configured as an input by setting its corresponding TRIS bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 10-2: CAPTURE MODE **OPERATION BLOCK** DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep enable bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

10.1.4 PRESCALER

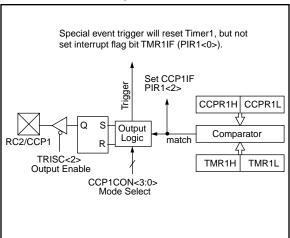
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF CCP1CON ; Turn CCP module off
MOVLW NEW_CAPT_PS ; Load the W reg with
; the new prescaler
; mode value and CCP ON
MOVWF CCP1CON ; Load CCP1CON with
; this value

10.2 Compare Mode


Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- · Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, a compare interrupt is also generated.

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note: Clearing the CCP1CON register will force the RC2/CCP1 compare output latch to the default low level. This is not the data latch.

10.2.1 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

10.2.2 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

10.2.3 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

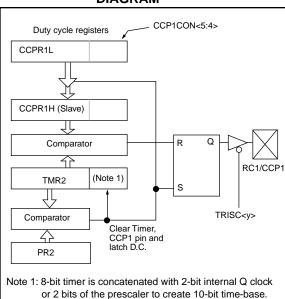
The special event trigger output of CCP1 and CCP2 resets the TMR1 register pair. This allows the CCPR1 and CCPR2 registers to effectively be 16-bit programmable period register for Timer1.

For compatibility issues, the special event trigger output of CCP2 on <u>PIC16C7X</u> devices also starts an A/D conversion.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

10.3 PWM Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCPx pin is multiplexed with the PORTC data latch, the corresponding TRISC bit must be cleared to make the CCPx pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

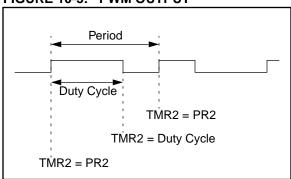

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] * 4 * Tosc * (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur:

· TMR2 is cleared

Note:

- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

The Timer2 postscaler (see Section 9.1) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) * Tosc * (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, the CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Note: If the PWM duty cycle value is longer than the PWM period (PWM duty cycle = 100%), the CCP1 pin will not be cleared.

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz

TMR2 prescale = 1

1/78.125 kHz = [(PR2) + 1] * 4 * 1/20 MHz * 1

12.8 μ s = [(PR2) + 1] * 4 * 50 ns * 1

PR2 = 63

Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator:

 $1/78.125 \text{ kHz} = 2^{PWM \text{ RESOLUTION}} * 1/20 \text{ MHz} * 1$

12.8 μ s = 2^{PWM RESOLUTION * 50 ns * 1}

 $256 = 2^{PWM RESOLUTION}$

log(256) = (PWM Resolution) * log(2)

8.0 = PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \le \text{CCPR1L:CCP1CON} < 5:4 > \le 255$. Any value greater than 255 will result in a 100% duty cycle.

In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the appropriate TRISC bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP module for PWM operation.

TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 10-4: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on: DR DR	all c	e on other sets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh ⁽⁴⁾	PIR2	_	_	_		_	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh ⁽⁴⁾	PIE2	_	_	_		_	_		CCP2IE		0		0
0Eh	TMR1L	Holding re	gister	for the Leas	st Significar	t Byte of the	e 16-bit TM	IR1 registe	ər	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	gister	for the Mos	t Significan	t Byte of the	16-bit TM	R1 registe	r	xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/C	compar	e/PWM1 (L	SB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	ompar	e/PWM1 (N	(ISB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh ⁽⁴⁾	CCPR2L	Capture/Compare/PWM2 (LSB)							xxxx	xxxx	uuuu	uuuu	
1Ch ⁽⁴⁾	CCPR2H	Capture/C	Capture/Compare/PWM2 (MSB)									uuuu	uuuu
1Dh ⁽⁴⁾	CCP2CON	_	ı	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

- Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/65/65A only.
 - 2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: These bits are reserved, always maintain these bits clear.
 - 4: These registers are associated with the CCP2 module, which is implemented on the PIC16C63/65/65A only.

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on: DR DR	all o	e on other sets
0Bh/8 Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh ⁽⁴⁾	PIR2	_	_	_	_	_	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh ⁽⁴⁾	PIE2	_		_	_	_	_	_	CCP2IE		0		0
11h	TMR2	Timer2 m	odule's regi	ster						0000	0000	0000	0000
92h	PR2	Timer2 m	odule's Peri	od register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/C	compare/PV	VM1 (LSB)						xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	compare/PV	VM1 (MSB)						xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh ⁽⁴⁾	CCPR2L	Capture/C	Capture/Compare/PWM2 (LSB)									uuuu	uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/C	Capture/Compare/PWM2 (MSB)									uuuu	uuuu
1Dh ⁽⁴⁾	CCP2CON	_	_	CCP2X	CCP2Y	ССР2М3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/65/65A only.

^{2:} Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

^{3:} These bits are reserved, always maintain these bits clear.

^{4:} These registers are associated with the CCP2 module, which is implemented on the PIC16C63/65/65A only.

11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

Refer to Application Note AN578, "Use of the SSP Module in the I²C Multi-Master Environment."

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
_	_	D/Ā	Р	S	R/W	UA	BF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	Unim	plemente	d: Read a	s '0'				
bit 5:	1 = Ind	dicates tha	at the last	•	y) ed or transn ed or transn			
hit 1.	D: Sto	n hit /120	بامد مامدس	This bit is	alaarad wha	on the CCD	م ما ما ما م	isabled SSDEN is cleared)

- bit 4: **P**: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)
 - 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)
 - 0 = Stop bit was not detected last
- bit 3: **S**: Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)
 - 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)
 - 0 = Start bit was not detected last
- bit 2: **R/W**: Read/Write bit information (I²C mode only)

This bit holds the R/W bit information following the last address match. This bit is valid from the address match to the next start bit, stop bit, or \overline{ACK} bit.

- 1 = Read
- 0 = Write
- bit 1: **UA**: Update Address (10-bit I²C mode only)
 - 1 = Indicates that the user needs to update the address in the SSPADD register
 - 0 = Address does not need to be updated
- bit 0: BF: Buffer Full Status bit

Receive (SPI and I²C modes)

- 1 = Receive complete, SSPBUF is full
- 0 = Receive not complete, SSPBUF is empty

<u>Transmit</u> (I²C mode only)

- 1 = Transmit in progress, SSPBUF is full
- 0 = Transmit complete, SSPBUF is empty

© 1996 Microchip Technology Inc.

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0								
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7					-		bit0	W = Writable bit
								U = Unimplemented bit,
								read as '0'
								- n =Value at POR reset

bit 7: WCOL: Write Collision Detect bit

1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

0 = No collision

bit 6: SSPOV: Receive Overflow Detect bit

In SPI mode

1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR register is lost. Overflow can only occur in slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

0 = No overflow

In I²C mode

1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in transmit mode. SSPOV must be cleared in software in either mode.

0 = No overflow

bit 5: SSPEN: Synchronous Serial Port Enable bit

In SPI mode

- 1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode

- 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

In both modes, when enabled, these pins must be properly configured as input or output.

bit 4: CKP: Clock Polarity Select bit

In SPI mode

- 1 = Transmit happens on falling edge, receive on rising edge. Idle state for clock is a high level.
- 0 = Transmit happens on rising edge, receive on falling edge. Idle state for clock is a low level.

In I²C mode

SCK release control

- 1 = Enable clock
- 0 = Holds clock low (clock stretch) (Used to ensure data setup time)
- bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0000 = SPI master mode, clock = Fosc/4

0001 = SPI master mode, clock = Fosc/16

0010 = SPI master mode, clock = Fosc/64

0011 = SPI master mode, clock = TMR2 output/2

0100 = SPI slave mode, clock = SCK pin. SS pin control enabled.

0101 = SPI slave mode, clock = SCK pin. \overline{SS} pin control disabled. \overline{SS} can be used as I/O pin.

 $0110 = I^2C$ slave mode, 7-bit address

 $0111 = I^2C$ slave mode, 10-bit address

 $1011 = I^2C$ start and stop bit interrupts enabled (slave idle)

 $1110 = I^2C$ slave mode, 7-bit address with start and stop bit interrupts enabled

 $1111 = I^2C$ slave mode, 10-bit address with start and stop bit interrupts enabled

11.1 SPI Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

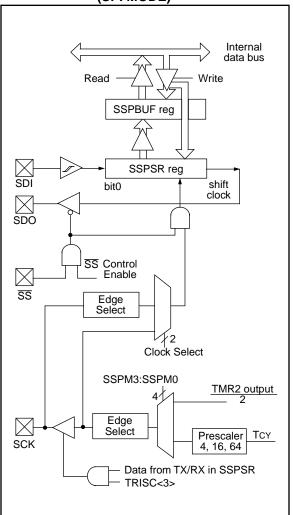
- Serial Data Out (SDO)
- · Serial Data In (SDI)
- Serial Clock (SCK)

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- · Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the Buffer Full bit, BF (SSPSTAT<0>) and flag bit SSPIF are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON<7>) will be set. User software must clear bit WCOL so that it can be determined if the following write(s) to the SSPBUF completed successfully. When the application software is expecting to receive valid data, the SSPBUF register should be read before the next byte of data to transfer is written to the SSPBUF register. The Buffer Full bit BF (SSPSTAT<0>) indicates when the SSPBUF register has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF register must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) register for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

STATUS, RP0 ;Specify Bank 1 BSF LOOP BTFSS SSPSTAT, BF ;Has data been ;received ;(transmit ;complete)? GOTO LOOP ;No BCF STATUS, RP0 ;Specify Bank 0 MOVF SSPBUF, W ;W reg = contents ; of SSPBUF MOVWF RXDATA ;Save in user RAM MOVF TXDATA, W ;W reg = contents ; of TXDATA MOVWF SSPBUF ; New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR register is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- · SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if implemented)

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and SS could be used as general purpose outputs by clearing their corresponding TRIS register bits.

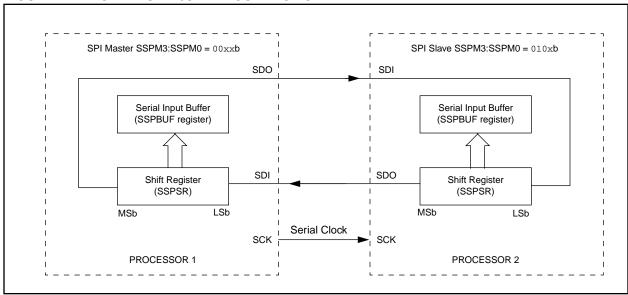
Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the software protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched interrupt flag bit SSPIF (PIR1<3>) is set.


The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5 and Figure 11-6 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 TCY)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the SS pin is taken low without resetting SPI mode, the transmission will continue from the point at

which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-5: SPI MODE TIMING (MASTER MODE OR SLAVE MODE W/O SS CONTROL)

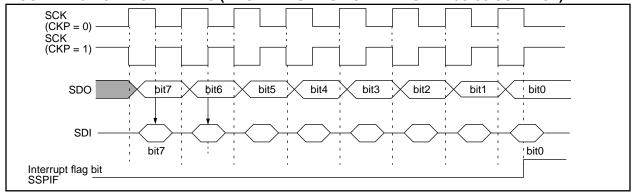


FIGURE 11-6: SPI MODE TIMING (SLAVE MODE WITH SS CONTROL)

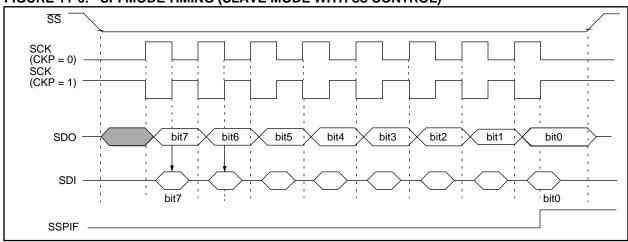


TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchron	ous Serial	Port Rece	eive Buffer	r/Transmit	Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
94h	SSPSTAT	_		D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

- Note 1: These bits are associated with the USART which is implemented on the PIC16C63/65/65A only.
 - 2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

11.2 <u>I ²C Overview</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

This section provides an overview of the Inter-Integrated Circuit (I²C) bus, with Section 11.3 discussing the operation of the SSP module in I²C mode.

The I²C bus is a two-wire serial interface developed by the Philips Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. An enhanced specification, or fast mode, supports data transmission up to 400 Kbps. Both standard mode and fast mode devices will inter-operate if attached to the same bus.

The I²C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master", which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-2 defines some of the I²C bus terminology. For additional information on the I²C interface specification, refer to the Philips Corporation document "The I²C bus and how to use it." #939839340011, which can be obtained from the Philips Corporation.

In the I²C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from / write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of operating in either of these two relations:

· Master-transmitter and Slave-receiver

Slave-transmitter and Master-receiver.

In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I²C bus is limited only by the maximum bus loading specification of 400 pF.

11.2.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. Figure 11-7 shows the START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted the SDA line can only change state when the SCL line is low.

FIGURE 11-7: START AND STOP CONDITIONS

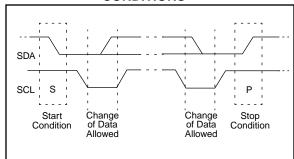


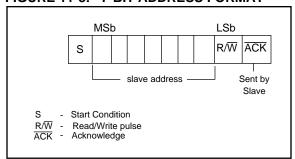
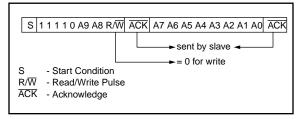
TABLE 11-2: I²C BUS TERMINOLOGY

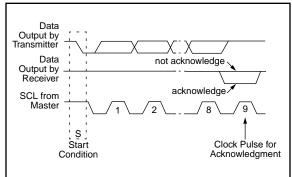
Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

11.2.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/\overline{W} bit (Figure 11-8). The more complex is the 10-bit address with a R/\overline{W} bit (Figure 11-9). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-8: 7-BIT ADDRESS FORMAT


FIGURE 11-9: I²C 10-BIT ADDRESS FORMAT

11.2.3 TRANSFER ACKNOWLEDGE

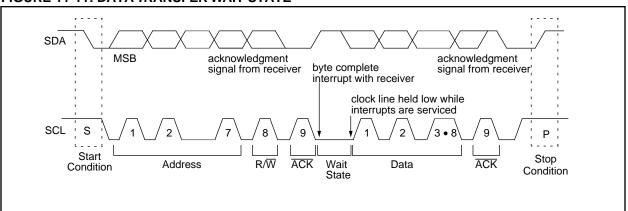
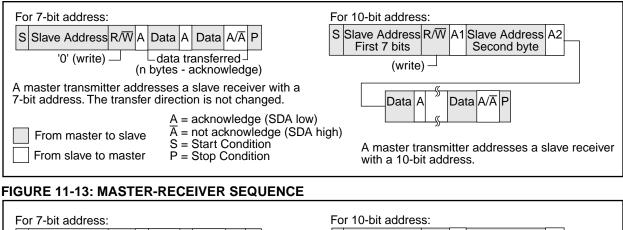
All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (ACK) (Figure 11-10). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave the SDA line high so that the master can generate the STOP condition (Figure 11-7).

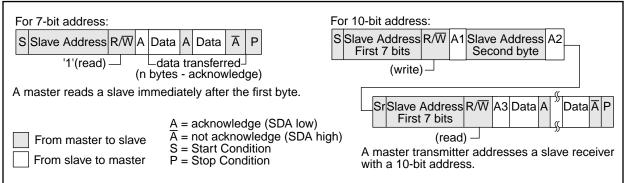
FIGURE 11-10: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-11. The slave will inherently stretch the clock when it is a transmitter but will not when it is a receiver. The slave will have to clear the SSPCON <4> bit to enable clock stretching when it is a receiver.

FIGURE 11-11: DATA TRANSFER WAIT STATE


Figure 11-12 and Figure 11-13 show Master-transmitter and Master-receiver data transfer sequences.

When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while SCL

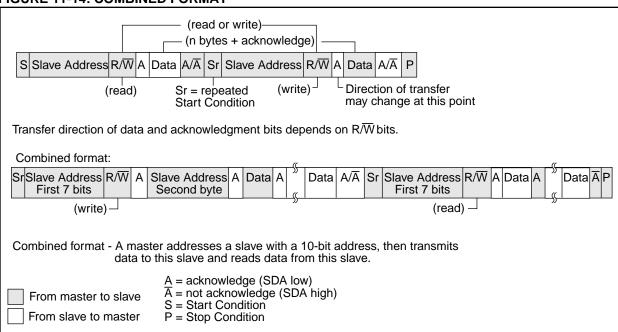
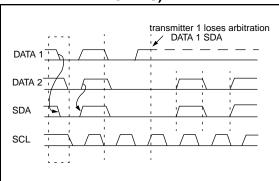

is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-14.

FIGURE 11-12: MASTER-TRANSMITTER SEQUENCE

FIGURE 11-14: COMBINED FORMAT


11.2.4 MULTI-MASTER

The I²C protocol allows a system to have more than one master. This is called multi-master. When two or more masters try to transfer data at the same time, arbitration and synchronization occur.

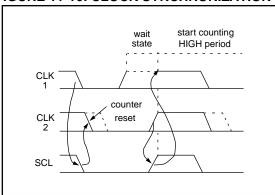
11.2.4.1 ARBITRATION

Arbitration takes place on the SDA line, while the SCL line is high. The master which transmits a high when the other master transmits a low loses arbitration (Figure 11-15), and turns off its data output stage. A master which lost arbitration can generate clock pulses until the end of the data byte where it lost arbitration. When the master devices are addressing the same device, arbitration continues into the data.

FIGURE 11-15: MULTI-MASTER
ARBITRATION (TWO
MASTERS)

Masters that also incorporate the slave function, and have lost arbitration must immediately switch over to slave-receiver mode. This is because the winning master-transmitter may be addressing it.

Arbitration is not allowed between:

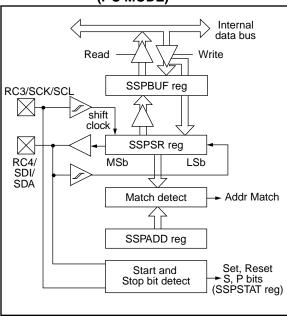

- · A repeated START condition
- · A STOP condition and a data bit
- A repeated START condition and a STOP condition

Care needs to be taken to ensure that these conditions do not occur.

11.2.4.2 Clock Synchronization

Clock synchronization occurs after the devices have started arbitration. This is performed using a wired-AND connection to the SCL line. A high to low transition on the SCL line causes the concerned devices to start counting off their low period. Once a device clock has gone low, it will hold the SCL line low until its SCL high state is reached. The low to high transition of this clock may not change the state of the SCL line, if another device clock is still within its low period. The SCL line is held low by the device with the longest low period. Devices with shorter low periods enter a high wait-state, until the SCL line comes high. When the SCL line comes high, all devices start counting off their high periods. The first device to complete its high period will pull the SCL line low. The SCL line high time is determined by the device with the shortest high period, Figure 11-16.

FIGURE 11-16: CLOCK SYNCHRONIZATION



11.3 SSP I²C Operation

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

The SSP module in I²C mode fully implements all slave functions (except general call support), and provides interrupts on start and stop bits in hardware to facilitate software implementations of the master functions. The SSP module implements the standard and fast mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-17: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- · SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- · Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with startandstop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C start and stop bit interrupts enabled, slave is idle

Selection of any I²C mode, with enable bit SSPEN set, forces the SCL and SDA pins to be open drains, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written-to or read-from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and overflow detect bit SSPOV (SSPCON<6>) is set, and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 $\,^{0}$ A9 A8 $\,^{0}$). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

11.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (ACK) pulse, and then load the SSPBUF register with the received value in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. These are if either (or both):

- The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF register, but interrupt flag bit SSPIF (PIR1<3>) is set. Table 11-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while overflow bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I²C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and bits BF and SSPOV are clear, the following events occur:

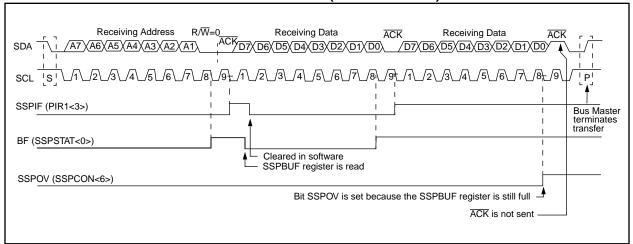
- The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on falling edge of ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-9). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit $R\overline{W}$ (SSPSTAT<2>) must specify a write, so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address are as follows with steps 7- 9 for slave-transmitter:

- Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- Receive second (low) byte of Address (bits SSPIF, BF and UA are set).
- Update the SSPADD register with first (high) byte of Address (if match releases SCL line, this will clear bit UA).
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- Receive first (high) byte of Address (bits SSPIF and BF are set)
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received				Set bit SSPIF
BF SSPOV		SSPSR →SSPBUF	Generate ACK Pulse	(SSP Interrupt occurs if Enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0 1		No	No	Yes

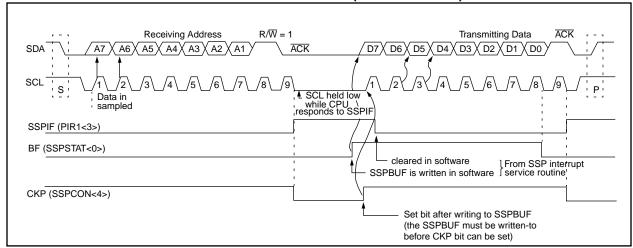

11.3.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, bit R/\overline{W} (SSPSTAT<2>) is cleared. The received address is loaded into the SSP-BUF register.

When the address byte overflow condition exists then no acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

A SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software, and the SSPSTAT register is used to determine the status of the byte.

FIGURE 11-18: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)


11.3.1.3 TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, bit R/W (SSPSTAT<2>) is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-19).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting bit CKP.

FIGURE 11-19: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

11.3.2 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared by a reset or when the SSP module is disabled. Control of the I²C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a'1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause the SSP Interrupt Flag bit SSPIF to be set (SSP Interrupt occurs if enabled):

- · START condition
- · STOP condition
- · Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.3.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both bits S and P clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- · Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage communication to the device may be in progress. If addressed, an \overline{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

TABLE 11-4: REGISTERS ASSOCIATED WITH I²C OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0B/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 0000	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchron	ous Serial	Port Rece	eive Buffer	r/Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchron	ous Serial	Port (I ² C	mode) Ad	dress Reg	jister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
94h	SSPSTAT	_	<u> </u>	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by the SSP module in I²C mode.

- Note 1: These bits are associated with the USART and are implemented on the PIC16C63/65/65A only.
 - 2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

FIGURE 11-20: OPERATION OF THE I²C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE

```
IDLE_MODE (7-bit):
if (Addr_match)
                                           Set interrupt;
                                   {
                                           if (R/\overline{W} = 1)
                                                                    Send \overline{ACK} = 0:
                                                                    set XMIT_MODE;
                                           else if (R/\overline{W} = 0) set RCV_MODE;
RCV_MODE:
if ((SSPBUF=Full) OR (SSPOV = 1))
                  Set SSPOV;
                  Do not acknowledge;
else
                   transfer SSPSR \rightarrow SSPBUF;
                  send \overline{ACK} = 0;
Receive 8-bits in SSPSR;
Set interrupt;
XMIT_MODE:
While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low;
Send byte;
Set interrupt;
if (\overline{ACK} Received = 1)
                                   {
                                           End of transmission;
                                           Go back to IDLE_MODE;
else if ( ACK Received = 0) Go back to XMIT_MODE;
IDLE_MODE (10-Bit):
If (High_byte_addr_match AND (R/\overline{W} = 0))
                   PRIOR_ADDR_MATCH = FALSE;
                   Set interrupt;
                  if ((SSPBUF = Full) OR ((SSPOV = 1))
                                   Set SSPOV;
                                   Do not acknowledge;
                  else
                                   Set UA = 1;
                                   Send \overline{ACK} = 0;
                                   While (SSPADD not updated) Hold SCL low;
                                   Clear UA = 0;
                                   Receive Low_addr_byte;
                                   Set interrupt;
                                   Set UA = 1;
                                   If (Low_byte_addr_match)
                                                   PRIOR_ADDR_MATCH = TRUE;
                                                   Send \overline{ACK} = 0;
                                                   while (SSPADD not updated) Hold SCL low;
                                                   Clear UA = 0;
                                                   Set RCV_MODE;
                                           }
                          }
else if (High_byte_addr_match AND (R/\overline{W} = 1)
                  if (PRIOR_ADDR_MATCH)
                                   send \overline{ACK} = 0;
                                   set XMIT_MODE;
           else PRIOR_ADDR_MATCH = FALSE;
          }
```

NOTES:

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also know as a Serial Communications Interface or SCI) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT ter-

minals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- · Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D
bit7							bit0

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

- n =Value at POR reset

bit 7: CSRC: Clock Source Select bit

Asynchronous mode

Don't care

Synchronous mode

- 1 = Master mode (Clock generated internally from BRG)
- 0 = Slave mode (Clock from external source)
- bit 6: TX9: 9-bit Transmit Enable bit
 - 1 = Selects 9-bit transmission
 - 0 = Selects 8-bit transmission
- bit 5: TXEN: Transmit Enable bit
 - 1 = Transmit enabled
 - 0 = Transmit disabled

Note: SREN/CREN overrides TXEN in SYNC mode.

- bit 4: SYNC: USART Mode Select bit
 - 1 = Synchronous mode
 - 0 = Asynchronous mode
- bit 3: Unimplemented: Read as '0'
- bit 2: BRGH: High Baud Rate Select bit

Asynchronous mode

1 = High speed

Note: At the time of this printing, the asynchronous high speed mode (BRGH is set) may experience a high rate of receive errors. It is recommended to have the BRGH bit cleared. If you desire a higher baud rate than BRGH=0 can support, refer to the device errata for additional information.

0 = Low speed

Synchronous mode

Unused in this mode

bit 1: TRMT: Transmit Shift Register Status bit

1 = TSR empty

0 = TSR full

bit 0: **TX9D**: 9th bit of transmit data. Can be parity bit.

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	R	= Readable bit
bit7							bit0	W	= Writable bit
								U	= Unimplemented
									bit, read as '0'
								- n	
								Х	= unknown
bit 7:	SPEN: Ser								
				6/TX/CK p	oins as seri	al port pins	when bits	TRIS	C<7:6> are set)
		oort enable							
	0 = Serial p	oort disable	ed						
bit 6:	RX9 : 9-bit	Receive Er	able bit						
		s 9-bit rece _l							
	0 = Selects	s 8-bit rece _l	otion						
bit 5:	SREN: Sin	gle Receive	e Enable bi	t					
	Asynchron	ous mode							
	Don't care								
	Synchrono	us mode -	master						
		s single red							
	0 = Disable								
		cleared afte		is comple	ete.				
	Synchrono	us mode -	slave						
	Unused in								
bit 4:	CREN: Cor	ntinuous Re	eceive Enal	ble bit					
	Asynchron	ous mode							

Asynchronous mode

1 = Enables continuous receive

0 = Disables continuous receive

Synchronous mode

1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)

0 = Disables continuous receive

bit 3: Unimplemented: Read as '0'

bit 2: **FERR**: Framing Error bit

1 = Framing error (Can be updated by reading RCREG register)

0 = No framing error

bit 1: **OERR**: Overrun Error bit

1 = Overrun error (Can be cleared by clearing bit CREN)

0 = No overrun error

bit 0: **RX9D**: 9th bit of received data (Can be parity bit)

12.1 USART Baud Rate Generator (BRG)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz

Desired Baud Rate = 9600

BRGH = 0

SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

9600 = 16000000 / (64 (X + 1))

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

Error = (Calculated Baud Rate - Desired Baud Rate)

Desired Baud Rate

= (9615 - 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note: At the time of this printing, the asynchronous high speed mode (BRGH is set) may experience a high rate of receive errors. It is recommended to have the BRGH bit cleared. If you desire a higher baud rate than BRGH=0 can support, refer to the device errata for additional information.

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	1	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
99h	SPBRG	Baud Rat	te Genera	tor Regist	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD RATE (K)	FOSC = 20) MHz %ERROR	SPBRG value (decimal)	16 MHz KBAUD	%ERROR	SPBRG value (decimal)	10 MHz KBAUD	%ERROR	SPBRG value (decimal)	7.15909 M KBAUD	Hz %ERROR	SPBRG value (decimal)
(14)		70ETRICOTO	(decimal)		70LITITOIT	(dccimal)		70LITTOIT	(dcciiriai)		70LITTOIT	(dcciiilai)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

BAUD RATE (K)	FOSC = 5.	0688 MHz %ERROR	SPBRG value (decimal)	3.579545 I KBAUD	MHz %ERROR	SPBRG value (decimal)	1 MHz KBAUD	%ERROR	SPBRG value (decimal)	32.768 kHz	z %ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD RATE (K)	FOSC = 20 KBAUD) MHz %ERROR	SPBRG value (decimal)	16 MHz KBAUD	%ERROR	SPBRG value (decimal)	10 MHz KBAUD	%ERROR	SPBRG value (decimal)	7.15909 M KBAUD	Hz %ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

BAUD	Fosc = 5.	0688 MHz	SPBRG	3.579545 I	MHz	SPBRG	1 MHz		SPBRG	32.768 kHz	z	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	0.31	+3.13	255	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD RATE (K)	FOSC = 20 KBAUD) MHz %ERROR	SPBRG value (decimal)	16 MHz KBAUD	%ERROR	SPBRG value (decimal)	10 MHz KBAUD	%ERROR	SPBRG value (decimal)	7.16 MHz KBAUD	%ERROR	SPBRG value (decimal)
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64	9.520	-0.83	46
19.2	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32	19.454	+1.32	22
38.4	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15	37.286	-2.90	11
57.6	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10	55.930	-2.90	7
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.51	4	111.860	-2.90	3
250	250	0	4	250	0	3	NA	-	-	NA	-	-
625	625	0	1	NA	-	-	625	0	0	NA	-	-
1250	1250	0	0	NA	-	-	NA	-	-	NA	-	-

BAUD RATE (K)	Fosc = 5.	068 MHz %ERROR	SPBRG value (decimal)	3.579 MHz KBAUD	%ERROR	SPBRG value (decimal)	1 MHz KBAUD	%ERROR	SPBRG value (decimal)	32.768 kH KBAUD	lz %ERROR	SPBRG value (decimal)
9.6	9.6	0	32	9.727	+1.32	22	8.928	-6.99	6	NA	-	-
19.2	18.645	-2.94	16	18.643	-2.90	11	20.833	+8.51	2	NA	-	-
38.4	39.6	+3.12	7	37.286	-2.90	5	31.25	-18.61	1	NA	-	-
57.6	52.8	-8.33	5	55.930	-2.90	3	62.5	+8.51	0	NA	-	-
115.2	105.6	-8.33	2	111.860	-2.90	1	NA	-	-	NA	-	-
250	NA	-	-	223.721	-10.51	0	NA	-	-	NA	-	-
625	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1250	NA	-	-	NA	-	-	NA	-	-	NA	-	-

12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is

set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

FIGURE 12-3: RX PIN SAMPLING SCHEME (BRGH = 0)

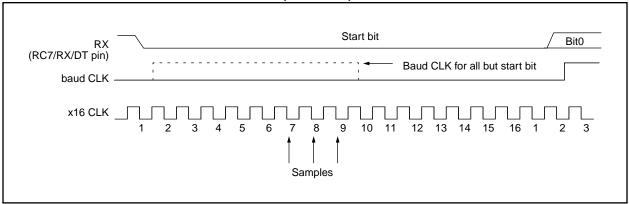


FIGURE 12-4: RX PIN SAMPLING SCHEME (BRGH = 1)

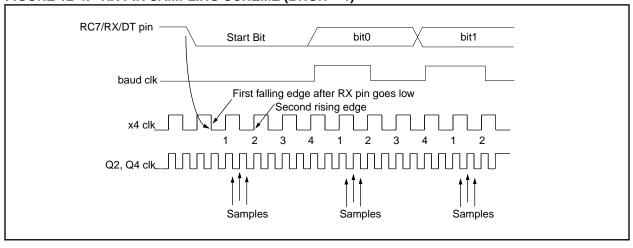
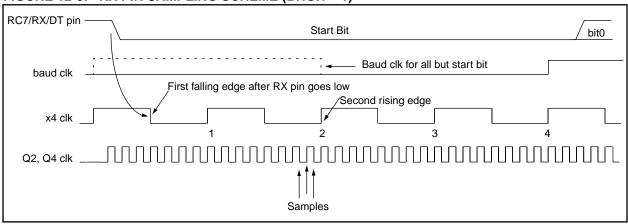



FIGURE 12-5: RX PIN SAMPLING SCHEME (BRGH = 1)

12.2 <u>USART Asynchronous Mode</u>

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

In this mode, the USART uses standard nonreturn-to-zero (NRZ) format (one start bit, eight or nine data bits and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

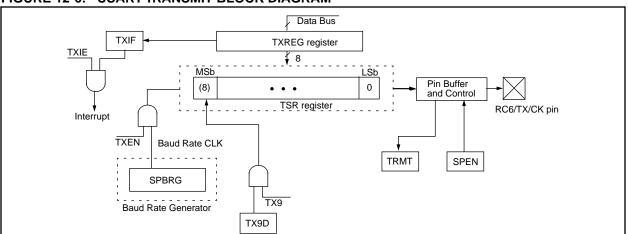
The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- · Asynchronous Transmitter
- · Asynchronous Receiver

12.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY) the TXREG register is empty and flag bit TXIF

(PIR1<4>) is set. This interrupt is enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.


Note 1: The TSR register is not mapped in data memory so it is not available to the user.

Note 2: Flag bit TXIF is set when enable bit TXEN is set.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 12-6). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR register resulting in an empty TXREG register. A back-to-back transfer is thus possible (Figure 12-8). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit maybe loaded in the TSR register.

FIGURE 12-6: USART TRANSMIT BLOCK DIAGRAM

Steps to follow when setting up an Asynchronous Transmission:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, then set bit BRGH. (Section 12.1).
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit TXIE.
- If 9-bit transmission is desired, then set transmit bit TX9.
- Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Load data to the TXREG register (starts transmission).

FIGURE 12-7: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

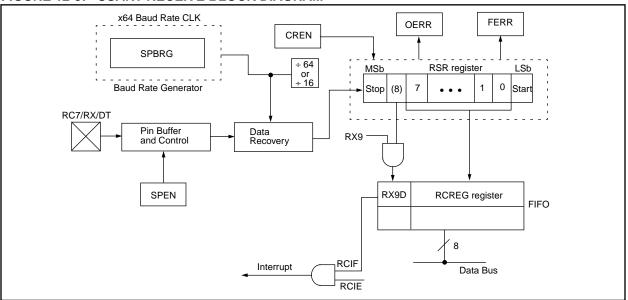
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Registe	ər					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

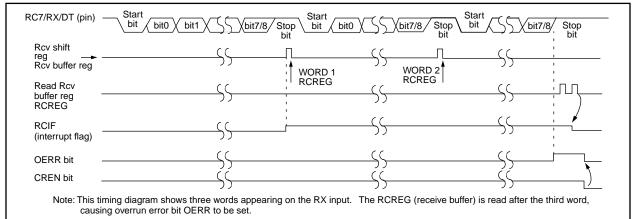
Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

12.2.2 USART ASYNCHRONOUS RECEIVER


The receiver block diagram is shown in Figure 12-9. The data comes in the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).


The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is double buffered register, i.e., it is a two deep FIFO. It is

possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited. so it is essential to clear overrun bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Error bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will load bits RX9D and FERR with new values. Therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

FIGURE 12-9: USART RECEIVE BLOCK DIAGRAM

FIGURE 12-10: ASYNCHRONOUS RECEPTION

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1).
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	1	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Registe	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: PSPIE and PSPIF are reserved on the PIC16C63, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

12.3 USART Synchronous Master Mode

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

In Synchronous Master mode the data is transmitted in a half-duplex manner i.e., transmission and reception do not occur at the same time. When transmitting data the reception is inhibited and vice versa. The synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6 and RC7 I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

12.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR register is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG register is empty and interrupt flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the status of enable bit TXIE and cannot be cleared in software. It will clear only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR register is not mapped in data memory so it is not available to the

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-11). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN, CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG register. Back-to-back transfers are possible.

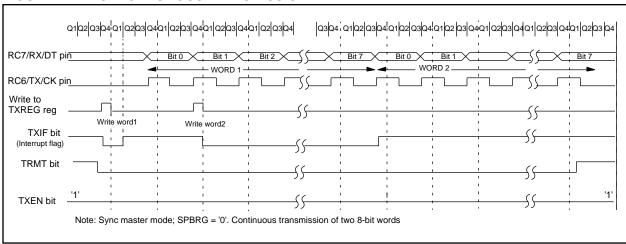
Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If, during a transmission, either bit CREN or bit SREN are set the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however, is not reset although it is disconnected from the pins. In order to reset the transmitter, the user has to clear enable bit TXEN. If enable bit SREN is set (to interrupt an on going transmission and receive a single word), then after the single word is received, enable bit SREN will be cleared, and the serial port will revert back to transmitting since enable bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, enable bit TXEN should be cleared.

In order to select 9-bit transmission, bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR register was empty and the TXREG register was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

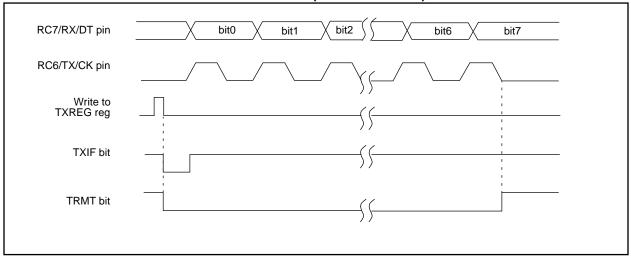
Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- Enable the transmission by setting enable bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Transmission.


Note 1: PSPIE and PSPIF are reserved on the PIC16C63, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

FIGURE 12-11: SYNCHRONOUS TRANSMISSION

FIGURE 12-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

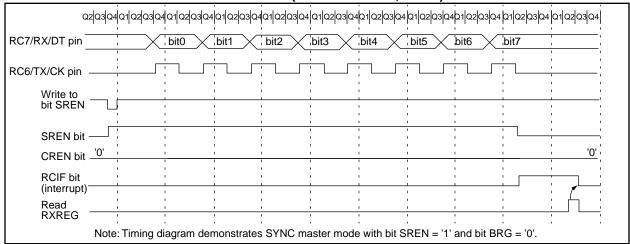
12.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous Mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) bit or enable bit CREN (RCSTA<4>). Data is sampled on the DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until bit CREN is cleared. If both the bits are set then bit CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit, OERR (RCSTA<1>) is set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun error bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value. Therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old RX9D bit information.

Steps to follow when setting up Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- If a single reception is required, set enable bit SREN. For continuous reception set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

FIGURE 12-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

12.4 USART Synchronous Slave Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Synchronous Slave Mode differs from Master Mode in the fact that the shift clock is supplied externally at the CK pin (instead of being supplied internally in the master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, enable bit SREN is a don't care in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

^{2:} PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

^{2:} PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

13.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

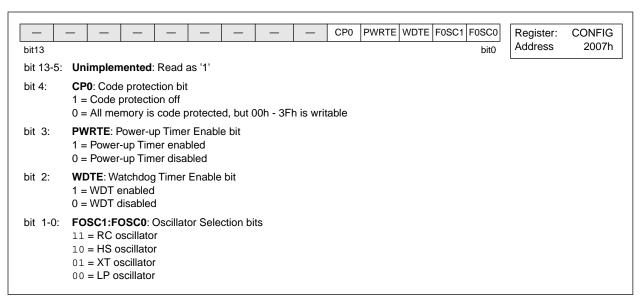
What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP mode
- · Code protection
- · ID locations
- · In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two

timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.


13.1 Configuration Bits

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

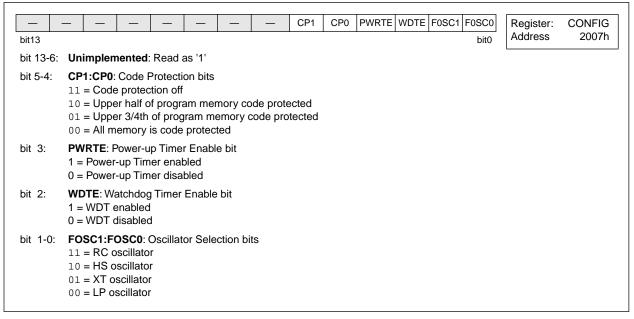
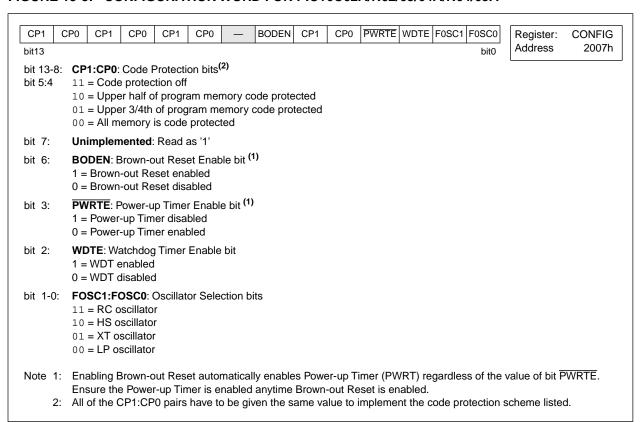

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 13-1: CONFIGURATION WORD FOR PIC16C61



© 1996 Microchip Technology Inc.

FIGURE 13-2: CONFIGURATION WORD FOR PIC16C62/64/65

FIGURE 13-3: CONFIGURATION WORD FOR PIC16C62A/R62/63/64A/R64/65A

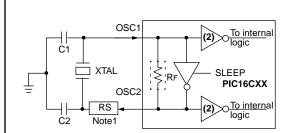
13.2 <u>Oscillator Configurations</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

13.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power Crystal
 XT Crystal/Resonator
 HS High Speed Crystal/Resonator


Tigit Speed Crystal/Resorta

RC Resistor/Capacitor

13.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In LP, XT, or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 13-4). The PIC16CXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in LP, XT, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 13-5).

FIGURE 13-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 13-1, Table 13-2, Table 13-3 and Table 13-4 for recommended values of C1 and C2.

Note 1: A series resistor may be required for AT strip cut crystals.

2: For the PIC16C61 the buffer is on the OSC2 pin, all other devices have the buffer on the OSC1 pin.

FIGURE 13-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

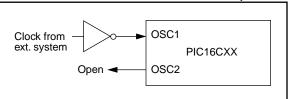


TABLE 13-1: CERAMIC RESONATORS PIC16C61

Ranges Tested:							
Mode	Freq	OSC1	OSC2				
XT	455 kHz	47 - 100 pF	47 - 100 pF				
	2.0 MHz	15 - 68 pF	15 - 68 pF				
	4.0 MHz	15 - 68 pF	15 - 68 pF				
HS	8.0 MHz	15 - 68 pF	15 - 68 pF				
	16.0 MHz	10 - 47 pF	10 - 47 pF				

Note: Recommended values of C1 and C2 are identical to the ranges tested table.

Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

455 kHz	Panasonic EFO-A455K04B	± 0.3%
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%

All resonators used did not have built-in capacitors.

TABLE 13-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C61

Mode	Freq	OSC1	OSC2
LP	32 kHz	33 - 68 pF	33 - 68 pF
	200 kHz	15 - 47 pF	15 - 47 pF
XT	100 kHz	47 - 100 pF	47 - 100 pF
	500 kHz	20 - 68 pF	20 - 68 pF
	1 MHz	15 - 68 pF	15 - 68 pF
	2 MHz	15 - 47 pF	15 - 47 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	8 MHz	15 - 47 pF	15 - 47 pF
	20 MHz	15 - 47 pF	15 - 47 pF

Note: Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

TABLE 13-3: CERAMIC RESONATORS PIC16C62/62A/R62/63/64/64A/ R64/65/65A

Ranges Te	Ranges Tested:							
Mode	Freq	OSC1	OSC2					
XT	455 kHz	68 - 100 pF	68 - 100 pF					
	2.0 MHz	15 - 68 pF	15 - 68 pF					
	4.0 MHz	15 - 68 pF	15 - 68 pF					
HS	8.0 MHz	10 - 68 pF	10 - 68 pF					
	16.0 MHz	10 - 22 pF	10 - 22 pF					

Note: Recommended values of C1 and C2 are identical to the ranges tested table.

Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used: 455 kHz Panasonic EFO-A455K04B ± 0.3% 2.0 MHz Murata Erie CSA2.00MG ± 0.5% 4.0 MHz Murata Erie CSA4.00MG ± 0.5% 8.0 MHz Murata Erie CSA8.00MT ± 0.5% 16.0 MHz Murata Erie CSA16.00MX ± 0.5%

All resonators used did not have built-in capacitors.

TABLE 13-4: CAPACITOR SELECTION

FOR CRYSTAL OSCILLATOR FOR PIC16C62/62A/R62/63/64/ 64A/R64/65/65A

Mode	Freq	OSC1	OSC2
LP	32 kHz ⁽¹⁾	15 - 47 pF	15 - 47 pF
	200 kHz	15 - 33 pF	15 - 33 pF
XT	100 kHz	47 - 100 pF	47 - 100 pF
	500 kHz	20 - 68 pF	20 - 68 pF
	1 MHz	15 - 68 pF	15 - 68 pF
	2 MHz	15 - 47 pF	15 - 47 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	8 MHz	15 - 47 pF	15 - 47 pF
	20 MHz	15 - 47 pF	15 - 47 pF

Note: Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Note 1: For VDD > 4.5V, C1 = $C2 \approx 30$ pF is recommended.

13.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 13-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 13-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

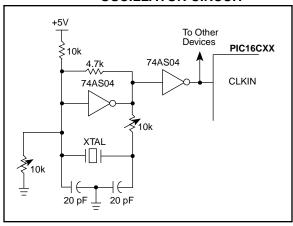
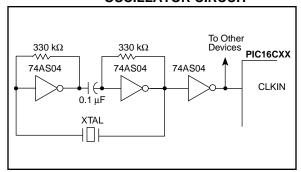
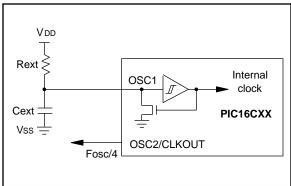



Figure 13-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 13-7: EXTERNAL SERIES
RESONANT CRYSTAL
OSCILLATOR CIRCUIT

13.2.4 RC OSCILLATOR

For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 13-8 shows how the RC combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-4 for waveform).

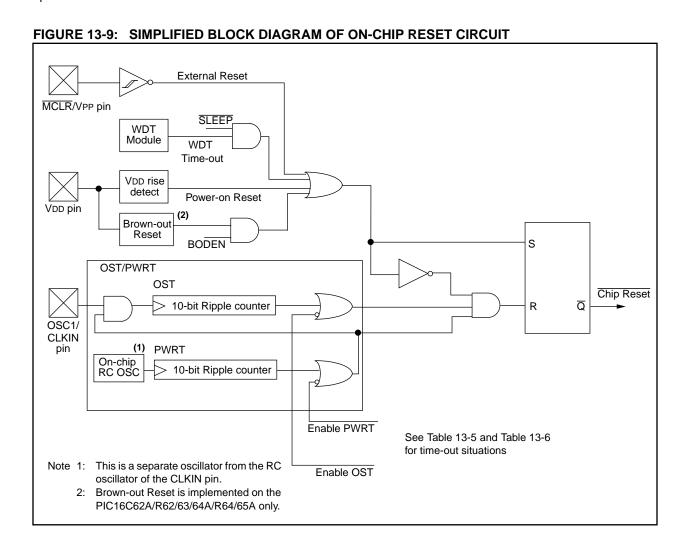
FIGURE 13-8: RC OSCILLATOR MODE

13.3 Reset

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The PIC16CXX differentiates between various kinds of reset:

- · Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- · WDT Reset (normal operation)
- Brown-out Reset (BOR) PIC16C62A/R62/63/ 64A/R64/65A


Some registers are not affected in any reset condition, their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and on Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation.

The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 13-7, Table 13-8, and Table 13-9. These bits are used in software to determine the nature of the reset. See Table 13-12 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 13-9.

On the PIC16C62A/R62/63/64A/R64/65A, the MCLR reset path has a noise filter to detect and ignore small pulses. See parameter #34 for pulse width specifications.

It should be noted that a WDT Reset does not drive the $\overline{\text{MCLR}}$ pin low.

13.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

Applicable Devices |61|62|62A|R62|63|64|64A|R64|65|65A

13.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting."

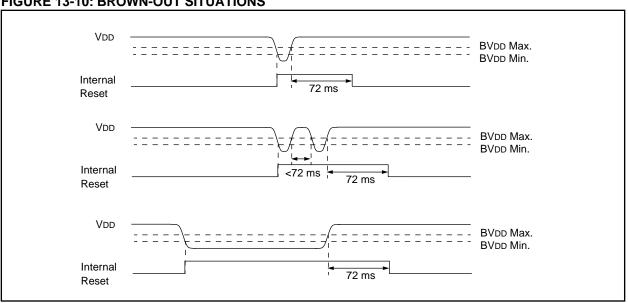
13.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

13.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures the crystal oscillator or resonator has started and stabilized.


The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

13.4.4 **BROWN-OUT RESET (BOR)**

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (parameter D005 in Electrical Specification section) for greater than parameter #34, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #34. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 13-10 shows typical brown-out situations.

FIGURE 13-10: BROWN-OUT SITUATIONS

13.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First a PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode, with the PWRT disabled, these will be no time-out at all. Figure 13-11, Figure 13-12, and Figure 13-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if the \overline{MCLR}/VPP pin is kept low long enough, the time-outs will expire. Then bringing the \overline{MCLR}/VPP pin high will begin execution immediately (Figure 13-14). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 13-10 and Table 13-11 show the reset conditions for some special function registers, while Table 13-12 shows the reset conditions for all the registers.

13.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A									
61	62	62A	R62	63	64	64A	R64	65	65A

The Power Control/Status Register, PCON has up to 2 bits, depending upon the device. Bit0 is not implemented on the PIC16C62/64/65.

Bit0 is BOR (Brown-out Reset Status bit). BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR cleared, indicating that a brown-out has occurred. The BOR status bit is a "Don't Care" and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 13-5: TIME-OUT IN VARIOUS SITUATIONS, PIC16C61/62/64/65

Oscillator Configuration	Power-up		Wake-up from SLEEP
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	_	_

TABLE 13-6: TIME-OUT IN VARIOUS SITUATIONS, PIC16C62A/R62/63/64A/R64/65A

Ossillator Configuration	Power-	-up	D	Wake up from	
Oscillator Configuration	PWRTE = 0 PWRTE = 1		Brown-out	SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024 Tosc	
RC	72 ms		72 ms	_	

TABLE 13-7: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C61

TO	PD	
1	1	Power-on Reset or MCLR reset during normal operation
0	1	WDT Reset
0	0	WDT Wake-up
1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

TABLE 13-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C62/64/65

POR	TO	PD	
0	1	1	Power-on Reset
0	0	x	Illegal, TO is set on a Power-on Reset
0	x	0	Illegal, PD is set on a Power-on Reset
1	0	1	WDT Reset
1	0	0	WDT Wake-up
1	1	1	MCLR reset during normal operation
1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

Legend: x = unknown, u = unchanged

TABLE 13-9: STATUS BITS AND THEIR SIGNIFICANCE FOR PIC16C62A/R62/63/64A/R64/65A

POR	BOR	TO	PD				
0	х	1	1	Power-on Reset			
0	x	0	x	Illegal, TO is set on a Power-on Reset			
0	x	x	0	Illegal, PD is set on a Power-on Reset			
1	0	x	x	Brown-out Reset			
1	1	0	1	WDT Reset			
1	1	0	0	WDT Wake-up			
1	1	1	1	MCLR reset during normal operation			
1	1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP			

Legend: x = unknown, u = unchanged

TABLE 13-10: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C61/62/64/65

	Program Counter	STATUS	PCON ⁽²⁾
Power-on Reset	000h	0001 1xxx	0-
MCLR reset during normal operation	000h	000u uuuu	u-
MCLR reset during SLEEP	000h	0001 0uuu	u-
WDT Reset	000h	0000 1uuu	u-
WDT Wake-up	PC + 1	uuu0 0uuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

2: The PCON register is not implemented on the PIC16C61.

TABLE 13-11: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C62A/R62/63/64A/R64/65A

	Program Counter	STATUS	PCON
Power-on Reset	000h	0001 1xxx	0x
MCLR reset during normal operation	000h	000u uuuu	uu
MCLR reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 1uuu	uu
Brown-out Reset	000h	0001 1uuu	u0
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

TABLE 13-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Applicable Devices					Power-on Reset Brown-out Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up					
W	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	61	62	62A	R62	63	64	64A	R64	65	65A	N/A	N/A	N/A
TMR0	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	61	62	62A	R62	63	64	64A	R64	65	65A	0000h	0000h	PC + 1(2)
STATUS	61	62	62A	R62	63	64	64A	R64	65	65A	0001 1xxx	000q quuu (3)	uuuq quuu(3)
FSR	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
DODTA	61	62	62A	R62	63	64	64A	R64	65	65A	x xxxx	u uuuu	u uuuu
PORTA	61	62	62A	R62	63	64	64A	R64	65	65A	xx xxxx	uu uuuu	uu uuuu
PORTB	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	61	62	62A	R62	63	64	64A	R64	65	65A	xxx	uuu	uuu
PCLATH	61	62	62A	R62	63	64	64A	R64	65	65A	0 0000	0 0000	u uuuu
INTCON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu(1)
	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu(1)
PIR2	61	62	62A	R62	63	64	64A	R64	65	65A	0	0	u(2)
TMR1L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	uu uuuu	uu uuuu
TMR2	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
T2CON	61	62	62A	R62	63	64	64A	R64	65	65A	-000 0000	-000 0000	-uuu uuuu
SSPBUF	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
CCPR1L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
RCSTA	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -00x	0000 -00x	uuuu -uuu
TXREG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
RCREG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
CCPR2L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
OPTION	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISA	61	62	62A	R62	63	64	64A	R64	65	65A	1 1111	1 1111	u uuuu
INIOA	61	62	62A	R62	63	64	64A	R64	65	65A	11 1111	11 1111	uu uuuu
TRISB	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu

Legend: u = unchanged, x = unknown, -= unimplemented bit read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

^{2:} When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

^{3:} See Table 13-10 and Table 13-11 for reset value for specific conditions.

TABLE 13-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

Register	Applicable Devices						evices	S			Power-on Reset Brown-out Reset	MCLR Reset during: - normal operation - SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up
TRISC	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISD	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISE	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -111	0000 -111	uuuu -uuu
PIE1	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
PIE2	61	62	62A	R62	63	64	64A	R64	65	65A	0	0	u
PCON	61	62	62A	R62	63	64	64A	R64	65	65A	0u	uu	uu
FCON	61	62	62A	R62	63	64	64A	R64	65	65A	0-	u-	u-
PR2	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	1111 1111
SSPADD	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
TXSTA	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -010	0000 -010	uuuu -uuu
SPBRG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0', y = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

^{2:} When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

^{3:} See Table 13-10 and Table 13-11 for reset value for specific conditions.

FIGURE 13-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

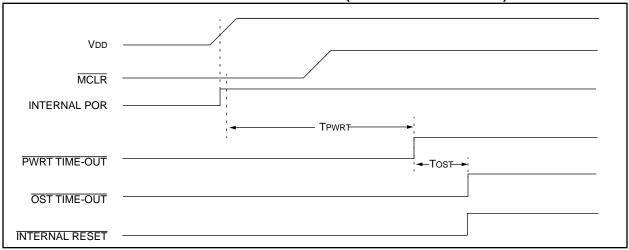


FIGURE 13-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

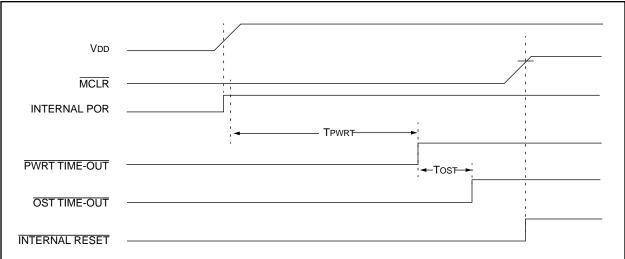


FIGURE 13-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

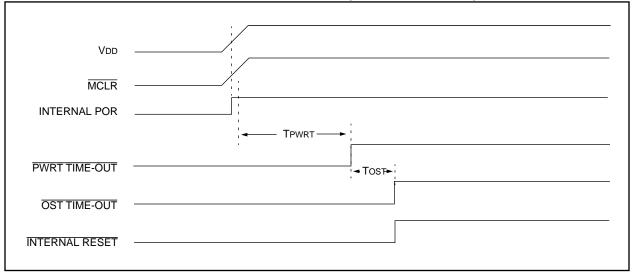
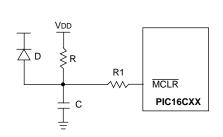
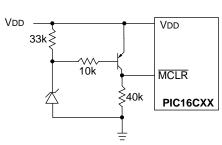




FIGURE 13-14: EXTERNAL POWER-ON
RESET CIRCUIT (FOR SLOW
VDD POWER-UP)

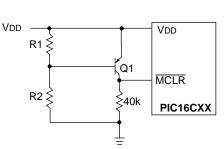

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that voltage drop across R does not violate the devices electrical specifications.
 - 3: $R1 = 100\Omega$ to 1 $k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR} /VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrostatic Overstress (EOS).

FIGURE 13-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- Note 1: This circuit will activate reset when VDD goes below (Vz + 0.7V) where Vz = Zener voltage.
 - 2: Internal brown-out detection on the PIC16C62A/R62/63/64A/R64/65A should be disabled when using this circuit.
 - 3: Resistors should be adjusted for the characteristics of the transistors.

FIGURE 13-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C62A/R62/63/64A/R64/65A should be disabled when using this circuit
- 3: Resistors should be adjusted for the characteristics of the transistors.

13.5 Interrupts

Applicable Devices

61|62|62A|R62|63|64|64A|R64|65|65A

The PIC16C6X family has up to 11 sources of interrupt:

Interrupt Sources		Applicable Devices								
External interrupt RB0/INT	61	62	62A	R62	63	64	64A	R64	65	65A
TMR0 overflow interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
PORTB change interrupt (pins RB7:RB4)	61	62	62A	R62	63	64	64A	R64	65	65A
TMR1 overflow interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
TMR2 matches period interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
CCP1 interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
CCP2 interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
USART Receive	61	62	62A	R62	63	64	64A	R64	65	65A
USART Transmit	61	62	62A	R62	63	64	64A	R64	65	65A
Synchronous serial port interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
Parallel slave port read/write interrupt	61	62	62A	R62	63	64	64A	R64	65	65A

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or global enable bit, GIE.

Global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) When bit GIE is enabled, and an interrupt flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register. GIE is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enable interrupts.

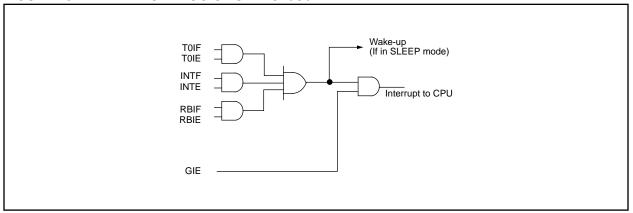
The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flag bits are contained in the INTCON register.

The peripheral interrupt flag bits are contained in special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2 and the peripheral interrupt enable bit is contained in special function register INTCON.

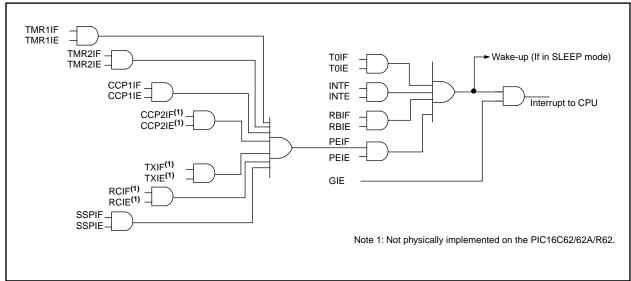
When an interrupt is responded to, bit GIE is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the RB0/INT pin or RB port change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 1320). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

Note:


For the PIC16C61/64/65 only,

If an interrupt occurs while the Global Interrupt Enable bit, GIE is being cleared, bit GIE may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:


- 1. An instruction clears the GIE bit while an interrupt is acknowledged
- The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.
- 4. Perform the following to ensure that interrupts are globally disabled.

LOOP BCF INTCON,GIE ;Disable Global ;Interrupt bit BTFSC INTCON,GIE ;Global Interrupt ;Disabled? GOTO LOOP ;NO, try again ;Yes, continue ;with program flow

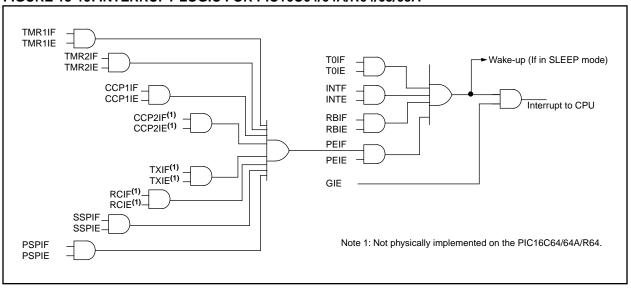
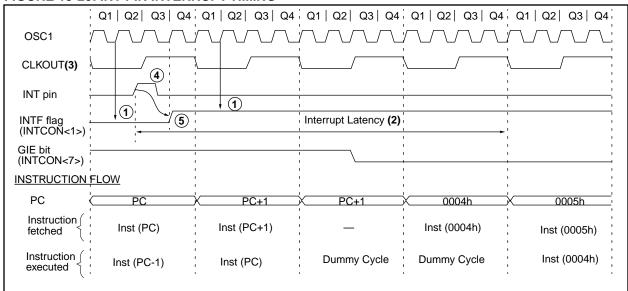

FIGURE 13-17: INTERRUPT LOGIC FOR PIC16C61

FIGURE 13-18: INTERRUPT LOGIC FOR PIC16C62/62A/R62/63

FIGURE 13-19: INTERRUPT LOGIC FOR PIC16C64/64A/R64/65/65A


13.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if edge select bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP, if enable bit INTE was set prior to going into SLEEP. The status of global enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 13.8 for details on SLEEP mode.

13.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 7.0).

FIGURE 13-20: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4Tcy where Tcy = instruction cycle time.

 Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC oscillator mode.
- 4: For minimum width spec of INT pulse, refer to AC specs.
- 5: INTF can to be set anytime during the Q4-Q1 cycles.

13.5.3 PORTB INTERRUPT ON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 5.2).

Note: F

For the PIC16C61/62/64/65 only, if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then flag bit RBIF may not get set.

13.6 <u>Context Saving During Interrupts</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 13-1 and Example 13-2 store and restore the STATUS and W registers. For all PIC16C6X devices with greater than 1K of program memory (all devices except PIC16C61), the register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The examples:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes ISR code.
- d) Restores STATUS register (and bank select bit).
- e) Restores W register.

EXAMPLE 13-1: SAVING STATUS AND W REGISTERS IN RAM (PIC16C61)

```
MOVWF
         W_TEMP
                           ;Copy W to TEMP register, could be bank one or zero
SWAPF
         STATUS, W
                           ;Swap status to be saved into W
MOVWF
         STATUS TEMP
                           ; Save status to bank zero STATUS_TEMP register
:(ISR)
SWAPF
         STATUS_TEMP,W
                           ;Swap STATUS_TEMP register into W
                           ; (sets bank to original state)
MOVWF
         STATUS
                           ; Move W into STATUS register
                           ;Swap W_TEMP
SWAPF
         W_TEMP,F
         W_TEMP,W
                           ;Swap W_TEMP into W
SWAPF
```

EXAMPLE 13-2: SAVING STATUS AND W REGISTERS IN RAM (PIC16C62/62A/R62/63/64/64A/R64/65/65A)

```
;Copy W to TEMP register, could be bank one or zero
MOVWF
         W_TEMP
SWAPF
         STATUS, W
                           ; Swap status to be saved into W
BCF
         STATUS, RPO
                           ; Change to bank zero, regardless of current bank
MOVWF
         STATUS TEMP
                           ; Save status to bank zero STATUS_TEMP register
:(ISR)
SWAPF
         STATUS_TEMP,W
                           ;Swap STATUS_TEMP register into W
                           ; (sets bank to original state)
MOVWF
         STATUS
                           ; Move W into STATUS register
SWAPF
         W_TEMP,F
                           ;Swap W_TEMP
                           ;Swap W_TEMP into W
SWAPF
         W_TEMP,W
```

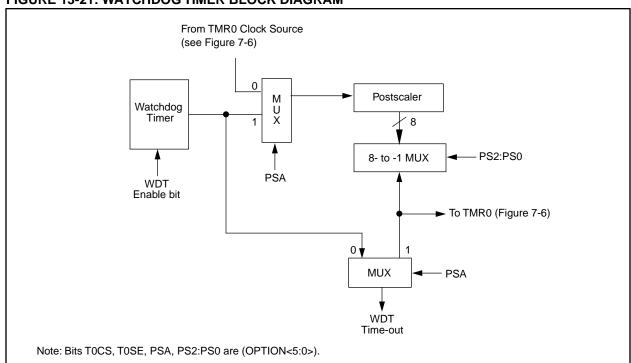
13.7 Watchdog Timer (WDT)

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device reset. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (WDT Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 13.1).

13.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.


The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition

The TO bit in the STATUS register will be cleared upon a WDT time-out.

13.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 13-21: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 13-22: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 13-1, Figure 13-2, and Figure 13-3 for details of these bits for the specific device.

13.8 Power-down Mode (SLEEP)

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC).

13.8.1 WAKE-UP FROM SLEEP

The device can wake from SLEEP through one of the following events:

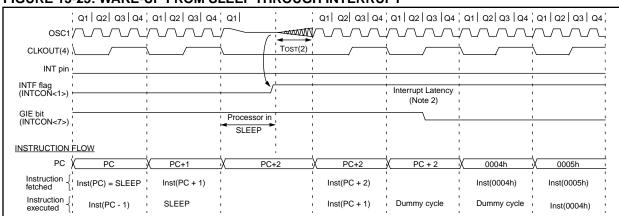
- External reset input on MCLR/VPP pin.
- Watchdog Timer Wake-up (if WDT was enabled).
- Interrupt from RB0/INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits

in the STATUS register can be used to determine the cause of device reset. The \overline{PD} bit, which is set on power-up is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/PC).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. USART TX or RX (synchronous slave mode).


Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: Interrupts that are capable of waking the device from SLEEP will still set the individual flag bits regardless of the state of the global enable bit, GIE.

The WDT is cleared when the device wakes-up from sleep, regardless of the source of wake-up.

FIGURE 13-23: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP oscillator mode assumed.

- 2: Tost = 1024Tosc (drawing not to scale) This delay will not be there for RC osc mode.
- 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.
- 4: CLKOUT is not available in these osc modes, but shown here for timing reference.

13.9 Program Verification/Code Protection

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

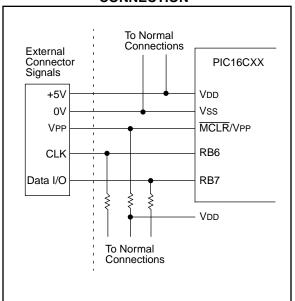
13.10 ID Locations

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of ID location are used.

For ROM devices, these values are submitted along with the ROM code.

13.11 <u>In-Circuit Serial Programming</u>


Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding pins RB6 and RB7 low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device in program/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 13-24: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

14.0 INSTRUCTION SET SUMMARY

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 14-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
€	In the set of
italics	User defined term (font is courier)

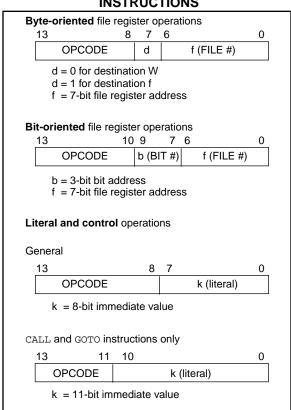
The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- · Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs . If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μs .

Table 14-2 lists the instructions recognized by the MPASM assembler.

Figure 14-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

Oxhh

where h signifies a hexadecimal digit.

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

PIC16C6X

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,	ı	Description	Cycles		14-Bit	Opcode	9	Status	Notes
Operands				MSb)		LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
	//	1/0	1	l	a \ 11			- 111	l

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

^{2:} If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

^{3:} If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

14.1 <u>Instruction Descriptions</u>

Add Literal and W							
[label] ADDLW k							
$0 \le k \le 255$							
$(W) + k \to (W)$							
C, DC, Z							
11 111x kkkk kkkk							
The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.							
1							
1							
ADDLW 0x15							
Before Instruction W = 0x10 After Instruction W = 0x25							

ANDLW	AND Literal with W								
Syntax:	[label] ANDLW k								
Operands:	$0 \leq k \leq 255$								
Operation:	(W) .AND. (k) \rightarrow (W)								
Status Affected:	Z								
Encoding:	11 1001 kkkk kkkk								
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.								
Words:	1								
Cycles:	1								
Example	ANDLW 0x5F								
	Before Instruction W = 0xA3 After Instruction W = 0x03								
	vv = UXUS								

Syntax:	[label] Al	DDWF	f,d					
Operands:	$0 \le f \le 12$ $d \in [0,1]$	7						
Operation:	$(W) + (f) \to (dest)$							
Status Affected:	C, DC, Z							
Encoding:	00	0111	dfff	ffff				
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	ADDWF	FSR,	0					
	After Inst	W = FSR =	0x17 0xC2 0xD9					

FSR = 0xC2

Add W and f

ADDWF

ANDWF	AND W with f		
Syntax:	[label] ANDWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(W) .AND. (f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	00 0101 dfff ffff		
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	ANDWF FSR, 1		
	Before Instruction $W = 0x17$ $FSR = 0xC2$ After Instruction $W = 0x17$ $FSR = 0x02$		

PIC16C6X

BCF	Bit Clear f			
Syntax:	[<i>label</i>] BCF f,b			
Operands:	$0 \le f \le 127$ $0 \le b \le 7$			
Operation:	$0 \rightarrow (f < b;$	>)		
Status Affected:	None			
Encoding:	01	00bb	bfff	ffff
Description:	Bit 'b' in register 'f' is cleared.			
Words:	1			
Cycles:	1			
Example	BCF	FLAG_	REG, 7	
	After Inst	FLAG_RE	EG = 0xC7 EG = 0x47	

BSF	Bit Set f			
Syntax:	[label] BS	SF f,b		
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	7		
Operation:	$1 \rightarrow (f < b;$	>)		
Status Affected:	None			
Encoding:	01 01bb bfff ffff			
Description:	Bit 'b' in register 'f' is set.			
Words:	1			
Cycles:	1			
Example	BSF	FLAG_F	REG, 7	
	After Inst	FLAG_RE	EG = 0x0A EG = 0x8A	

BTFSC	Bit Test, Skip if Clear			
Syntax:	[<i>label</i>] BT	FSC f,b		
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	7		
Operation:	skip if (f<	b>) = 0		
Status Affected:	None			
Encoding:	01	10bb	bfff	ffff
Description:	instruction If bit 'b' is ' fetched du execution i	register 'f' is is skipped. O' then the ring the cur is discarded nstead, mal.	next instru rent instru d, and a No	ction ction OP is
Words:	1			
Cycles:	1(2)			
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	_CODE
	Before In			
	After Inst		ddress H	ERE
		if FLAG<1>	= 0.	
			address T	RUE
		if FLAG<1>	*	
	ļ	PC = a	address FA	LSE

Bit Test f, Skip if Set				
[label] BTFSS f,b				
$0 \le f \le 127$ $0 \le b < 7$				
skip if (f) = 1				
None				
01	11bb	bfff	ffff	
If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.				
1				
1(2)				
HERE FALSE TRUE	BTFSC GOTO •	FLAG,1 PROCESS_	_CODE	
After Inst	PC = a ruction if FLAG<1> PC = if FLAG<1>	> = 0, address FA > = 1,		
	[label] Bi 0 ≤ f ≤ 12 0 ≤ b < 7 skip if (f None 01 If bit 'b' in instruction instruction executed instruction 1 1(2) HERE FALSE TRUE Before In After Inst	[label] BTFSS f,b $0 \le f \le 127$ $0 \le b < 7$ skip if $(f < b >) = 1$ None 01	[label] BTFSS f,b $0 \le f \le 127$ $0 \le b < 7$ skip if $(f < b >) = 1$ None 01	

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	00 0001 1fff ffff
Description:	The contents of register 'f' are cleared and the Z bit is set.
Words:	1
Cycles:	1
Example	CLRF FLAG_REG
	Before Instruction
	FLAG_REG = 0x5A After Instruction
	FLAG_REG = 0x00
	Z = 1

CALL	Call Subroutine	
Syntax:	[label] CALL k	
Operands:	$0 \le k \le 2047$	
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	
Status Affected:	None	
Encoding:	10 0kkk kkkk kkkk	
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.	
Words:	1	
Cycles:	2	
Example	HERE CALL THERE	
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1	

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	00 0001 0xxx xxxx
Description:	W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example	CLRW
	Before Instruction
	W = 0x5A After Instruction $W = 0x00$ $Z = 1$

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Encoding:	00 0000 0110 0100
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.
Words:	1
Cycles:	1
Example	CLRWDT
	Before Instruction WDT counter = ? After Instruction
	WDT counter = 0x00
	WDT prescaler= 0 TO = 1
	PD = 1

DECF	Decrement f			
Syntax:	[label] DECF f,	d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) - 1 \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 0011	df	ff	ffff
Description:	Decrement registeresult is stored in is 1 the result is st	er 'f'. If the W ored ba	'd' is (registe ack in	the er. If 'd' register
Words:	1			
Cycles:	1			
Example	DECF CNT,	1		
	Before Instruction CNT Z After Instruction CNT Z	= =	0x01 0 0x00 1	

COMF	Compler	ment f			
Syntax:	[label]	COMF	f,d		
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27			
Operation:	$(\overline{f}) \rightarrow (de$	st)			
Status Affected:	Z				
Encoding:	00	1001	dfi	££	ffff
Description:	The conte mented. If W. If 'd' is register 'f'.	'd' is 0 the 1 the resu	e resu	ılt is s	tored in
Words:	1				
Cycles:	1				
Example	COMF	REC	31,0		
	Before In	REG1	= = =	0x13 0x13 0xE0	;

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0
Status Affected:	None
Encoding:	00 1011 dfff ffff
Description:	The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
	Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1

GOTO	Unconditional Branch			
Syntax:	[label]	GOTO	k	
Operands:	$0 \le k \le 20$	047		
Operation:	$k \rightarrow PC < PCLATH$		PC<12:1	1>
Status Affected:	None			
Encoding:	10	1kkk	kkkk	kkkk
Description:	eleven bit into PC bit PC are loa	immediate ts <10:0>. aded from	tional bran e value is l .The uppe PCLATH< instructior	oaded r bits of :4:3>.
Words:	1			
Cycles:	2			
Example	GOTO T	HERE		
	After Inst	ruction PC =	Address	THERE

INCFSZ	Increment f, Skip if 0			
Syntax:	[label] INCFSZ f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0			
Status Affected:	None			
Encoding:	00 1111 d	fff ffff		
Description:	The contents of register mented. If 'd' is 0 the rein the W register. If 'd' is placed back in register If the result is 0, the new hich is already fetcher A NOP is executed institute two cycle instruction.	esult is placed s 1 the result is 'f'. ext instruction.		
Words:	1			
Cycles:	1(2)			
Example	HERE INCFSZ GOTO	CNT, 1 LOOP		
	CONTINUE • • •			
	$ \begin{array}{lll} \text{After Instruction} \\ \text{CNT} &=& \text{CNT} + \\ \text{if CNT=} & 0, \\ \text{PC} &=& \text{addres} \\ \text{if CNT} \neq & 0, \\ \end{array} $	SS HERE -1 SS CONTINUE SS HERE +1		

INCF	Increment f			
Syntax:	[label] INCF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) + 1 \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 1010 dfff ffff			
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example	INCF CNT, 1			
	Before Instruction			
	CNT = 0xFF 7 = 0			
	Z = 0 After Instruction			
	CNT = 0x00			
	Z = 1			

IORLW	Inclusive OR Literal with W			
Syntax:	[label] IORLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W) .OR. $k \rightarrow$ (W)			
Status Affected:	Z			
Encoding:	11 1000 kkkk kkkk			
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.			
Words:	1			
Cycles:	1			
Example	IORLW 0x35			
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1			

PIC16C6X

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IORWF	Inclusive OR W with f				
$d \in [0,1]$ Operation: $(W) .OR. (f) \rightarrow (dest)$ Status Affected: Z Encoding: $00 $	Syntax:	[label]	IORWF	f,c	ł	
Status Affected: Z Encoding: 00 0100 dfff ff Description: Inclusive OR the W register with reter 'f'. If 'd' is 0 the result is placed the W register. If 'd' is 1 the result placed back in register 'f'. Words: 1 Cycles: 1 Example IORWF RESULT, 0 Before Instruction RESULT = 0x13 W = 0x91 After Instruction RESULT = 0x13 W = 0x93	Operands:					
Encoding: 00 0100 dfff fi Description: Inclusive OR the W register with reter 'f'. If 'd' is 0 the result is placed the W register. If 'd' is 1 the result placed back in register 'f'. Words: 1 Cycles: 1 Example IORWF RESULT, 0 Before Instruction RESULT = 0x13 W = 0x91 After Instruction RESULT = 0x13 W = 0x93	Operation:	(W) .OR	$(f) \rightarrow (d)$	est)		
Description: Inclusive OR the W register with reter 'f'. If 'd' is 0 the result is placed the W register. If 'd' is 1 the result placed back in register 'f'. Words: 1 Cycles: 1 Example IORWF RESULT, 0 Before Instruction RESULT = 0x13 W = 0x91 After Instruction RESULT = 0x13 W = 0x93	Status Affected:	Z				
ter 'f'. If 'd' is 0 the result is placed the W register. If 'd' is 1 the result placed back in register 'f'. Words: 1 Cycles: 1 Example IORWF RESULT, 0 Before Instruction RESULT = 0x13 W = 0x91 After Instruction RESULT = 0x13 W = 0x93	Encoding:	0.0	0100	df:	ff	fff
Cycles: 1 Example IORWF RESULT, 0 Before Instruction RESULT = 0x13 W = 0x91 After Instruction RESULT = 0x13 W = 0x93	Description:	ter 'f'. If 'd the W reg	' is 0 the r jister. If 'd'	esult is 1 t	is pla he res	ced in
Example	Words:	1				
Before Instruction RESULT = 0x13 W = 0x91 After Instruction RESULT = 0x13 W = 0x93	Cycles:	1				
RESULT = 0x13 $W = 0x91$ $After Instruction$ $RESULT = 0x13$ $W = 0x93$	Example	IORWF		RESU	JLT,	0
			RESULT W truction RESULT W	= = = =	0x91 0x13 0x93	3

MOVF	Move f			
Syntax:	[label]	MOVF	f,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$.7		
Operation:	$(f) \rightarrow (de)$	st)		
Status Affected:	Z			
Encoding:	00	1000	dfff	ffff
Description:	The conte a destinati tus of d. If ister. If d = register f if file registe affected.	on depen $d = 0$, desent 1 , the desent 1 , the 1	dant upon stination is stination is is useful t	the sta- W reg- s file to test a
Words:	1			
Cycles:	1			
Example	MOVF	FSR,	0	
			ie in FSR r	egister

MOVLW	Move Literal to W			
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 255$			
Operation:	$k\to (W)$	$k \rightarrow (W)$		
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight register. The as 0's.			
Words:	1			
Cycles:	1			
Example	MOVLW	0x5A		
	After Inst	ruction W =	0x5A	

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 lfff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	Before Instruction OPTION = 0xFF W = 0x4F
	After Instruction OPTION = 0x4F W = 0x4F

NOP	No Operation			
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected:	None			
Encoding:	0.0	0000	0xx0	0000
Description:	No operat	ion.		
Words:	1			
Cycles:	1			
Example	NOP			

RETFIE	Return from Interrupt			
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$TOS \rightarrow PC$, $1 \rightarrow GIE$			
Status Affected:	None			
Encoding:	00	0000	0000	1001
Description:	Return from and Top of the PC. Intuing Global (INTCON-	f Stack (To terrupts a Il Interrupt (7>). This	OS) is load re enabled t Enable bi	ded in by set- t, GIE
Words:	1			
Cycles:	2			
Example	RETFIE			
		rrupt PC = GIE =	TOS 1	

OPTION	Load Option Register			
Syntax:	[label] OPTION			
Operands:	None			
Operation:	$(W) \rightarrow Ol$	PTION		
Status Affected:	None			
Encoding:	0.0	0000	0110	0010
Description: Words: Cycles: Example	The contel loaded in t instruction patibility w Since OPT register, th it. 1	the OPTIC is suppor ith PIC16 IION is a	DN register rted for coo C5X produ readable/v	r. This de com- ucts. vritable
		re PIC16	rd compa CXX produ uction.	-

RETLW	Return with Literal in W			
Syntax:	[label] RETLW k			
Operands:	$0 \le k \le 255$			
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow PC \end{array}$			
Status Affected:	None			
Encoding:	11 01xx kkkk kkkk			
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example	CALL TABLE ;W contains table ;offset value ;W now has table value .			
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table			
	Before Instruction			
	W = 0x07			
	After Instruction W = value of k8			

RETURN	Return from Subroutine			
Syntax:	[label]	RETUR	N	
Operands:	None			
Operation:	$TOS \to F$	C		
Status Affected:	None			
Encoding:	00	0000	0000	1000
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example	RETURN			
	After Inte	rrupt PC =	TOS	

RRF	Rotate Right f through Carry		
Syntax:	[label] RRF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	See description below		
Status Affected:	С		
Encoding:	00 1100 dfff ffff		
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.		
	C Register f		
Words:	1		
Cycles:	1		
Example	RRF REG1,0		
	Before Instruction		
	REG1 = 1110 0110		
	C = 0		
	After Instruction REG1 = 1110 0110		
	W = 0111 0011		
	C = 0		

RLF Rotate Left f through Carry Syntax: [label] RLF f,d Operands: $0 \le f \le 127$ $d \in [0,1]$ Operation: See description below Status Affected: С Encoding: 00 1101 dfff ffff Description: The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'. Register f Words: Cycles: Example RLFREG1,0 Before Instruction REG1 1110 0110 С 0 After Instruction REG1 1110 0110 W 1100 1100 С

Syntax:	[label] SLEEP		
Operands:	None		
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO,}} \\ \text{0} \rightarrow \overline{\text{PD}} \end{array}$		
Status Affected:	TO, PD		
Encoding:	00 0000 0110 0011		
Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 13.8 for more details.		
Words:	1		
o .	1		
Cycles:			

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[label] SUBLW k	Syntax:	[label] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	$(f) - (W) \rightarrow (dest)$
Affected:		Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk	Encoding:	00 0010 dfff ffff
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is
Words:	1		stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 C = ?		Before Instruction
	After Instruction		REG1 = 3
	W = 1		W = 2 C = ?
	C = 1; result is positive		After Instruction
Example 2:	Before Instruction		REG1 = 1
	W = 2 C = ?		W = 2
	C = ? After Instruction	F	C = 1; result is positive
	W = 0	Example 2:	Before Instruction
	C = 1; result is zero		REG1 = 2 W = 2
Example 3:	Before Instruction		C = ?
	W = 3		After Instruction
	C = ?		REG1 = 0 W = 2
	After Instruction W = 0xFF		C = 1; result is zero
	C = 0; result is nega-	Example 3:	Before Instruction
	tive		REG1 = 1
			W = 2 C = ?
			After Instruction
			REG1 = 0xFF
			W = 2 C = 0; result is negative
			= 0, rosuit is negative

PIC16C6X

SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$				
Status Affected:	None				
Encoding:	00	1110	dff	f	ffff
Description:	The upper ter 'f' are e result is pl the result	exchanged aced in W	. If 'd' regist	is 0 t er. If	he 'd' is 1
Words:	1				
Cycles:	1				
Example	SWAPF	REG,	0		
	Before In	struction			
		REG1	=	0xA	5
	After Inst	ruction			
		REG1 W	= =	0xA	-

XORLW	Exclusive OR Literal with W		
Syntax:	[label] XORLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .XOR. $k \rightarrow (W)$		
Status Affected:	Z		
Encoding:	11 1010 kkkk kkkk		
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example:	XORLW 0xAF		
	Before Instruction		
	W = 0xB5		
	After Instruction		
	W = 0x1A		

TRIS	Load TRIS Register			
Syntax:	[label]	TRIS	f	
Operands:	$5 \le f \le 7$			
Operation:	$(W) \rightarrow TF$	RIS regis	ter f;	
Status Affected:	None			
Encoding:	0.0	0000	0110	Offf
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.			
Words:	1			
Cycles:	1			
Example				
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.			

XORWF	Exclusive OR W with f			
Syntax:	[label] XORWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(W) .XOR. (f) \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 0110 dfff ffff			
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	XORWF REG 1			
	Before Instruction			
	$ \begin{array}{rcl} REG & = & 0xAF \\ W & = & 0xB5 \end{array} $			
	After Instruction			
	$ \begin{array}{rcl} REG & = & 0x1A \\ W & = & 0xB5 \end{array} $			

15.0 **DEVELOPMENT SUPPORT**

15.1 **Development Tools**

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER® Real-Time In-Circuit Emulator
- PRO MATE™ Universal Programmer
- PICSTART[®] Low-Cost Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- MPASM Assembler
- · MPSIM Software Simulator
- C Compiler (MP-C)
- · Fuzzy logic development system (fuzzyTECH®-MP)

15.2 **PICMASTER: High Performance Universal In-Circuit Emulator with** MPLAB IDE

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC16C5X. PIC16CXX and PIC17CXX families. PICMASTER is supplied with the MPLAB™ Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment. A PICMASTER System configuration is shown in Figure 15-1.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new PIC16C5X, PIC16CXX and PIC17CXX microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and better) machine platform and Microsoft Windows™ 3.x environment were chosen to best make these features available to you, the end user.

The PICMASTER Universal Emulator System consists primarily of four major components:

- · Host-Interface Card
- Emulator Control Pod
- Target-Specific Emulator Probe
- · PC-Host Emulation Control Software

The Windows operating system allows the developer to take full advantage of the many powerful features and functions of the PICMASTER system.

PICMASTER emulation can operate in one window, while a text editor is running in a second window.

PC-Host Emulation Control software takes full advantage of Dynamic Data Exchange (DDE), a feature of Windows. DDE allows data to be dynamically transferred between two or more Windows programs. With this feature, data collected with PICMASTER can be automatically transferred to a spreadsheet or database program for further analysis.

Under Windows, as many as four PICMASTER emulators can be run simultaneously from the same PC making development of multi-microcontroller systems possible (e.g., a system containing a PIC16CXX microcontroller and a PIC17CXX microcontroller).

The PICMASTER probes specifications are shown in Table 15-1.

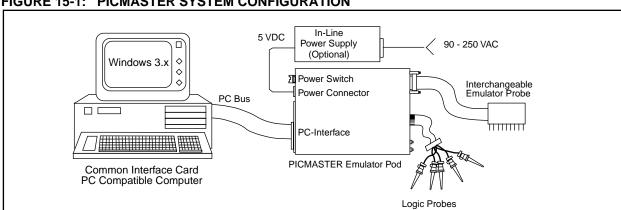


FIGURE 15-1: PICMASTER SYSTEM CONFIGURATION

TABLE 15-1: PICMASTER PROBE SPECIFICATION

	PICMASTER	PRO	OBE
Devices	PROBE	Maximum Frequency	Operating Voltage
PIC16C54	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16C54A	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR54	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR54A	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V
PIC16CR54B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V
PIC16C55	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR55	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V
PIC16C56	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR56	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V
PIC16C57	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR57A	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR57B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V
PIC16C58A	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR58A	PROBE-16D	20 MHz	4.5V - 5.5V
PIC16CR58B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V
PIC16C61	PROBE-16G	10 MHz	4.5V - 5.5V
PIC16C62	PROBE-16E	10 MHz	4.5V - 5.5V
PIC16C62A	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16CR62	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C63	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C64	PROBE-16E	10 MHz	4.5V - 5.5V
PIC16C64A	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V

TABLE 15-1: PICMASTER PROBE SPECIFICATION CONT.)

	DICMACTED	PRO	PROBE	
Devices	PICMASTER PROBE	Maximum Frequency	Operating Voltage	
PIC16CR64	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V	
PIC16C65	PROBE-16F	10 MHz	4.5V - 5.5V	
PIC16C65A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V	
PIC16C620	PROBE-16H	10 MHz	4.5V - 5.5V	
PIC16C621	PROBE-16H	10 MHz	4.5V - 5.5V	
PIC16C622	PROBE-16H	10 MHz	4.5V - 5.5V	
PIC16C70	PROBE-16B ⁽¹⁾	10 MHz	4.5V - 5.5V	
PIC16C71	PROBE-16B	10 MHz	4.5V - 5.5V	
PIC16C71A	PROBE-16B ⁽¹⁾	10 MHz	4.5V - 5.5V	
PIC16C72	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V	
PIC16C73	PROBE-16F	10 MHz	4.5V - 5.5V	
PIC16C73A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V	
PIC16C74	PROBE-16F	10 MHz	4.5V - 5.5V	
PIC16C74A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V	
PIC16C83	PROBE-16C	10 MHz	4.5V - 5.5V	
PIC16C84	PROBE-16C	10 MHz	4.5V - 5.5V	
PIC17C42	PROBE-17B	20 MHz	4.5V - 5.5V	
PIC17C43	PROBE-17B	20 MHz	4.5V - 5.5V	
PIC17C44	PROBE-17B	20 MHz	4.5V - 5.5V	

Note 1: This PICMASTER probe can be used to functionally emulate the device listed in the previous column. Contact your Microchip sales office for details.

15.3 PRO MATE: Universal Programmer

The PRO MATE Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE can read, verify or program PIC16C5X, PIC16CXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode

In PC-hosted mode, the PRO MATE connects to the PC via one of the COM (RS-232) ports. PC based user-interface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. Full screen display and editing of data, easy selection of bit configuration and part type, easy selection of VDD min, VDD max and VPP levels, load and store to and from disk files (Intel[®] hex format) are some of the features of the software. Essential commands such as read, verify, program and blank check can be issued from the screen. Additionally, serial programming support is possible where each part is programmed with a different serial number, sequential or random.

The PRO MATE has a modular "programming socket module". Different socket modules are required for different processor types and/or package types.

PRO MATE supports all PIC16C5X, PIC16CXX and PIC17CXX processors.

15.4 <u>PICSTART Low-Cost Development</u> <u>System</u>

The PICSTART programmer is an easy-to-use, very low-cost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. PC-based user interface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. PICSTART is not recommended for production programming.

15.5 <u>PICDEM-1 Low-Cost PIC16/17</u> Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

15.6 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

15.7 <u>MPLAB Integrated Development</u> Environment Software.

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- · A full featured editor
- · Three operating modes
 - editor
 - emulator
 - simulator
- · A project manager
- · Customizable tool bar and key mapping
- · A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or "C")
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- · Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

15.8 Assembler (MPASM)

The MPASM Cross Assembler is a PC-hosted symbolic assembler. It supports all microcontroller series including the PIC16C5X, PIC16CXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- · Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

- Data Directives are those that control the allocation of memory and provide a way to refer to data items symbolically, i.e., by meaningful names.
- Control Directives control the MPASM listing display. They allow the specification of titles and subtitles, page ejects and other listing control. This eases the readability of the printed output file.
- Conditional Directives permit sections of conditionally assembled code. This is most useful where additional functionality may wished to be added depending on the product (less functionality for the low end product, then for the high end product). Also this is very helpful in the debugging of a program.
- Macro Directives control the execution and data allocation within macro body definitions. This makes very simple the re-use of functions in a program as well as between programs.

15.9 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode. MPLAB-SIM fully supports symbolic debugging using MP-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

15.10 C Compiler (MP-C)

The MP-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the PICMASTER Universal Emulator memory display (PICMASTER emulator software versions 1.13 and later).

The MP-C Code Development System is supplied directly by Byte Craft Limited of Waterloo, Ontario, Canada. If you have any questions, please contact your regional Microchip FAE or Microchip technical support personnel at (602) 786-7627.

15.11 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

fuzzyTECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, fuzzyTECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB™ demonstration board for hands-on experience with fuzzy logic systems implementation.

15.12 <u>Development Systems</u>

For convenience, the development tools are packaged into comprehensive systems as listed in Table 15-2.

TABLE 15-2: DEVELOPMENT SYSTEM PACKAGES

Item	Name	System Description
1.	PICMASTER System	PICMASTER In-Circuit Emulator, PRO MATE Programmer, Assembler, Software Simulator, Samples and your choice of Target Probe.
2.	PICSTART System	PICSTART Low-Cost Prototype Programmer, Assembler, Software Simulator and Samples.
3.	PRO MATE System	PRO MATE Universal Programmer, full featured stand-alone or PC-hosted programmer, Assembler, Simulator

PIC16C6X

NOTES:

16.0 ELECTRICAL CHARACTERISTICS FOR PIC16C61

Absolute Maximum Ratings †

55 to +125°C
65°C to +150°C
0.3V to (VDD + 0.3V)
0 to +7.5V
0 to +14V
800 mW
150 mA
100 mA
±20 mA
±20 mA
25 mA
20 mA
80 mA
50 mA
150 mA
100 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 16-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C61-04	PIC16C61-20	PIC16LC61-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 µA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

16.1 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Automotive) PIC16C61-20 (Commercial, Industrial, Automotive)

		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive,						
DC CHARA	ACTERISTICS	-40°C ≤ TA ≤ +85°C for industrial and						
					0°0) ≤	≤ TA ≤ +70°C for commercial	
Param No.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions	
D001	Supply Voltage	VDD	4.0	-	6.0	V	XT, RC and LP osc configuration	
D001A			4.5	-	5.5	V	HS osc configuration	
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode	
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	FOSC = 4 MHz, VDD = 5.5V (Note 4)	
D013			-	13.5	30	mA	HS osc configuration (PIC16C61-20) Fosc = 20 MHz, VDD = 5.5V	
D020	Power-down Current	IPD	-	7	28	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C	
D021	(Note 3)		-	1.0	14	μA	VDD = 4.0V, WDT disabled, -0°C to +70°C	
D021A			-	1.0	16	μA	VDD = 4.0V, WDT disabled, -40°C to +85°C	
D021B			-	1.0	20	μΑ	VDD = 4.0V, WDT disabled, -40°C to +125°C	

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

16.2 DC Characteristics: PIC16LC61-04 (Commercial, Industrial, Automotive)

	Standard Operating Conditions (unless otherwise stated)								
חר כאי	ARACTERISTICS	Operating temperature -40° C $\leq TA \leq +125^{\circ}$ C for automotive,							
DC CITA	RIACTERISTICS	-40°C ≤ Ta ≤ +85°C for industrial and							
0°C ≤ TA ≤ +70°C for commercial									
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions		
No.									
D001	Supply Voltage	VDD	3.0	-	6.0	V	XT, RC, and LP osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	15	32	μΑ	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc configuration		
D020	Power-down Current	IPD	-	5	20	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3)		-	0.6	9	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.6	12	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C		
D021B			-	0.6	16	μΑ	VDD = 3.0V, WDT disabled, -40°C to +125°C		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

DC CHARACTERISTICS

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

16.3 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Automotive)

PIC16C61-20 (Commercial, Industrial, Automotive) PIC16LC61-04 (Commercial, Industrial, Automotive)

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive,

 -40° C \leq TA \leq +85 $^{\circ}$ C for industrial and

 $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercial

Operating voltage VDD range as described in DC spec Section 16.1 and Section 16.2.

Param	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
No.							
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.8V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2VD D	V	
D032	MCLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2VD D	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VD D	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		0.36VDD	-	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.45VDD	-	Vdd		For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.85VDD	-	Vdd	V	For entire VDD range
D042	MCLR, RA4/T0CKI		0.85VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	† 400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ Vpin ≤ Vdd
D063	OSC1		-	-	±5	μΑ	Vss ≤ Vpin ≤ Vdd, XT, HS and LP osc configuration
	Output Low Voltage						
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D080A			-	-	0.6	V	IOL = 7.0 mA , VDD = 4.5V , -40°C to $+125^{\circ}\text{C}$
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for automotive, $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

Operating voltage VDD range as described in DC spec Section 16.1 and

	Section 16.2.						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	$IOH = -3.0 \text{ mA}, VDD = 4.5V, -40^{\circ}\text{C}$ to +85°C
D090A			VDD-0.7	-	-	V	$IOH = -2.5 \text{ mA}, VDD = 4.5V, -40^{\circ}C$ to +125 $^{\circ}C$
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	$IOH = -1.3 \text{ mA}, VDD = 4.5V, -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$
D092A			VDD-0.7	-	-	V	$IOH = -1.0 \text{ mA}, VDD = 4.5V, -40^{\circ}C$ to +125 $^{\circ}C$
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc ₂			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

DC CHARACTERISTICS

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

16.4 <u>Timing Parameter Symbology</u>

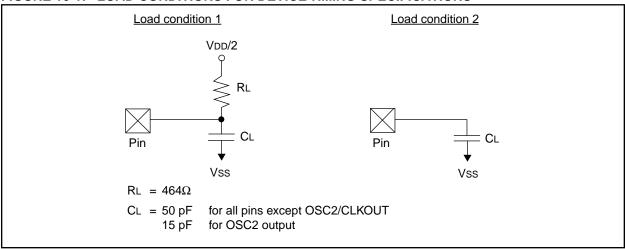
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3. Tcc:st	(I ² C specifications only)
2. TppS	4. Ts	(I ² C specifications only)

Т				
F	Frequency	T	Time	

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S	-		
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 16-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

16.5 <u>Timing Diagrams and Specifications</u>

FIGURE 16-2: EXTERNAL CLOCK TIMING

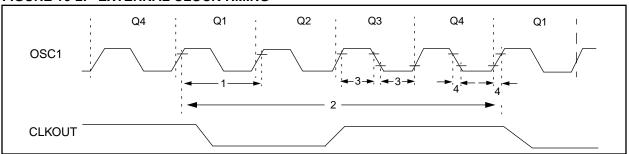


TABLE 16-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C61-04,
			DC	_	20	MHz	HS osc mode (PIC16C61-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (PIC16C61-04,
			1	_	20	MHz	HS osc mode (PIC16C61-20)
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C61-04,
			50	_	_	ns	HS osc mode (PIC16C61-20)
			5	_	-	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (PIC16C61-04,
			50	_	1,000	ns	HS osc mode (PIC16C61-20)
			5	_		μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	1.0	4/Fosc	DC	μs	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
	TosH	Low Time	2.5	_	_	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25		_	ns	XT oscillator
	TosF	Fall Time	50	_	_	ns	LP oscillator
			15	_	_	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 16-3: CLKOUT AND I/O TIMING

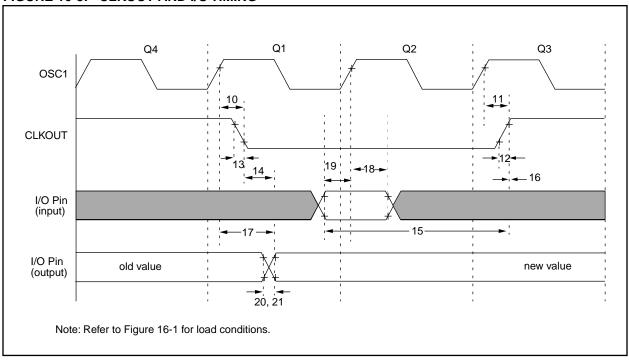


TABLE 16-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out val	id	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKO	JT ↑	0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT	0	_	_	ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port	out valid	_	_	80 - 100	ns	
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port (I/O in hold time)	OSC1 [†] (Q2 cycle) to Port input invalid (I/O in hold time)			_	ns	
19*	TioV2osH	Port input valid to OSC1 [†] time)	(I/O in setup	TBD	_	_	ns	
20*	TioR	Port output rise time	PIC16C61	_	10	25	ns	
			PIC16LC61	_	_	60	ns	
21*	TioF	Port output fall time PIC16C61		_	10	25	ns	
		PIC16LC61		_	_	60	ns	
22††*	Tinp	RB0/INT pin high or low ti	20	_		ns		
23††*	Trbp	RB7:RB4 change int high	or low time	20	_	_	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

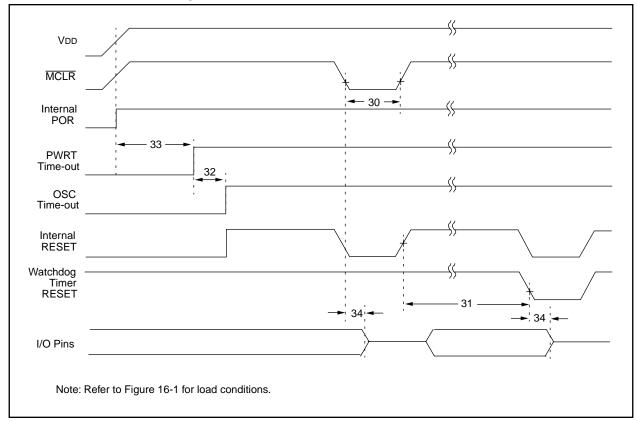
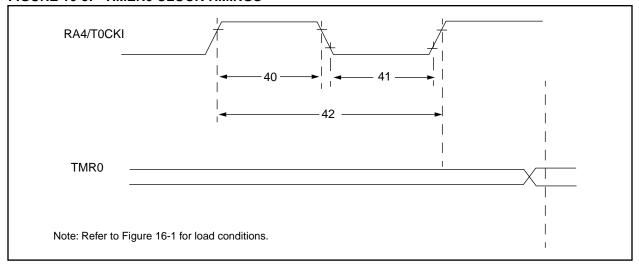


TABLE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	200	_		ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_		Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34*	Tıoz	I/O Hi-impedance from MCLR Low	_	_	100	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 16-5: TIMERO CLOCK TIMINGS

TABLE 16-5: TIMERO CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	10	_	_	ns	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	10	_	_	ns	
42*	Tt0P	TOCKI Period	•	Greater of: 20 μs or TCY + 40 N	_	_	ns	N = prescale value (2, 4,, 256)

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C61

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 17-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

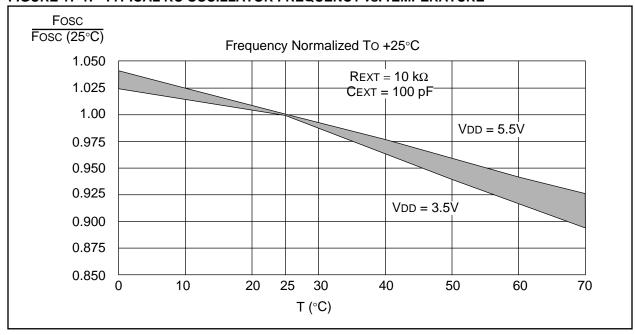


TABLE 17-1: RC OSCILLATOR FREQUENCIES

Cext	Rext		rage 5V, 25°C
20 pF	4.7k	4.52 MHz	± 17.35%
	10k	2.47 MHz	± 10.10%
	100k	290.86 kHz	± 11.90%
100 pF	3.3k	1.92 MHz	± 9.43%
	4.7k	1.48 MHz	± 9.83%
	10k	788.77 kHz	± 10.92%
	100k	88.11 kHz	± 16.03%
300 pF	3.3k	726.89 kHz	± 10.97%
	4.7k	573.95 kHz	± 10.14%
	10k	307.31 kHz	± 10.43%
	100k	33.82 kHz	± 11.24%

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 17-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

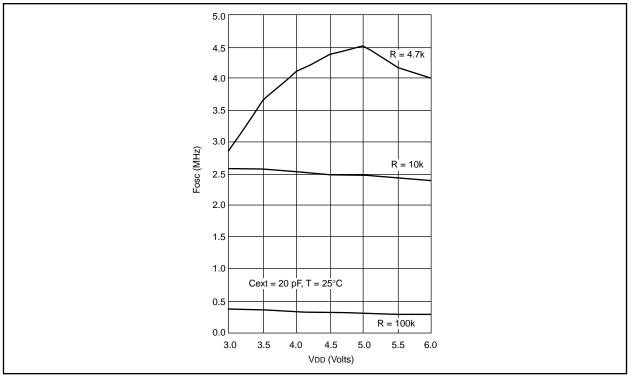


FIGURE 17-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

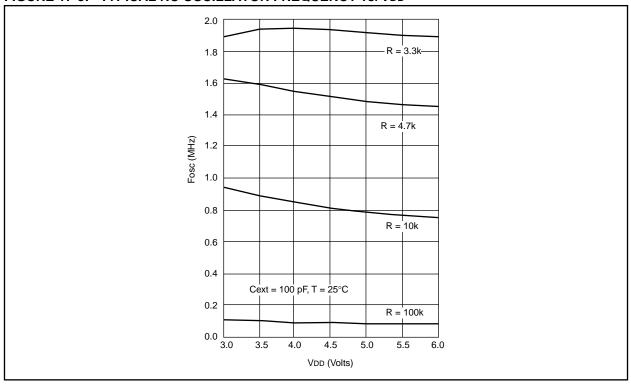


FIGURE 17-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

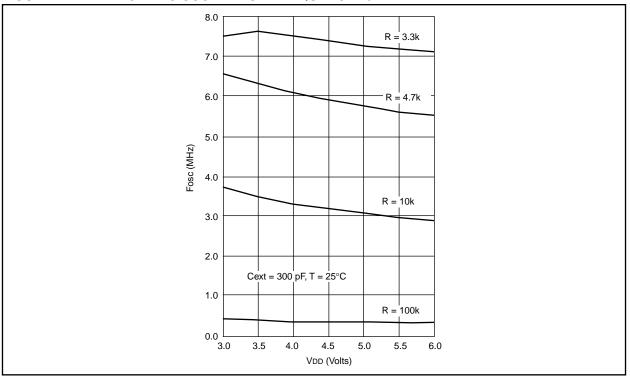


FIGURE 17-5: TYPICAL IPD VS. VDD WATCHDOG TIMER DISABLED 25°C

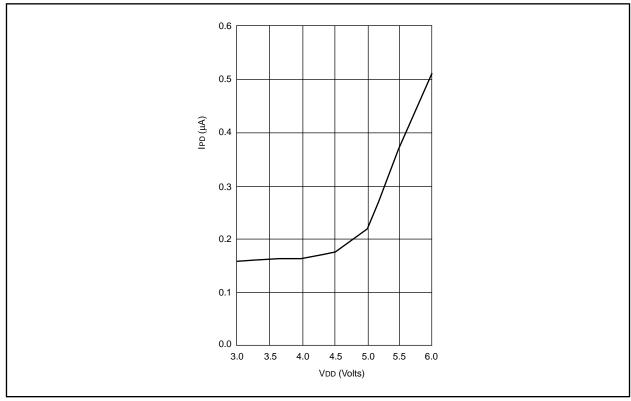


FIGURE 17-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

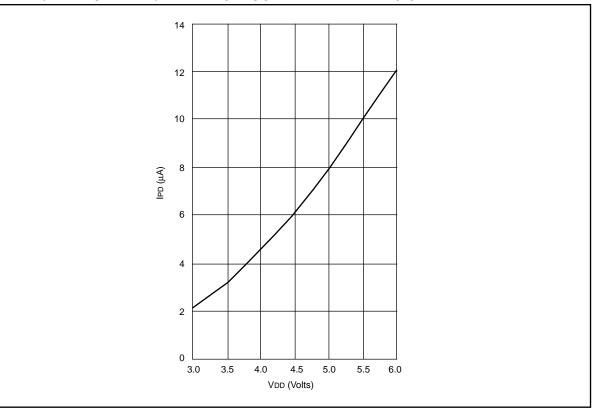


FIGURE 17-7: MAXIMUM IPD VS. VDD WATCHDOG DISABLED

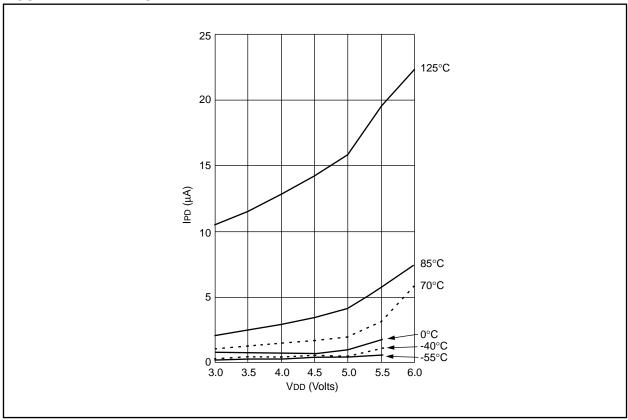
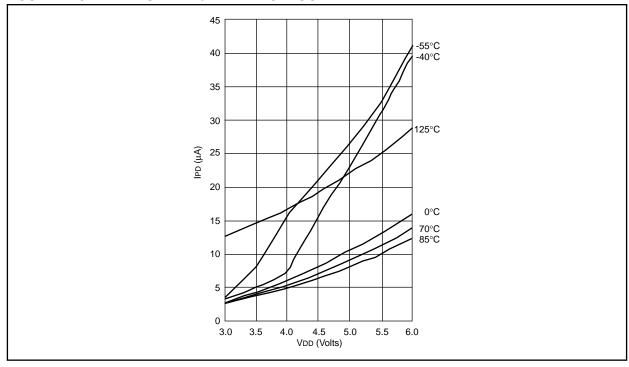
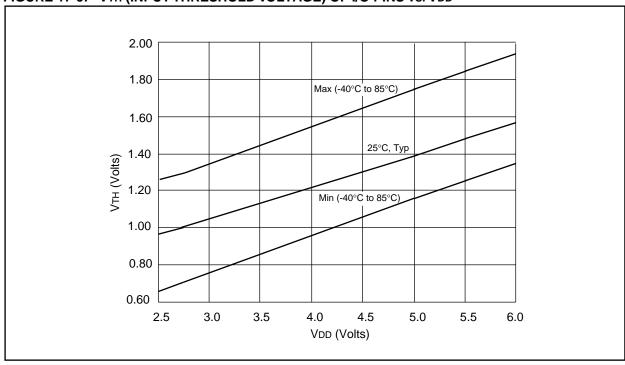




FIGURE 17-8: MAXIMUM IPD VS. VDD WATCHDOG ENABLED*

*IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.

FIGURE 17-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD

PIC16C6X

FIGURE 17-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD

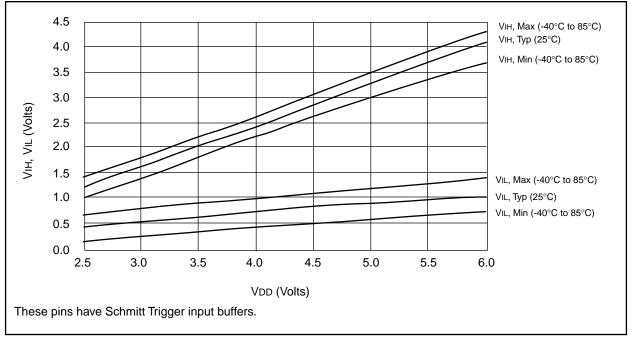


FIGURE 17-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) vs. Vdd

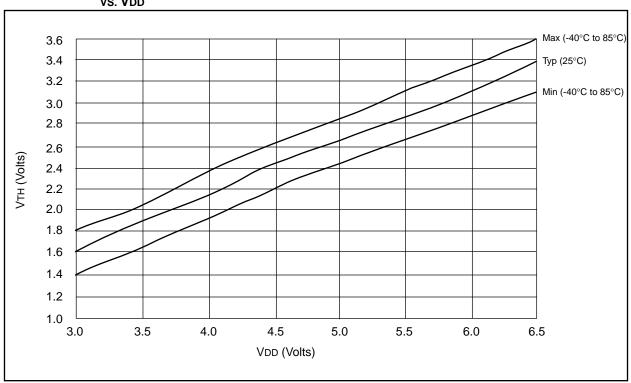


FIGURE 17-12: TYPICAL IDD VS. FREQUENCY (EXTERNAL CLOCK, 25°C)

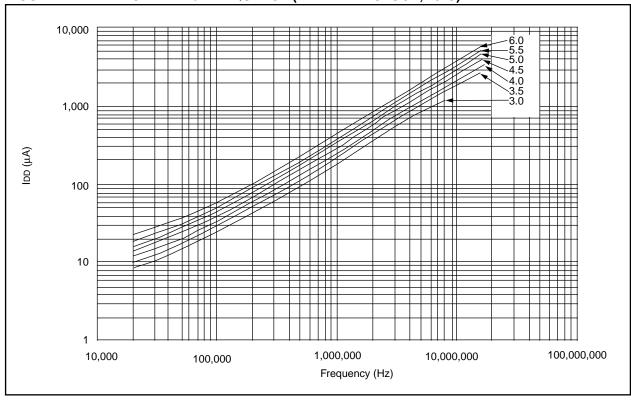


FIGURE 17-13: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, -40° TO +85°C)

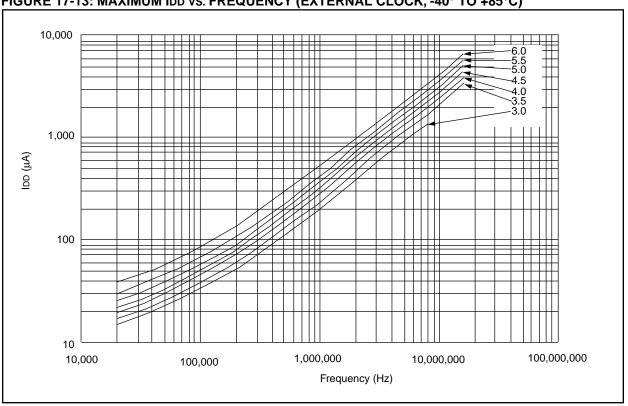


FIGURE 17-14: MAXIMUM IDD VS. FREQUENCY (EXTERNAL CLOCK, -55° TO +125°C)

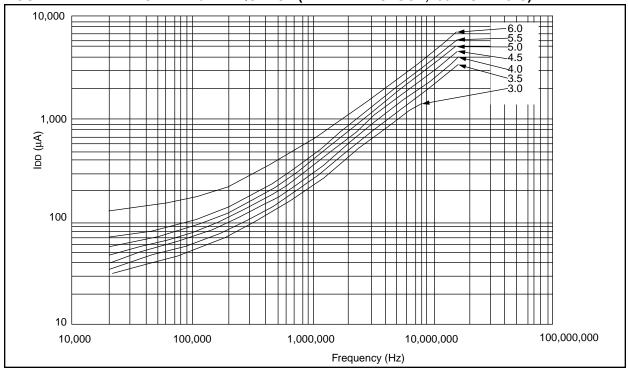


FIGURE 17-15: WDT TIMER TIME-OUT PERIOD VS. VDD

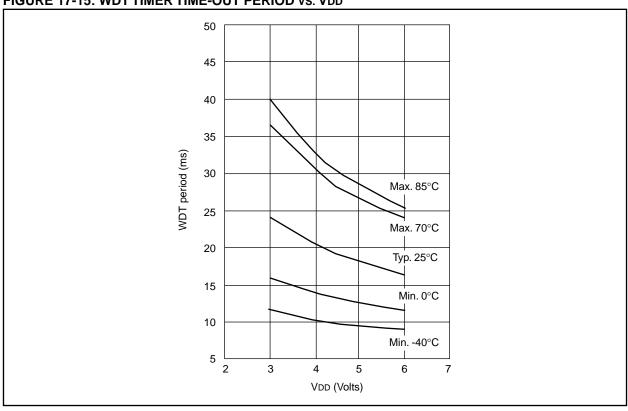


FIGURE 17-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

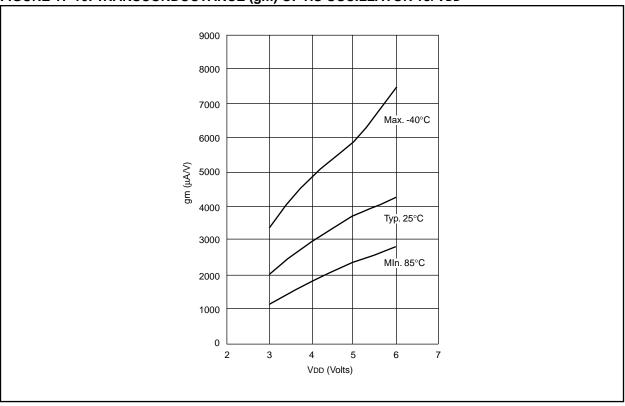
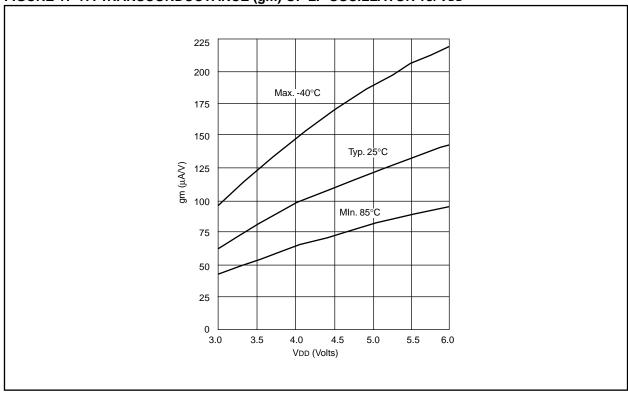



FIGURE 17-17: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR VS. VDD

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 17-18: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

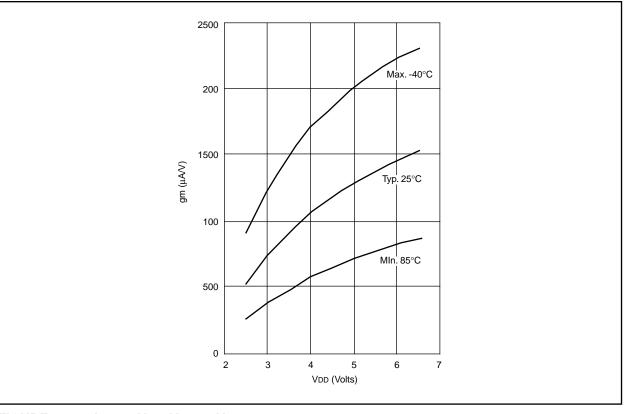
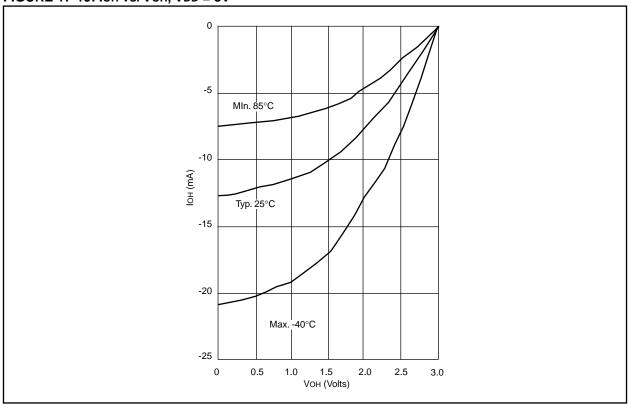



FIGURE 17-19: IOH VS. VOH, VDD = 3V

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 17-20: IOH VS. VOH, VDD = 5V

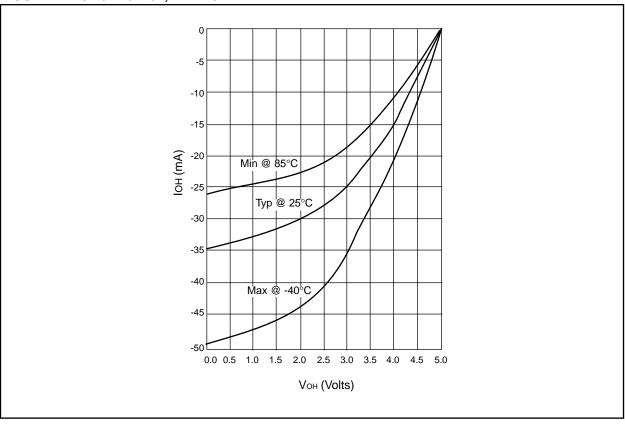


FIGURE 17-21: IoL vs. Vol, VDD = 3V

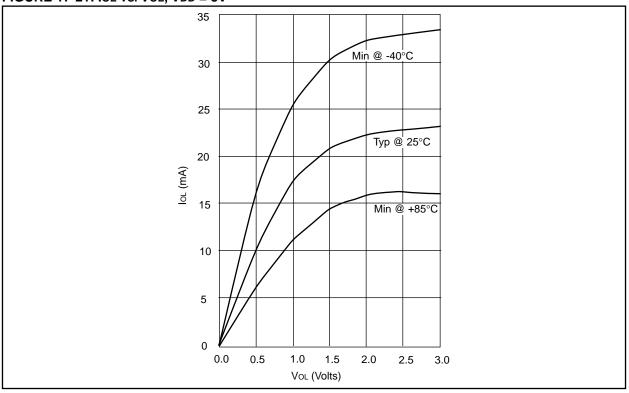


FIGURE 17-22: IOL VS. VOL, VDD = 5V

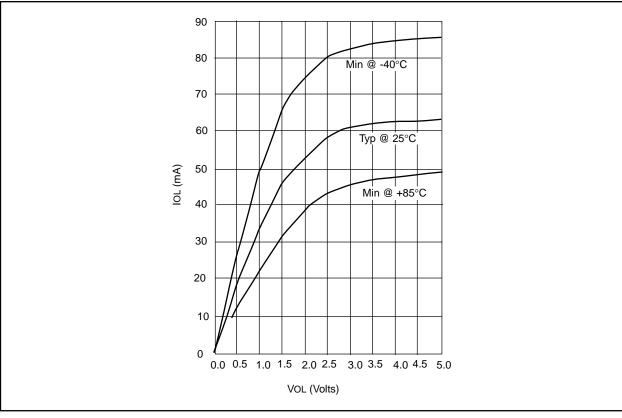


TABLE 17-2: INPUT CAPACITANCE*

Pin Name	Typical Capa	acitance (pF)
	18L PDIP	18L SOIC
RA port	5.0	4.3
RB port	5.0	4.3
MCLR	17.0	17.0
OSC1/CLKIN	4.0	3.5
OSC2/CLKOUT	4.3	3.5
TOCKI	3.2	2.8

^{*}All capacitance values are typical at 25° C. A part to part variation of $\pm 25\%$ (three standard deviations) should be taken into account.

ELECTRICAL CHARACTERISTICS FOR PIC16C62/64

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	
Input clamp current, lik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loκ (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sunk by PORTC and PORTD* (combined)	200 mA
Maximum current sourced by PORTC and PORTD* (combined)	200 mA
* PORTD and PORTE not available on the PIC16C62.	

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 18-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62-04 PIC16C64-04	PIC16C62-10 PIC16C64-10	PIC16C62-20 PIC16C64-20	PIC16LC62-04 PIC16LC64-04	JW Devices
RC	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.8 mA max. at 5.5V	, ,	IDD: 2.0 mA typ. at 5.5V	IDD: 2.0 mA typ. at 3.0V	IDD: 3.8 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 0.9 μA typ. at 3V	IPD: 21 μA max. at 4V
	Freq:4 MHz max.	Freq:4 MHz max.	Freq:4 MHz max.	Freq: 4 MHz max.	Freq:4 MHz max.
XT	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.8 mA max. at 5.5V	IDD: 2.0 mA typ. at 5.5V	IDD: 2.0 mA typ. at 5.5V	IDD: 2.0 mA typ. at 3.0V	IDD: 3.8 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 0.9 μA typ. at 3.0V	IPD: 21 μA max. at 4V
	Freq:4 MHz max.	Freq:4 MHz max.	Freq:4 MHz max.	Freq: 4 MHz max.	Freq:4 MHz max.
HS	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V		VDD: 4.5V to 5.5V
	IDD: 13.5 mA typ. at 5.5V	IDD: 30 mA max. at 5.5V	IDD: 30 mA max. at 5.5V	Do not use in HS mode	IDD: 30 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V		IPD: 1.5 μA typ. at 4.5V
	Freq:4 MHz max.	Freq: 20 MHz max.	Freq: 20 MHz max.		Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V			VDD: 3.0V to 6.0V	VDD: 3.0V to 6.0V
	IDD: 52.5 μA typ.			IDD: 48 μA max.	IDD: 48 μA max.
	at 32 kHz, 4.0V	Do not use in LP mode	Do not use in LP mode	at 32 kHz, 3.0V	at 32 kHz, 3.0V
	IPD: 0.9 μA typ. at 4.0V			IPD: 13.5 μA max. at 3.0V	IPD: 13.5 μA max. at 3.0V
	Freq:200 kHz max.			Freq:200 kHz max.	Freq:200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (Vol x IOL)

PIC16C6X

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

18.1 DC Characteristics: PIC16C62-04, PIC16C64-04 (Commercial, Industrial)

PIC16C62-10, PIC16C64-10 (Commercial, Industrial) PIC16C62-20, PIC16C64-20 (Commercial, Industrial)

DC CHAR		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5.0	mA	XT, RC, osc configuration (PIC16C62/64-04) FOSC = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30	mA	HS osc configuration (PIC16C62/64-20) Fosc = 20 MHz, VDD = 5.5V		
D020 D021 D021A	Power-down Current (Note 3, 5)	IPD	- - -	10.5 1.5 1.5	42 21 24	μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -0°C to +70°C VDD = 4.0V, WDT disabled, -40°C to +85°C		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately $20\,\mu\text{A}$ to the specification. This value is from characterization and is for design guidance only. This is not tested.

18.2 DC Characteristics: PIC16LC62-04, PIC16LC64-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)								
DC CHA	RACTERISTICS	, , ,					Ta ≤ +85°C for industrial and Ta ≤ +70°C for commercial		
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	VDD	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	0.9	13.5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	18	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

18.3 DC Characteristics: PIC16C62-04, PIC16C64-04 (Commercial, Industrial)

PIC16C62-10, PIC16C64-10 (Commercial, Industrial) PIC16C62-20, PIC16C64-20 (Commercial, Industrial) PIC16LC62-04, PIC16LC64-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and

 0° C $\leq TA \leq +70^{\circ}$ C for commercial

Operating voltage VDD range as described in DC spec Section 18.1

and Section 18.2

	Characteristic put Low Voltage	Sym	Min	Тур	Max	Units	Conditions
	put Low Voltage			†			
-	O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
	CLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
	SC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	put High Voltage						
I/C	O ports	VIH					
D040	with TTL buffer		2.0	-	Vdd	V	4.5V ≤ VDD ≤ 5.5V
D040A			0.8VDD	-	Vdd	V	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd		For entire VDD range
D042 M0	CLR, RA4/T0CKI, RC7:RC4,		0.8Vdd	-	Vdd	V	_
RE	D7:RD4, RB0/INT						
D042A RE	E2:RE0, OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1
D043 OS	SC1 (in RC mode)		0.9VDD	-	Vdd	V	
1	ORTB weak pull-up current	I PURB	50	200	†400	μΑ	VDD = 5V, VPIN = VSS
	put Leakage Current (Notes 2, 3)						
D060 I/C	O ports	lıL	-	-	±1	μΑ	Vss ≤ Vpin ≤ Vdd, Pin at hi-
<u> </u>							impedance
	CLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ Vpin ≤ Vdd
D063 OS	SC1		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS and
							LP osc configuration
	utput Low Voltage	.,				.,	
D080 I/C	O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
D000	000/01 KOLIT (DO				0.0		-40°C to +85°C
D083 OS	SC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
0.	utput High Voltage						-40 0 10 700 0
	D ports (Note 3)	Vон	VDD-0.7	_	_	V	IOH = -3.0 mA, VDD = 4.5V,
1080 1/0	S ports (Note 3)	VUI	v טט-ט.7	-	-	V	-40°C to +85°C
D092 OS	SC2/CLKOUT (RC osc config)		VDD-0.7	_	_	V	IOH = -1.3 mA, VDD = 4.5V,
	(1.0 000 00.mg)					٧	-40°C to +85°C

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

Standard Operating Conditions (unless otherwise stated) -40°C ≤ TA ≤ +85°C for industrial and Operating temperature 0°C \leq TA \leq +70°C for commercial DC CHARACTERISTICS Operating voltage VDD range as described in DC spec Section 18.1 and Section 18.2 Param Characteristic Min Max Units Conditions Sym Typ No. t Capacitive Loading Specs on Output Pins D100 OSC2 pin Cosc₂ 15 In XT, HS and LP modes when external clock is used to drive OSC1. D101 All I/O pins and OSC2 (in RC mode) Cio 50 pF D102 рF Cb SCL, SDA in I²C mode 400

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

18.4 <u>Timing Parameter Symbology</u>

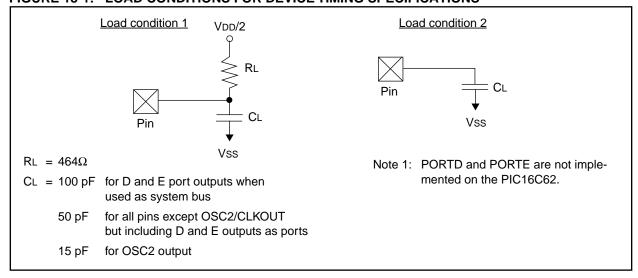
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3. Tcc:st	(I ² C specifications only)
2. TppS	4. Ts	(I ² C specifications only)

Т				
F	Frequency	T	Time	

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 18-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

18.5 <u>Timing Diagrams and Specifications</u>

FIGURE 18-2: EXTERNAL CLOCK TIMING

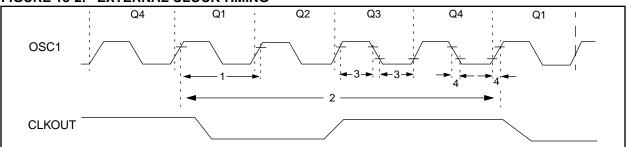


TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C62/64-04,
			DC	_	20	MHz	HS osc mode (PIC16C62/64-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C62/64-04,
			4	_	10	MHz	HS osc mode (PIC16C62/64-10)
			4	_	20	MHz	HS osc mode (PIC16C62/64-20)
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	-	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C62/64-04,
			100	_	_	ns	HS osc mode (PIC16C62/64-10)
			50	_	_	ns	HS osc mode (PIC16C62/64-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C62/64-04,
			100	_	250	ns	HS osc mode (PIC16C62/64-10)
			50	_	1,000	ns	HS osc mode (PIC16C62/64-20)
			5	_	_	μs	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_		ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			10			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	_	50	ns	LP oscillator
					15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 18-3: CLKOUT AND I/O TIMING

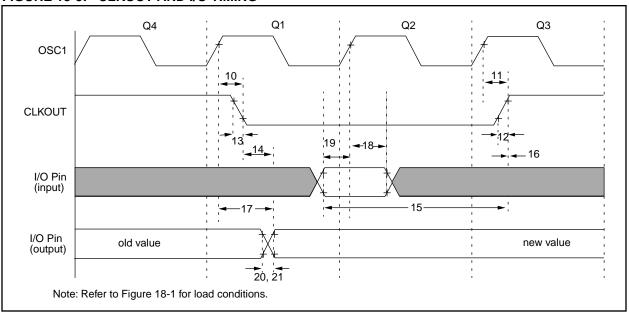


TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ck H	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	\uparrow	0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port ou	t valid	_	_	80 - 100	ns	
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port inphold time)	out invalid (I/O in	TBD		_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/C	O in setup time)	TBD	_	_	ns	
20*	TioR	Port output rise time	PIC16C62/64	_	10	25	ns	
			PIC16LC62/64	_	_	60	ns	
21*	TioF	Port output fall time	PIC16C62/64	_	10	25	ns	
			PIC16LC62/64	_	_	60	ns	
22††*	Tinp	INT pin high or low time		20	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high o	r low time	20	_	_	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

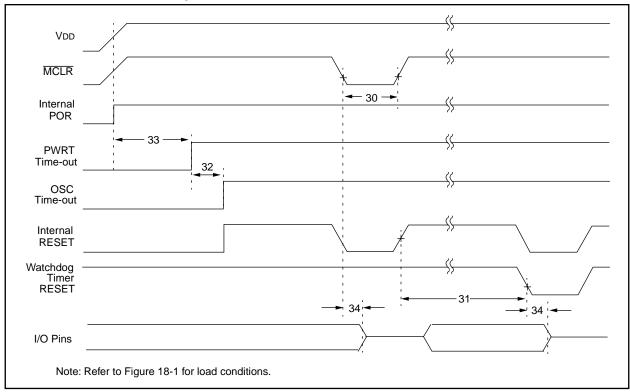


TABLE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	_	_	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34*	Tıoz	I/O Hi-impedance from MCLR Low	_	_	100	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-5: TIMERO AND TIMER1 CLOCK TIMINGS

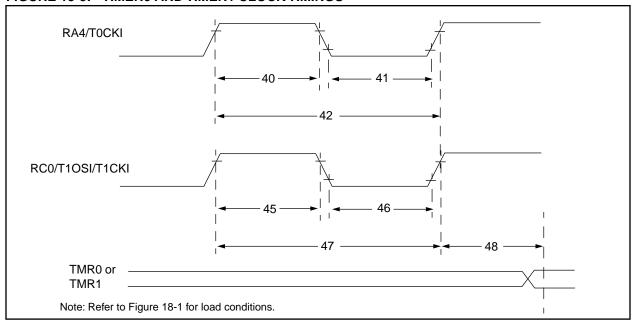


TABLE 18-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic	tic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler		10	_	_	ns	
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler		10	_	_	ns	
42*	Tt0P	T0CKI Period			Greater of: 20 μs or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous,	No Prescaler	0.5Tcy + 20	_	_	ns	
			Synchronous,	PIC16C62/64	10	_	_	ns	
			With Prescaler	PIC16LC62/64	20	_	_	ns	
			Asynchronous		2Tcy	_	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous,	No Prescaler	0.5Tcy + 20	_	_	ns	
			Oynonious,	PIC16C62/64	10	_	_	ns	
			With Prescaler	PIC16LC62/64	20	_	_	ns	
			Asynchronous	•	2Tcy	_	_	ns	
47*	Tt1P	T1CKI input Synchronous Asynchronous	Synchronous		Greater of: 20 μs or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
				Greater of: 20 μs or 4Tcy	-	_	ns		
	Ft1		nput frequency range I by setting bit T10SCEN)		DC	_	200	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2Tosc	_	7Tosc	_	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1)

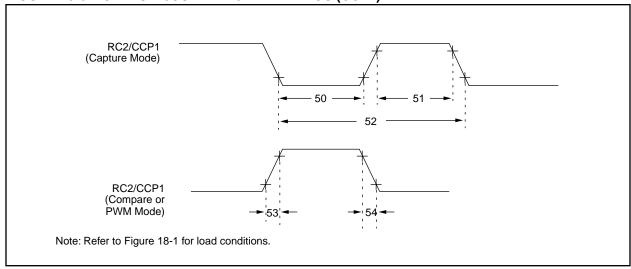


TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1	No Prescaler		0.5Tcy + 20	_		ns	
		input low time	With Prescaler	PIC16C62/64	10	_		ns	
				PIC16LC62/64	20	_		ns	
51*	TccH	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time	With Prescaler	PIC16C62/64	10	_		ns	
				PIC16LC62/64	20	_		ns	
52*	TccP	CCP1 input period		3Tcy + 40 N	_	_	ns	N = prescale value (1,4 or 16)	
53	TccR	CCP1 output rise ti	me	_	10	25	ns		
54	TccF	CCP1 output fall tir	ne		_	10	25	ns	

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-7: PARALLEL SLAVE PORT TIMING FOR THE PIC16C64 ONLY)

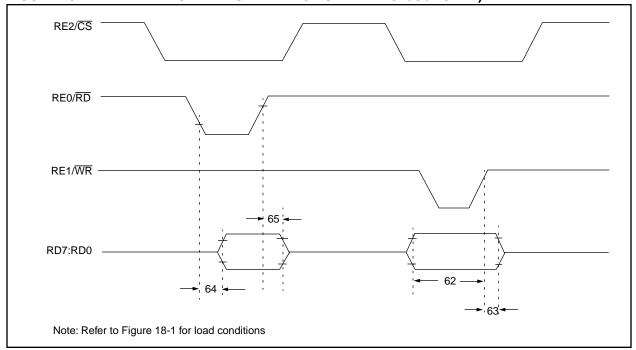


TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C64 ONLY

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS	20	_	_	ns		
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid PIC16C64		20	_	_	ns	
		(hold time)	PIC16LC64	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid			_	60	ns	
65	TrdH2dtl	$\overline{RD}\!\!\uparrow$ or $\overline{CS}\!\!\uparrow$ to data–out invalid		10	ı	30	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 18-8: SPI MODE TIMING

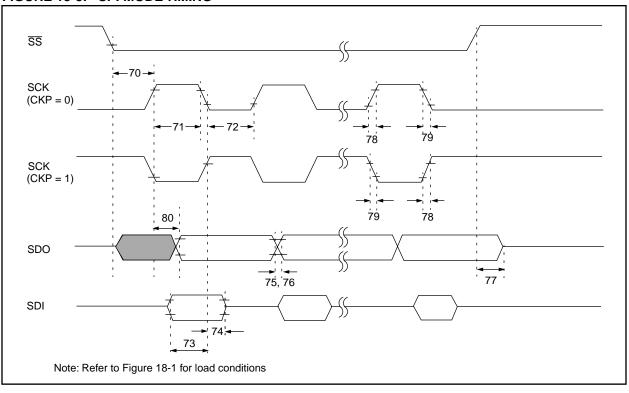


TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_		ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	_	_	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	SS↓ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 18-9: I²C BUS START/STOP BITS TIMING

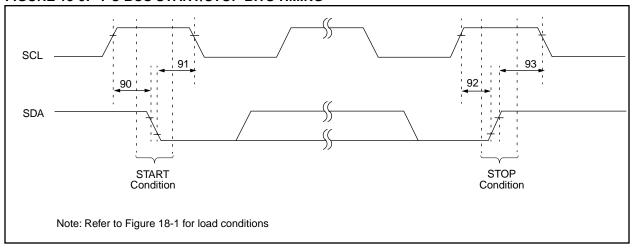
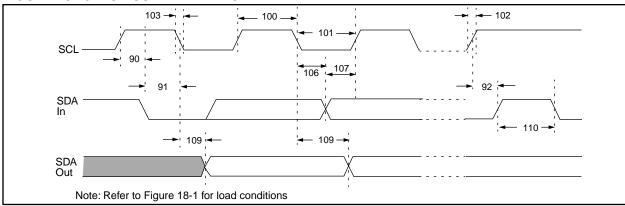



TABLE 18-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions	
90	Tsu:sta	START condition	100 kHz mode	4700	_	-	no	Only relevant for repeated STAR	
		Setup time	400 kHz mode	600	_	_	ns	condition	
91	THD:STA	START condition	100 kHz mode	4000	_	_		After this period the first clock	
		Hold time	400 kHz mode	600	_	_	ns	pulse is generated	
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_			
		Setup time	400 kHz mode	600	_	_	ns		
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	20		
		Hold time	400 kHz mode	600	_	_	ns		

FIGURE 18-10: I²C BUS DATA TIMING

TABLE 18-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	THIGH	Clock high time	100 kHz mode	4.0	_	μs	PIC16C64 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	PIC16C64 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY			
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	PIC16C64 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C64 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
102	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	Tsu:dat	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	_	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	_	μs	
109	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
_			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

PIC16C6X

NOTES:

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

19.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C62/64

NOT AVAILABLE AT THIS TIME

© 1996 Microchip Technology Inc.

DS30234B-page 187

PIC16C6X

NOTES:

20.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62A/R62/64A/R64

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, lik (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, lok (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (Vol x IOL)

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 20-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62A-04 PIC16CR62-04 PIC16C64A-04 PIC16CR64-04	PIC16C62A-10 PIC16CR62-10 PIC16C64A-10 PIC16CR64-10	PIC16C62A-20 PIC16CR62-20 PIC16C64A-20 PIC16CR64-20	PIC16LC62A-04 PIC16LCR62-04 PIC16LC64A-04 PIC16LCR64-04	JW Devices
RC		VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3.0V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 µA max. at 4V Freq:4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3.0V IPD: 0.9 μA typ. at 3.0V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

20.1 DC Characteristics: PIC16C62A-04,PIC16C64A-04 (Commercial, Industrial, Automotive)

PIC16CR62-04,PIC16CR64-04 (Commercial, Industrial, Automotive) PIC16C62A-10,PIC16C64A-10 (Commercial, Industrial, Automotive) PIC16CR62-10,PIC16CR64-10 (Commercial, Industrial, Automotive)

PIC16C62A-20,PIC16C64A-20 (Commercial, Industrial, Automotive)

PIC16CR62-20,PIC16CR64-20 (Commercial, Industrial, Automotive)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C $\leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive, -40°C $\leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and										
Param No.	Characteristic	Sym	Min	Тур†	0°0 Max	Units ≤	≤ TA ≤ +70°C for commercial Conditions					
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	V	XT, RC and LP osc configuration HS osc configuration					
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode					
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details					
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details					
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	Boden configuration bit enabled					
			3.7	4.0	4.4	V	Automotive Range Only					
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5 30	mA mA	XT, RC, osc configuration (PIC16C62A/R62/64A/R64-04) Fosc = 4 MHz, VDD = 5.5V (Note 4) HS osc configuration (PIC16C62A/R62/64A)					
D015*	Brown-out Reset Current	Δ IBOR	_	350	425	μΑ	R64-20) Fosc = 20 MHz, VDD = 5.5V BOR enabled, VDD = 5.0V					
2010	(Note 7)			555	720	μπ	Dork Griddied, VDD = 0.0V					

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - $\underline{\mathsf{OSC1}}$ = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

DC CHA	RACTERISTICS	Standar Operatir	-	_	-40)°C ≤)°C ≤	unless otherwise stated) ETA ≤ +125°C for automotive, ETA ≤ +85°C for industrial and ETA ≤ +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D020 D021 D021A D021B	Power-down Current (Note 3, 5)	IPD	- - - -	10.5 1.5 1.5 2.5	42 21 24 24	μΑ μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -0°C to +70°C VDD = 4.0V, WDT disabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +125°C
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μΑ	BOR enabled, VDD = 5.0V

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

20.2 DC Characteristics: PIC16LC62A-04,PIC16LCR62-04 (Commercial, Industrial, Automotive⁽⁶⁾) PIC16LC64A-04, PIC16LCR64-04 (Commercial, Industrial, Automotive⁽⁶⁾)

Standard Operating Conditions (unless otherwise stated)										
DC CHV	RACTERISTICS	Operatir	ng temp	perature	e -40	°C ≤	TA ≤ +125°C for automotive,			
DC CITA	KACIEKISTICS				-40	°C ≤	Ta ≤ +85°C for industrial and			
					0°C	≤	TA ≤ +70°C for commercial			
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	VDD	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	Boden bit in configuration word enabled			
			3.7	4.0	4.4	V	Automotive Range Only			
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	48	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D015*	Brown-out Reset Current (Note 7)	Δ lbor	-	350	425	μА	BOR enabled, VDD = 5.0V			
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D021	(Note 3, 5)		-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D021A			-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C			
D021B			-	0.9	10	μΑ	VDD = 3.0V, WDT disabled, -40°C to +125°C			
D023*	Brown-out Reset Current (Note 7)	Δ lbor	-	350	425	μΑ	BOR enabled, VDD = 5.0V			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

20.3 DC Characteristics:

DC CHARACTERISTICS

PIC16C62A-04,PIC16C64A-04 (Commercial, Industrial, Automotive)
PIC16CR62-04,PIC16CR64-04 (Commercial, Industrial, Automotive)
PIC16C62A-10,PIC16C64A-10 (Commercial, Industrial, Automotive)
PIC16CR62-10,PIC16CR64-10 (Commercial, Industrial, Automotive)
PIC16C62A-20,PIC16C64A-20 (Commercial, Industrial, Automotive)
PIC16CR62-20,PIC16CR64-20 (Commercial, Industrial, Automotive)
PIC16LC62A-04,PIC16LC64A-04 (Commercial, Industrial, Automotive)
PIC16LCR62-04,PIC16LCR64-04 (Commercial, Industrial, Automotive)

Standard Operating Conditions (unless otherwise stated)

Operating temperature -40°C ≤ 1

-40°C \leq TA \leq +125°C for automotive,

operating temperature

 -40° C \leq TA \leq +85 $^{\circ}$ C for industrial and

-4(

 0° C $\leq TA \leq +70^{\circ}$ C for commercial

Operating voltage VDD range as described in DC spec Section 20.1 and Section 20.2

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.		-		†			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
D032	MCLR, RA4/T0CKI,OSC1 (in RC		Vss	-	0.2Vdd	V	
	mode)						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.8VDD	-	Vdd	V	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range
D042	MCLR, RA4/T0CKI, RC7:RC4,		0.8VDD	-	Vdd	V	
	RD7:RD4, RB0/INT,RE2:RE0						
D042A	OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	I PURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μΑ	$Vss \le VPIN \le VDD$, Pin at hi-imped-
							ance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ Vpin ≤ Vdd
D063	OSC1		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for automotive,

 -40° C \leq TA \leq +85 $^{\circ}$ C for industrial and

 0° C $\leq TA \leq +70^{\circ}$ C for commercial

Operating voltage VDD range as described in DC spec Section 20.1 and Section 20.2

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V, -40 °C to $+85$ °C
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF	
D102	SCL, SDA in I ² C mode	Cb			400	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

20.4 <u>Timing Parameter Symbology</u>

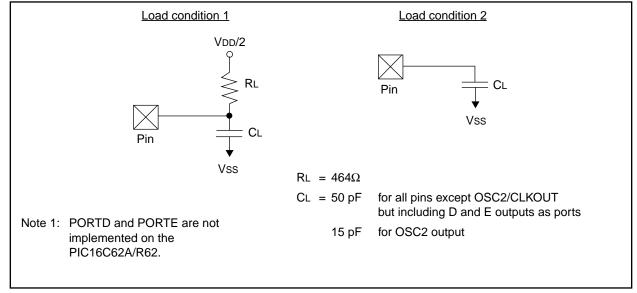
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS3. Tcc:st(I²C specifications only)2. TppS4. Ts(I²C specifications only)

T Time

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	\overline{RD} or \overline{WR}
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S	-		
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 20-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

20.5 <u>Timing Diagrams and Specifications</u>

FIGURE 20-2: EXTERNAL CLOCK TIMING

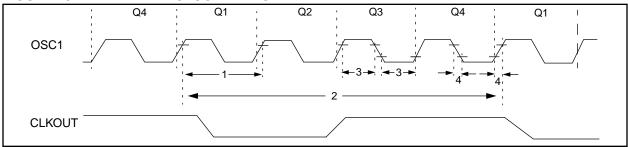


TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C64A/ CR64-04,
							PIC16LC64A/LCR64-04)
			DC	_	20	MHz	HS osc mode (PIC16C64A/ CR64-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/LCR64-04)
			4	_	10	MHz	HS osc mode (PIC16C64A/ CR64-10)
			4	_	20	MHz	HS osc mode (PIC16C64A/ CR64-20)
			5	_	200	kHz	LP osc mode

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
1	Tosc	External CLKIN Period	250		_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/ LCR64-04)
			100	_	_	ns	HS osc mode (PIC16C64A/ CR64-10)
			50	_	_	ns	HS osc mode (PIC16C64A/ CR64-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/ LCR64-04)
			100	_	250	ns	HS osc mode (PIC16C64A/ CR64-10)
			50	_	250	ns	HS osc mode (PIC16C64A/ CR64-20)
			5	_	_	μs	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2	_	_	μs	LP oscillator
			20			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_		25	ns	XT oscillator
	TosF	Fall Time	-	_	50	ns	LP oscillator
			_		15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 20-3: CLKOUT AND I/O TIMING

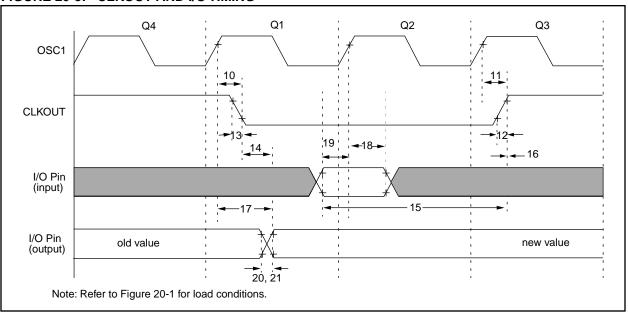


TABLE 20-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	3	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	3	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid	I	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	T ↑	Tosc + 200	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port of	_	50	150	ns		
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)		100	_	_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (/O in setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16C62A/ R62/64A/R64	_	10	40	ns	
			PIC16LC62A/ R62/64A/R64	_	_	80	ns	
21*	TioF	Port output fall time	PIC16C62A/ R62/64A/R64	_	10	40	ns	
			PIC16LC62A/ R62/64A/R64	_	_	80	ns	
22††*	Tinp	RB0/INT pin high or low time		Тсу	_		ns	
23††*	Trbp	RB7:RB4 change int high o	or low time	Тсу	_	_	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

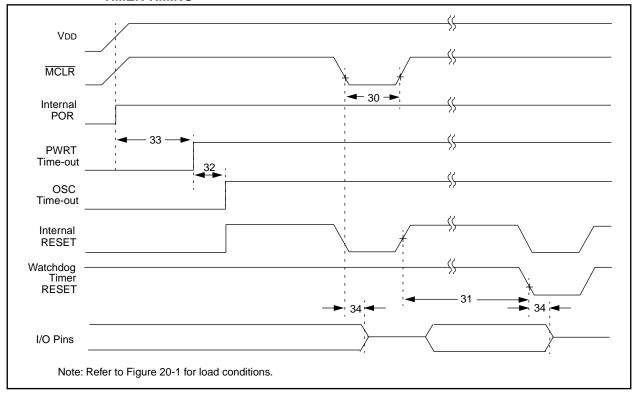


FIGURE 20-5: BROWN-OUT RESETTIMING

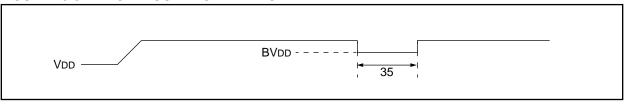


TABLE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	VDD ≤ BVDD (D005)

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-6: TIMERO AND TIMER1 CLOCK TIMINGS

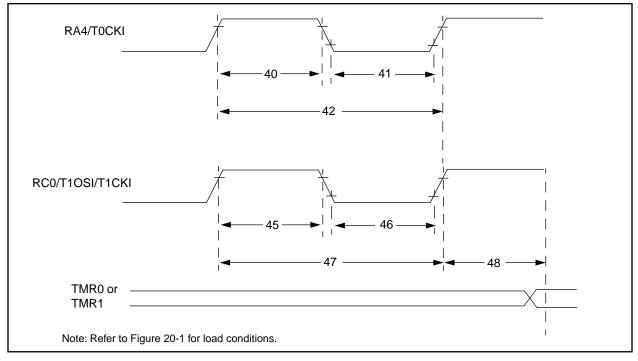


TABLE 20-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Parameter No.	Sym	Characterist	ic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High F	Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
41*	Tt0L	T0CKI Low P	ulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period	l		Tcy + 40 N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High	Synchronous, N	lo Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous, With Prescaler	PIC16C62A/R62/ 64A/R64	10	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	_	_	ns	
			Asynchronous	•	2Tcy	_	_	ns	
46*	Tt1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous, With Prescaler	PIC16C62A/R62/ 64A/R64	10	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	_	_	ns	
			Asynchronous		2Tcy	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous		Tcy + 40 N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		4Tcy	_	_	ns	
	Ft1		ttor input frequency range abled by setting bit T1OSCEN)		DC	_	200	kHz	
48	TCKEZtmr1	Delay from ex	ternal clock edge	e to timer increment	2Tosc	_	7Tosc	_	

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)

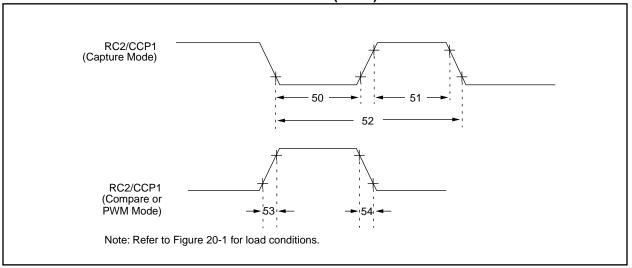


TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL		No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16C62A/R62/ 64A/R64	10	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	_	_	ns	
51*	ТссН	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time	ut high time With Prescaler	PIC16C62A/R62/ 64A/R64	10	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	_	_	ns	
52*	TccP	CCP1 input period			3Tcy + 40 N	_	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise ti	me		_	10	25	ns	
54*	TccF	CCP1 output fall time PIC16C62 64A/R64		PIC16C62A/R62/ 64A/R64	_	10	25	ns	
				PIC16LC62A/R62/ 64A/R64		_	45	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-8: PARALLEL SLAVE PORT TIMING FOR THE PIC16C64A/R64 ONLY

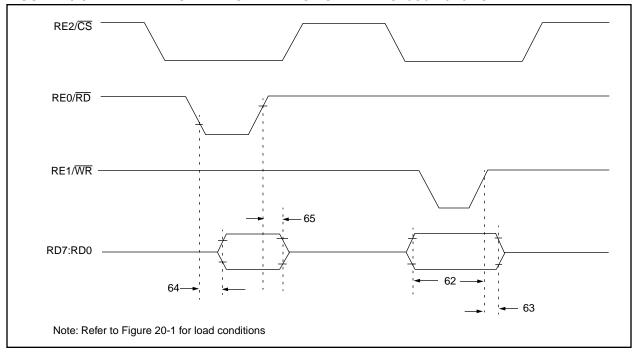


TABLE 20-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C64A/R64 ONLY

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (set	up time)	20		_	ns	
				25	_	_	ns	Automotive Range Only
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold	PIC16C64A/R64	20	_	_	ns	
		time)	PIC16LC64A/R64	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		_	_	80	ns	
				_	_	90	ns	Automotive Range Only
65*	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	_	30	ns	

^{*} Characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-9: SPI MODE TIMING

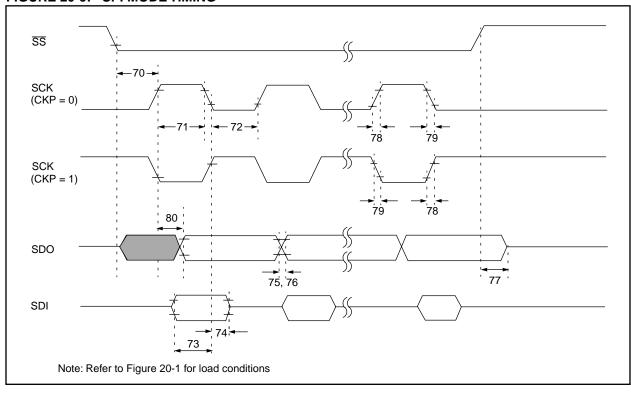


TABLE 20-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		_	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	_	_	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time	_	10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}} \downarrow$ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

Characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-10: I²C BUS START/STOP BITS TIMING

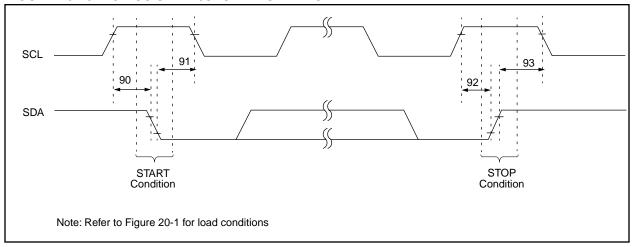


TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions	
90*	Tsu:sta	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START	
		Setup time	400 kHz mode	600	_	_	115	condition	
91*	THD:STA	START condition	100 kHz mode	4000	_	_	ns	After this period the first clock	
		Hold time	400 kHz mode	600	_	_	115	pulse is generated	
92*	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	_	115		
93*	THD:STO	STOP condition	100 kHz mode	4000	_	_	ns		
		Hold time	400 kHz mode	600	_	_	115		

^{*}Characterized but not tested.

FIGURE 20-11: I²C BUS DATA TIMING

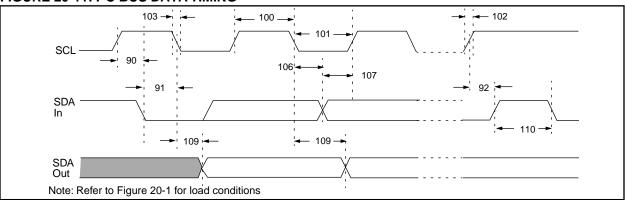


TABLE 20-10: I²C BUS DATA REQUIREMENTS

A00 kHz mode	Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
The content of the	100*	THIGH	Clock high time	100 kHz mode		_	μs	
TLOW Clock low time 100 kHz mode 4.7						_	μs	
A00 kHz mode				SSP Module	1.5TcY	_		
SSP Module	101*	TLOW	Clock low time	100 kHz mode	4.7	_	μѕ	PIC16C64A/R64 must operate at a minimum of 1.5 MHz
102* TR SDA and SCL rise time 100 kHz mode 20 + 0.1Cb 300 ns Cb is specified to be from 10-400 pF 103* TF SDA and SCL fall time 100 kHz mode 20 + 0.1Cb 300 ns Cb is specified to be from 10-400 pF 103* TF SDA and SCL fall time 100 kHz mode 20 + 0.1Cb 300 ns Cb is specified to be from 10-400 pF 104 kHz mode 20 + 0.1Cb 300 ns Cb is specified to be from 10-400 pF 105 kHz mode 4.7 μs START condition 10-400 pF 106* THD:STA START condition hold time 100 kHz mode 4.0 μs START condition 106* THD:DAT Data input hold time 100 kHz mode 0.6 μs pulse is generated 106* TSU:DAT Data input setup time 100 kHz mode 0 0.9 μs 107* TSU:STO STOP condition setup time 100 kHz mode 4.7 μs time 109* TAA Output valid from clock 400 kHz mode 4.7 μs time 100 kHz mode 0.6 - μs Time the bus must be free before a new transmission car start 100 kHz mode 1.3 - μs Data input the bus must be free before a new transmission car start 108* TBUF TIME				400 kHz mode	1.3	_	μs	PIC16C64A/R64 must operate at a minimum of 10 MHz
time				SSP Module	1.5TcY	_		
103* TF SDA and SCL fall time 100 kHz mode 20 + 0.1Cb 300 ns Cb is specified to be from 10-400 pF	102*	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
400 kHz mode 20 + 0.1Cb 300 ns Cb is specified to be from 10-400 pF					20 + 0.1Cb		ns	
10-400 pF 10-	103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
Setup time 400 kHz mode 0.6 — μs After this period the first clock time 400 kHz mode 4.0 — μs After this period the first clock time 400 kHz mode 0.6 — μs pulse is generated				400 kHz mode	20 + 0.1Cb	300	ns	
91* ThD:STA START condition hold time 100 kHz mode 4.0 — μs pulse is generated	90*	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	
time			setup time	400 kHz mode	0.6	_	μs	START condition
ThD:DAT Data input hold time 100 kHz mode 0 0.9 μs	91*	THD:STA		100 kHz mode	4.0	_	μs	After this period the first clock
107* TSU:DAT Data input setup time 100 kHz mode 250 — ns Note 2				400 kHz mode	0.6	_	μs	pulse is generated
107* TSU:DAT Data input setup time 100 kHz mode 250 — ns Note 2	106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
32* TSU:STO STOP condition setup time 100 kHz mode 4.7				400 kHz mode	0	0.9	μs	1
92* TSU:STO STOP condition setup time 100 kHz mode 4.7	107*	Tsu:dat	Data input setup time	100 kHz mode	250	_	ns	Note 2
time				400 kHz mode	100	_	ns	
109* TAA Output valid from clock 100 kHz mode — 3500 ns Note 1 110* TBUF Bus free time 100 kHz mode 4.7 — μs Time the bus must be free 400 kHz mode 1.3 — μs before a new transmission car start	92*	Tsu:sto	1	100 kHz mode	4.7	_	μs	
Clock 400 kHz mode — — ns				400 kHz mode	0.6	_	μs	1
110* TBUF Bus free time 100 kHz mode 4.7 — μs Time the bus must be free 400 kHz mode 1.3 — μs before a new transmission car start	109*	TAA		100 kHz mode		3500	ns	Note 1
400 kHz mode 1.3 — μs before a new transmission car start			clock	400 kHz mode			ns	
start	110*	TBUF	Bus free time	100 kHz mode	4.7		μs	
Cb Bus capacitive loading — 400 pF				400 kHz mode	1.3	_	μѕ	before a new transmission can start
		Cb	Bus capacitive loading		_	400	pF	

^{*} Characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode l²C bus specification) before the SCL line is released.

PIC16C6X

NOTES:

| Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

21.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C62A/R62/64A/R64

NOT AVAILABLE AT THIS TIME

© 1996 Microchip Technology Inc.

PIC16C6X

NOTES:

22.0 ELECTRICAL CHARACTERISTICS FOR PIC16C65

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, lik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, lok (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (Vol x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 22-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C65-04	PIC16C65-10	PIC16C65-20	PIC16LC65-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 µA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	IPD 1.0 μA typ. at 4.5V Freq: 10 MHz max.	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.		IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

22.1 DC CHARACTERISTICS: PIC16C65-04 (Commercial, Industrial, Automotive⁽⁶⁾)

PIC16C65-10 (Commercial, Industrial, Automotive (6))

PIC16C65-20 (Commercial, Industrial, Automotive⁽⁶⁾)

Standard Operating Conditions (unless otherwise stated)

Operating temperature -40° C $\leq TA \leq +125^{\circ}$ C for automotive,

DC CHA	RACTERISTICS	Орогаш	.9 .51116	3.3.01)°C ≤	≤ TA ≤ +85°C for industrial and ≤ TA ≤ +70°C for commercial
Param No.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC osc configuration (PIC16C65-04) FOSC = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration (PIC16C65-20) Fosc = 20 MHz, VDD = 5.5V
D020	Power-down Current	IPD	-	10.5	800	μΑ	VDD = 4.0V, WDT enabled,-40°C to +85°C
D021	(Note 3, 5)		-	1.5	800	μΑ	VDD = 4.0V, WDT disabled,-0°C to +70°C
D021A			-	1.5	800	μA	$VDD = 4.0V$, WDT disabled, -40° C to $+85^{\circ}$ C
D021B			-	1.5	800	μΑ	VDD = 4.0V, WDT disabled,-40°C to +125°C

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: Automotive operating range is Advanced information for this device.

22.2 DC CHARACTERISTICS: PIC16LC65-04 (Commercial, Industrial, Automotive⁽⁶⁾)

	Standard Operating Conditions (unless otherwise stated)									
חכ כון	ARACTERISTICS	Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive,								
DC CH	ARACTERISTICS	-40° C $\leq TA \leq +85^{\circ}$ C for industrial and								
					0°C	≤	TA ≤ +70°C for commercial			
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions			
No.										
D001	Supply Voltage	Vdd	3.0	-	6.0	٧	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention	Vdr	-	1.5	-	V	Device in SLEEP mode			
	Voltage (Note 1)									
D003	VDD start voltage to	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
	ensure Power-on Reset									
D004*	VDD rise rate to ensure	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
	Power-on Reset									
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mΑ	XT, RC osc configuration			
							Fosc = 4 MHz, VDD = 3.0V (Note 4)			
DOLOA				00.5	405	•				
D010A			-	22.5	105	μΑ	LP osc configuration			
_						_	Fosc = 32 kHz, VDD = 4.0V, WDT disabled			
D020	Power-down Current	IPD	-	7.5	30	μΑ	$VDD = 3.0V$, WDT enabled, -40° C to $+85^{\circ}$ C			
D021	(Note 3, 5)		-	0.9	13.5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D021A			-	0.9	18	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C			
D021B			-	0.9	24	μΑ	VDD = 3.0V, WDT disabled, -40°C to +125°C			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - \overline{MCLR} = VDD; WDT enabled/disabled as specified.
 - 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: Automotive operating range is Advanced information for this device.

22.3 DC CHARACTERISTICS: PIC16C65-04 (Commercial, Industrial, Automotive⁽⁴⁾)

PIC16C65-10 (Commercial, Industrial, Automotive⁽⁴⁾)

PIC16C65-20 (Commercial, Industrial, Automotive⁽⁴⁾) PIC16LC65-04 (Commercial, Industrial, Automotive⁽⁴⁾)

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive,

 -40° C \leq TA \leq +85°C for industrial and

DC CHARACTERISTICS $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial

Operating voltage VDD range as described in DC spec Section 22.1 and

Section 22.2

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.							
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2VDD	V	
	(in RC mode)						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	VDD	V	$4.5V \le VDD \le 5.5V$
D040A			0.8VDD	-	VDD		For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8VDD	-	VDD		For entire VDD range
D042	MCLR, RA4/T0CKI, RC7:RC4,		0.8VDD	-	VDD	V	
	RD7:RD4, RB0/INT						
D042A	RE2:RE0, OSC1 (XT, HS and LP)		0.7 VDD	-	VDD	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	VDD	V	
D070	PORTB weak pull-up current	I PURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current						
	(Notes 2, 3)						
D060	I/O ports	lıL	-	-	±1	μΑ	Vss ≤ Vpin ≤ Vdd, Pin at hi-
							impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ Vpin ≤ Vdd
D063	OSC1		-	-	±5	μΑ	$Vss \le VPIN \le VDD$, XT, HS, and LP
							osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
							-40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V,
							-40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
							-40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V,
			<u> </u>				-40°C to +125°C

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

^{4:} Automotive operating range is Advanced information for this device.

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for automotive,

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

Operating voltage VDD range as described in DC spec Section 22.1 and

Section 22.2

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5 V, -40 °C to $+85$ °C
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc ₂	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio	_	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.
 - 4: Automotive operating range is Advanced information for this device.

DC CHARACTERISTICS

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

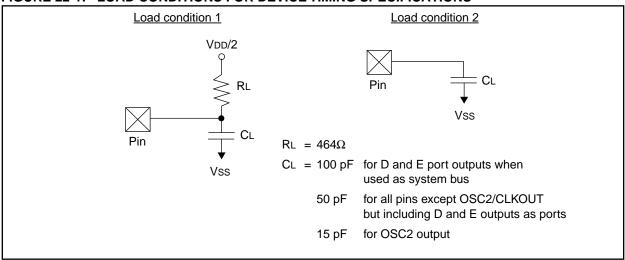
22.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1.TppS2ppS	3. Tcc:st	(I ² C specifications only)
2. TppS	4. Ts	(I ² C specifications only)
Т		
F Frequency	т	Time

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S	-			
F	Fall	P	Period	
Н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	
I ² C only				
AA	output access	High	High	
BUF	Bus free	Low	Low	

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 22-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

22.5 <u>Timing Diagrams and Specifications</u>

FIGURE 22-2: EXTERNAL CLOCK TIMING

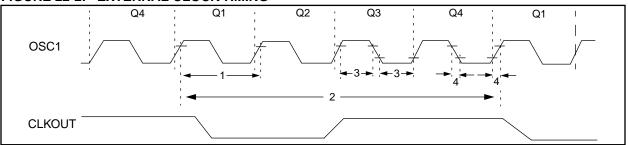


TABLE 22-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C65-04,
							PIC16LC65-04)
			DC	_	20	MHz	HS osc mode (PIC16C65-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C65-04, PIC16LC65-04)
			4	_	10	MHz	HS osc mode (PIC16C65-10)
			4	_	20	MHz	HS osc mode (PIC16C65-20)
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C65-04, PIC16LC65-04)
			100	_	_	ns	HS osc mode (PIC16C65-10)
			50	_	_	ns	HS osc mode (PIC16C65-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C65-04, PIC16LC65-04)
			100	_	250	ns	HS osc mode (PIC16C65-10)
			50	_	250	ns	HS osc mode (PIC16C65-20)
			5	_	_	μs	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_		ns	XT oscillator
	TosH	Low Time	2.5	_	_	μs	LP oscillator
			10			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or		_	25	ns	XT oscillator
	TosF	Fall Time	_	_	50	ns	LP oscillator
	. ""	 	_	_	15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 22-3: CLKOUT AND I/O TIMING

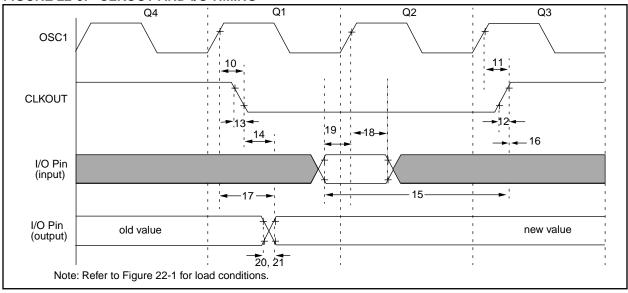


TABLE 22-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_	_	80 - 100	ns	
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)		TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)		TBD	_	_	ns	
20*	TioR	Port output rise time	PIC16C65	_	10	25	ns	
			PIC16LC65	_	_	60	ns	
21*	TioF	Port output fall time	PIC16C65	_	10	25	ns	
			PIC16LC65	_	_	60	ns	
22††*	Tinp	RB0/INT pin high or low time		20			ns	
23††*	Trbp	RB7:RB4 change int high or low time		20		_	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

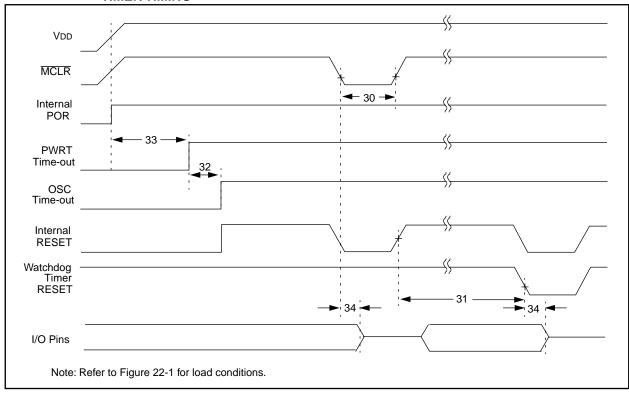


TABLE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	_	_	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period or WDT reset	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low	_	_	100	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 22-5: TIMERO AND TIMER1 CLOCK TIMINGS

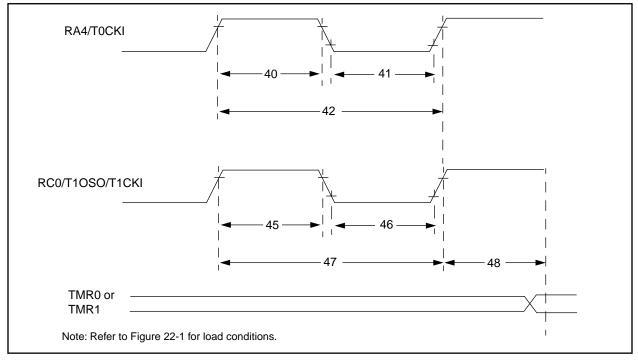


TABLE 22-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic				Typ†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pu	lse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
			Ī		10	_	_	ns	
41*	TtOL	T0CKI Low Pul	se Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period			Greater of: 20 µs or TCY + 40 N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High	Synchronous, I	No Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous,		10	_	_	ns	
			With Prescaler	PIC16LC65	20	_	_	ns	
			Asynchronous		2 Tcy	_	_	ns	
46*	Tt1L	T1CKI Low	Synchronous, I	No Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous,		10	_	_	ns	
			With Prescaler	PIC16LC65	20	_	_	ns	
			Asynchronous		2TcY	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous	Synchronous		_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		Greater of: 20 μs or 4Tcy	-	_	ns	
	Ft1		or input frequency led by setting bit		DC	-	200	kHz	
48	TCKEZtmr1	Delay from exte	ernal clock edge t	o timer increment	2Tosc	_	7Tosc	_	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 22-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

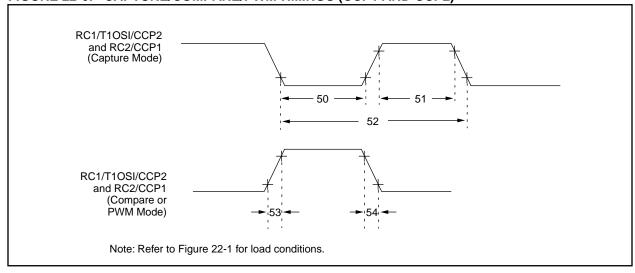


TABLE 22-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16C65	10	_	_	ns	
				PIC16LC65	20	_	_	ns	
51*	TccH	CCP1 and CCP2	P1 and CCP2 No Prescaler				_	ns	
		input high time	With Prescaler	PIC16C65	10	_	_	ns	
				PIC16LC65	20	_	_	ns	
52*	TccP	CCP1 and CCP2 ir	3Tcy + 40 N	_	_	ns	N = prescale value (1,4, or 16)		
53	TccR	CCP1 and CCP2 o	utput rise time	_	10	25	ns		
54	TccF	CCP1 and CCP2 o	utput fall time		_	10	25	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 22-7: PARALLEL SLAVE PORT TIMING

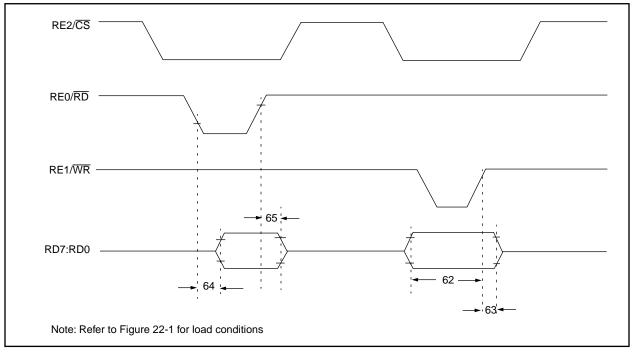


TABLE 22-7: PARALLEL SLAVE PORT REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup	time)	20		_	ns	
				25	_	_	ns	Automotive Range Only
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold	PIC16C65	20	_	_	ns	
		time)	PIC16LC65	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		_	_	80	ns	
				_	_	90	ns	Automotive Range Only
65	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	_	30	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 22-8: SPI MODE TIMING

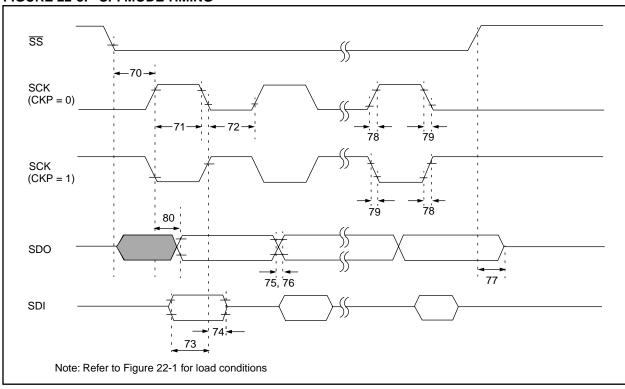


TABLE 22-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	_	_	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	SS↓ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 22-9: I²C BUS START/STOP BITS TIMING

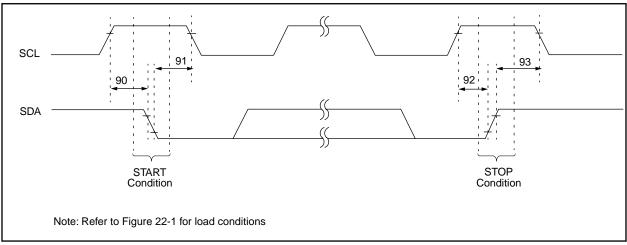


TABLE 22-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions	
90	Tsu:sta	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START	
		Setup time	400 kHz mode	600	_	_	115	condition	
91	THD:STA	START condition	100 kHz mode	4000	_	_	ns	After this period the first clock	
		Hold time	400 kHz mode	600	_	_	115	pulse is generated	
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	_	115		
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	ns		
		Hold time	400 kHz mode	600	_	_	1 115		

FIGURE 22-10: I²C BUS DATA TIMING

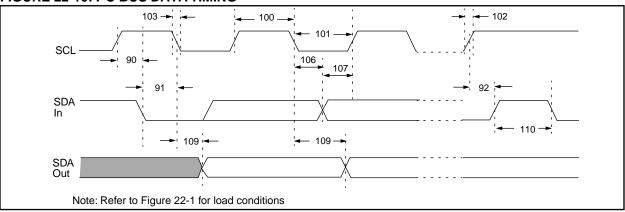



TABLE 22-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	THIGH	Clock high time	100 kHz mode	4.0	_	μs	PIC16C65 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	PIC16C65 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	PIC16C65 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C65 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
102	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	_	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	_	μs	
109	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	1-51

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

FIGURE 22-11: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

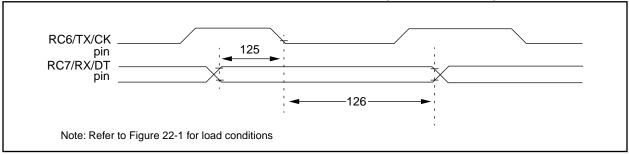


TABLE 22-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	tckH2dtV	,	PIC16C65	_	_	50	ns	
		Clock high to data out valid	PIC16LC65	_	_	100	ns	
121	tckrf	Clock out rise time and fall time	PIC16C65	_	_	25	ns	
		(Master Mode)	PIC16LC65	_	_	50	ns	
122	tdtrf	Data out rise time and fall time	PIC16C65	_	_	25	ns	
			PIC16LC65	_	_	50	ns	

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 22-12: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 22-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	tdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK ↓ (DT hold time)	15	_		ns	
126	tckL2dtl	Data hold after CK ↓ (DT hold time)	15	_	_	ns	

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C65

NOT AVAILABLE AT THIS TIME

© 1996 Microchip Technology Inc.

PIC16C6X

NOTES:

24.0 ELECTRICAL CHARACTERISTICS FOR PIC16C63/65A

Absolute Maximum Ratings (†)

Ambient temperature under bias	55 to + 125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD +0.3V)
Voltage on VDD with respect to Vss	0 to + 7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to + 14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, lik (VI < 0 or VI > VDD)	<u>±2</u> 0 mA
Output clamp current, lok (V0 < 0 or V0 > VDD)	<u>±2</u> 0 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE(*) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sunk by PORTC and PORTD(*) (combined)	200 mA
Maximum current sourced by PORTC and PORTD(*) (combined)	200 mA
* PORTD and PORTE not available on the PIC16C63.	

Note 2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 24-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C63-04 PIC16C65A-04	PIC16C63-10 PIC16C65A-10	PIC16C63-20 PIC16C65A-20	PIC16LC63-04 PIC16LC65A-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 µA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V		VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 µA typ. at 4.5V	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V
	Freq: 4 MHz max.	Freq: 10 MHz max.	Freq: 20 MHz max.		Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (Vol x IOL)

24.1 DC CHARACTERISTICS: PIC16C63-04,PIC16C65A-04 (Commercial,Industrial,Automotive⁽⁶⁾)

PIC16C63-10,PIC16C65A-10 (Commercial,Industrial,Automotive⁽⁶⁾)

PIC16C63-20,PIC16C65A-20 (Commercial,Industrial,Automotive⁽⁶⁾)

		01			0 ''		unlare athemides atotally
DC CH	ARACTERISTICS	Standa i Operatir	unless otherwise stated) ≤ TA ≤ +125°C for automotive, ≤ TA ≤ +85°C for industrial and ≤ TA ≤ +70°C for commercial				
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Automotive Range Only
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc configuration (PIC16C63/65A-04) FOSC = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration (PIC16C63/65A-20) Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 7)	Δ lbor	-	350	425	μΑ	BOR enabled, VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3, 5)	IPD	- - -	10.5 1.5 1.5 2.5	42 21 24 24	μΑ μΑ μΑ μΑ	VDD = 4.0V, WDT enabled,-40°C to +85°C VDD = 4.0V, WDT disabled,-0°C to +70°C VDD = 4.0V, WDT disabled,-40°C to +85°C VDD = 4.0V, WDT disabled,-40°C to +125°C
D023*	Brown-out Reset Current	$\Delta IBOR$	-	350	425	μΑ	BOR enabled, VDD = 5.0V

- These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

24.2 DC CHARACTERISTICS:PIC16LC63-04,PIC16LC65A-04 (Commercial,Industrial,Automotive⁽⁶⁾)

		Standa	rd Ope	rating (Condi	tions (u	ınless otherwise stated)			
טכ כאע	RACTERISTICS	Operating temperature -40° C $\leq TA \leq +125^{\circ}$ C for automotive,								
DC CHA	RACIERISTICS	-40°C \leq TA \leq +85°C for industrial and								
	,				0°C	; ≤	TA ≤ +70°C for commercial			
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	VDD	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled			
			3.7	4.0	4.4	V	Automotive Range Only			
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	48	μА	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D015*	Brown-out Reset Current (Note 7)	Δ lbor	-	350	425	μА	BOR enabled, VDD = 5.0V			
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D021	(Note 3, 5)		-	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D021A			-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C			
D021B			-	0.9	10	μΑ	VDD = 3.0V, WDT disabled, -40°C to +125°C			
D023*	Brown-out Reset Current (Note 7)	Δ lbor	-	350	425	μΑ	BOR enabled, VDD = 5.0V			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: Automotive operating range is Advanced information for this device.
 - 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

24.3 DC CHARACTERISTICS: PIC16C63-04,PIC16C65A-04 (Commercial,Industrial,Automotive)
PIC16C63-10,PIC16C65A-10 (Commercial,Industrial,Automotive)
PIC16C63-20,PIC16C65A-20 (Commercial,Industrial,Automotive)
PIC16LC63-04,PIC16LC65A-04 (Commercial,Industrial,Automotive)

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for automotive,

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

Operating voltage VDD range as described in DC spec Section 24.1

and Section 24.2

Param No.	Characteristic	Sym	Min	Typ †	Max	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
D032	MCLR, RA4/T0CKI, OSC1		Vss	-	0.2Vdd	V	
	(in RC mode)						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.8VDD	-	Vdd	V	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range
D042	MCLR RA4/T0CKI, RC7:RC4,		0.8VDD	-	Vdd	V	_
	RD7:RD4, RB0/INT, RE2:RE0						
D042A	OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	II∟	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ Vpin ≤ Vdd
D063	OSC1		-	-	±5	μA	Vss ≤ VPIN ≤ VDD, XT, HS and
							LP osc configuration
	Output Low Voltage						
D080	I/O ports	VoL	-	-	0.6	V	IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D080A			-	-	0.6	V	IOL = 7.0 mA , VDD = 4.5V , -40°C to $+125^{\circ}\text{C}$
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, $VDD = 4.5V$, $-40^{\circ}C$ to $+125^{\circ}C$

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for automotive, $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and

 0° C $\leq TA \leq +70^{\circ}$ C for commercial

Operating voltage VDD range as described in DC spec Section 24.1

and Section 24.2

Param No.	Characteristic	Sym	Min	Typ +	Max	Units	Conditions
	Output High Voltage			-			
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5 V, -40 °C to $+85$ °C
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5 V, -40 °C to $+125$ °C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V, -40 °C to $+85$ °C
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5 V, -40 °C to $+125$ °C
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc ₂	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cıo	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

DC CHARACTERISTICS

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

24.4 <u>Timing Parameter Symbology</u>

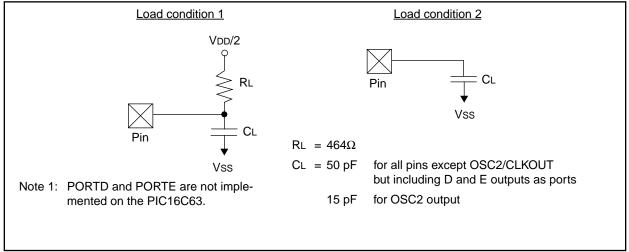
The timing parameter symbols have been created following one of the following formats:

1.TppS2ppS	3. Tcc:st	(I ² C specifications only)
2.TppS	4. Ts	(I ² C specifications only)

Т				
F	Frequency	Т	Time	

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S	-			
F	Fall	Р	Period	
Н	High	R	Rise	
1	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	
I ² C only				
AA	output access	High	High	
BUF	Bus free	Low	Low	

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

24.5 <u>Timing Diagrams and Specifications</u>

FIGURE 24-2: EXTERNAL CLOCK TIMING

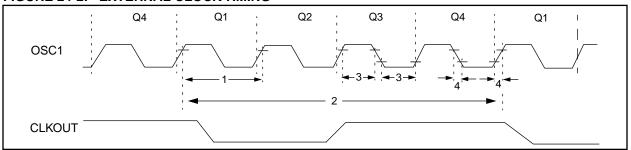


TABLE 24-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C63/65A-04,
			DC	_	20	MHz	HS osc mode (PIC16C63/65A-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C63/65A-04,
			4	_	10	MHz	HS osc mode (PIC16C63/65A-10)
			4	_	20	MHz	HS osc mode (PIC16C63/65A-20)
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C63/65A-04)
			100	_	_	ns	HS osc mode (PIC16C63/65A-10)
			50	_	_	ns	HS osc mode (PIC16C63/65A-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C63/65A-04)
			100	_	250	ns	HS osc mode (PIC16C63/65A-10)
			50	_	250	ns	HS osc mode (PIC16C63/65A-20)
			5			μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) Hi4.8h or	100	_	_	ns	XT oscillator
	TosH	Low Time	2	_	_	μs	LP oscillator
			20			ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	_	50	ns	LP oscillator
				_	15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for desi4n guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or hi4.8her than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 24-3: CLKOUT AND I/O TIMING

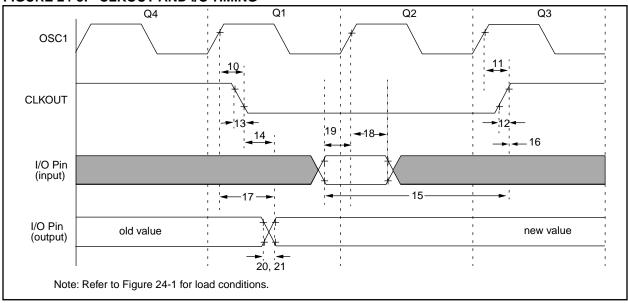


TABLE 24-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	3	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	3	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	\uparrow	Tosc + 200	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	50	150	ns	
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port inp (I/O in hold time)	out invalid	100	_	_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/C	O in setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16C63/65A	_	10	40	ns	
			PIC16LC63/65A	_	_	80	ns	
21*	TioF	Port output fall time	PIC16C63/65A	_	10	40	ns	
			PIC16LC63/65A	_	_	80	ns	
22††*	Tinp	INT pin high or low time		Тсу	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high o	r low time	Тсу	_	_	ns	

^{*} These parameters are characterized but not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

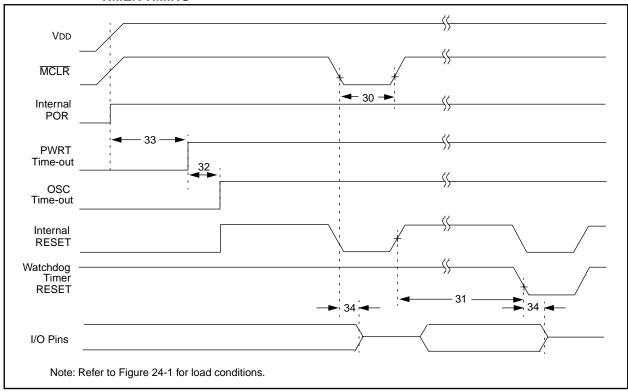


FIGURE 24-5: BROWN-OUT RESETTIMING

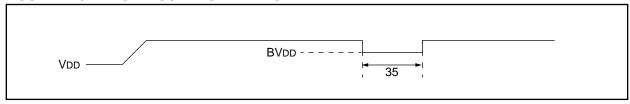


TABLE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	VDD ≤ BVDD (D005)

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-6: TIMERO AND TIMER1 CLOCK TIMINGS

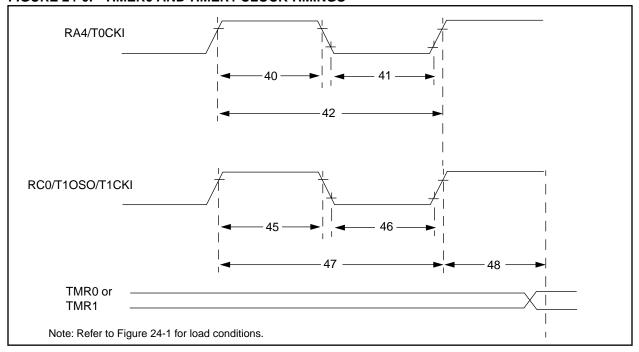


TABLE 24-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns	
			Ī		10	_	_	ns	
41*	TtOL	T0CKI Low Pulse Width No Prescaler With Prescaler		No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period			Tcy + 40 N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	Tt1H T1CKI High Time Synchronous, No Pres			0.5Tcy + 20	_	_	ns	
				PIC16C63/65A	10	_	_	ns	
			With Prescaler	PIC16LC63/65A	20	_	_	ns	
			Asynchronous		2TcY	_	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, I	No Prescaler	0.5Tcy + 20	_	_	ns	
				PIC16C63/65A	10	_	_	ns	
			With Prescaler	PIC16LC63/65A	20	_	_	ns	
			Asynchronous		2Tcy	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous		<u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		4TcY	_	_	ns	
	Ft1		hput frequency range by setting the T1OSCEN bit)		DC		200	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2Tosc	_	7Tosc	_	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

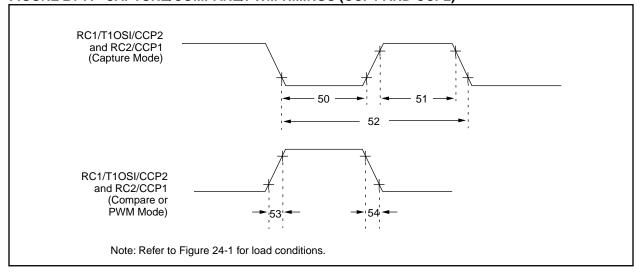


TABLE 24-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2			0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16C63/65A	10	_	_	ns	
				PIC16LC63/65A	20	_	_	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time	With Prescaler	PIC16C63/65A	10	_	_	ns	
				PIC16LC63/65A	20	_	_	ns	
52*	TccP	CCP1 and CCP2 ir	put period		3Tcy + 40 N	_	_	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time		_	10	25	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16C63/65A	_	10	25	ns	
				PIC16LC63/65A	_	_	45	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

FIGURE 24-8: PARALLEL SLAVE PORT TIMING FOR THE PIC16C65A ONLY

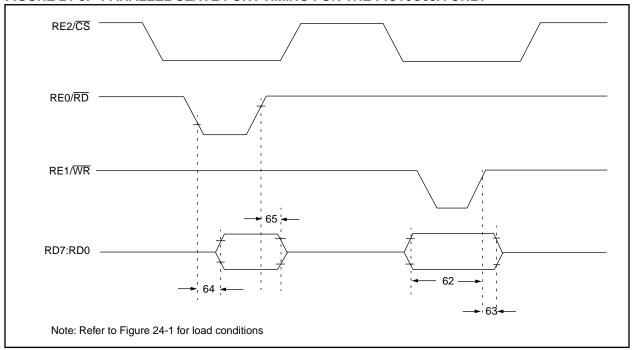


TABLE 24-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C65A ONLY

Parameter No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
62*	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)		20	_	_	ns	
					_	_	ns	Automotive Range Only
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold time)	PIC16C65A	20	_	_	ns	
			PIC16LC65A	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		_	_	80	ns	
				_	_	90	ns	Automotive Range Only
65*	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	_	30	ns	

^{*} Characterized but not tested

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 24-9: SPI MODE TIMING

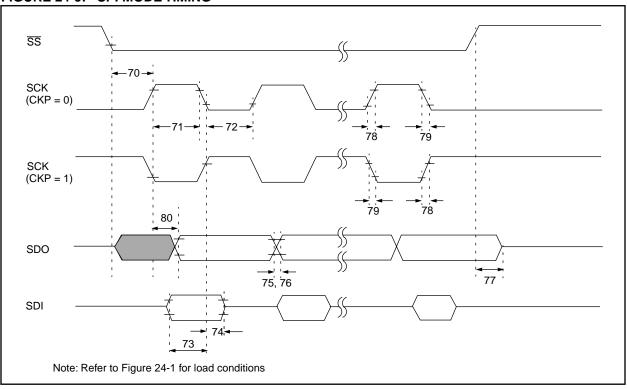


TABLE 24-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	_	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	_	_	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↓ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

^{*} Characterized but not tested

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-10: I²C BUS START/STOP BITS TIMING

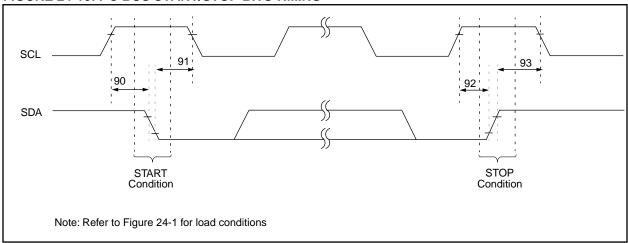


TABLE 24-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90*	Tsu:sta	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	_	_	115	condition
91*	THD:STA	START condition	100 kHz mode	4000	_	_	no	After this period the first clock
		Hold time	400 kHz mode	600	_	_	ns	pulse is generated
92*	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	no	
		Setup time	400 kHz mode	600	_	_	ns	
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	no	
		Hold time	400 kHz mode	600	_	_	ns	

FIGURE 24-11: I²C BUS DATA TIMING

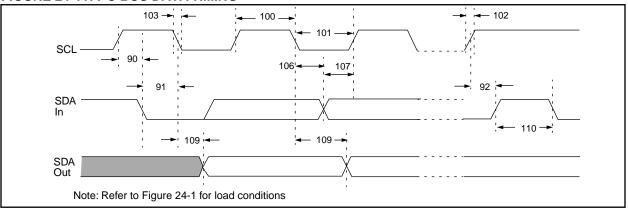


TABLE 24-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	4.0	_	μs	PIC16C65A must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	PIC16C65A must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μѕ	PIC16C65A must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C65A must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
102*	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	At 125°C tested to 20 ns min.
			400 kHz mode	0	0.9	μs	1
107*	Tsu:dat	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100		ns	1
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7		μs	
		time	400 kHz mode	0.6	1	μs	
109*	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	_	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	

^{*} Characterized but not tested

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode l²C bus specification) before the SCL line is released.

FIGURE 24-12: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

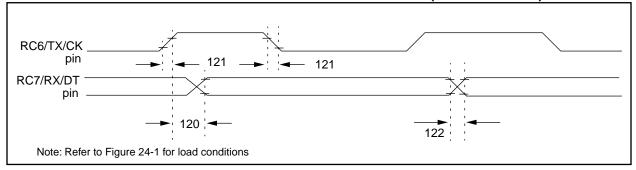


TABLE 24-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic			Тур†	Max	Units	Conditions
120*	tckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16C63/65A	_	_	50	ns	
		Clock high to data out valid	PIC16LC63/65A	_	_	100	ns	
121*	tckrf	Clock out rise time and fall time	PIC16C63/65A	_	_	25	ns	
		(Master Mode)	PIC16LC63/65A	_	_	50	ns	
122*	tdtrf	Data out rise time and fall time	PIC16C63/65A	_	_	25	ns	
			PIC16LC63/65A	_	_	50	ns	

Characterized but not tested

FIGURE 24-13: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

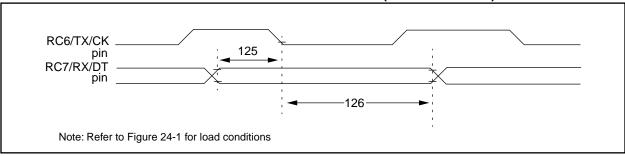


TABLE 24-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
125*	tdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK ↓ (DT hold time)	15	_	_	ns	
126*	tckL2dtl	Data hold after CK ↓ (DT hold time)	15	_	_	ns	

Characterized but not tested

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

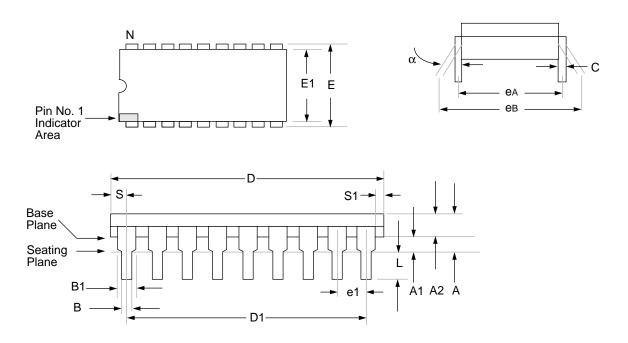
^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

25.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C63/65A

NOT AVAILABLE AT THIS TIME

© 1996 Microchip Technology Inc.

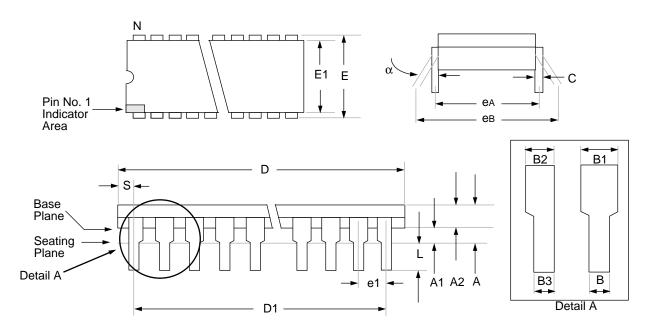

DS30234B-page 243

PIC16C6X

NOTES:

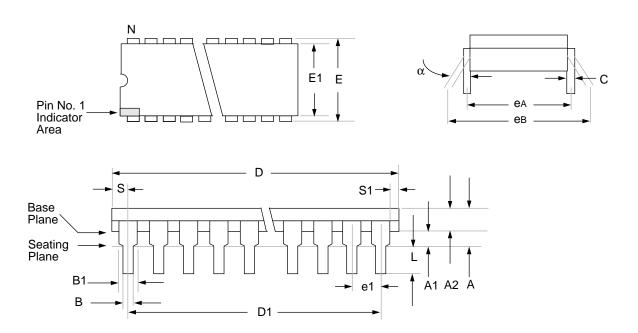
26.0 PACKAGING INFORMATION

26.1 <u>18-Lead Plastic Dual In-line (300 mil)</u>

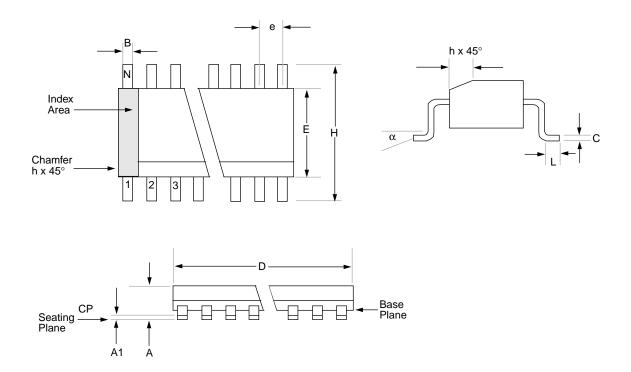


		Package Gro	up: Plastic Dual	In-Line (PLA)				
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
Α	_	4.064		_	0.160			
A1	0.381	_		0.015	_			
A2	3.048	3.810		0.120	0.150			
В	0.355	0.559		0.014	0.022			
B1	1.524	1.524	Reference	0.060	0.060	Reference		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	22.479	23.495		0.885	0.925			
D1	20.320	20.320	Reference	0.800	0.800	Reference		
E	7.620	8.255		0.300	0.325			
E1	6.096	7.112		0.240	0.280			
e1	2.489	2.591	Typical	0.098	0.102	Typical		
eA	7.620	7.620	Reference	0.300	0.300	Reference		
eB	7.874	9.906		0.310	0.390			
L	3.048	3.556		0.120	0.140			
N	18	18		18	18			
S	0.889	_		0.035	_			
S1	0.127	_		0.005	_			

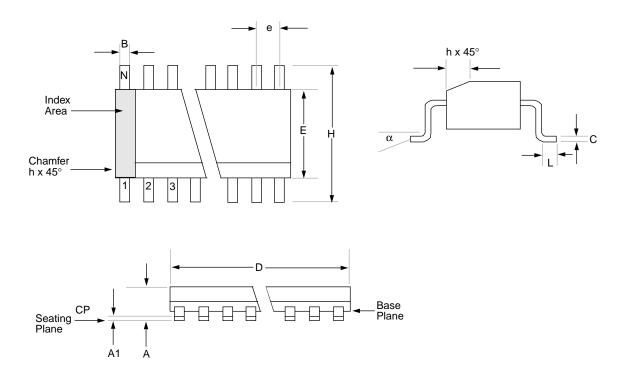
© 1996 Microchip Technology Inc.


DS30234B-page 245

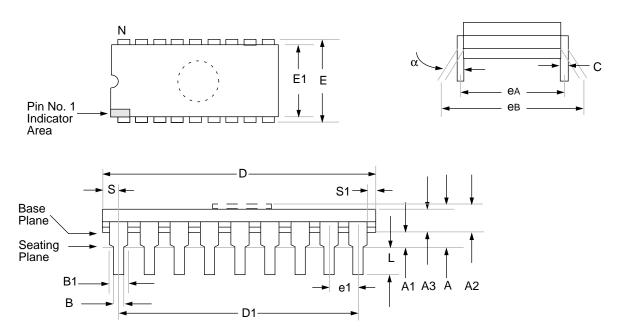
26.2 <u>28-Lead Plastic Dual In-line (300 mil)</u>


		Package Gro	up: Plastic Dual	In-Line (PLA)			
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	3.632	4.572		0.143	0.180		
A1	0.381	_		0.015	_		
A2	3.175	3.556		0.125	0.140		
В	0.406	0.559		0.016	0.022		
B1	1.016	1.651	Typical	0.040	0.065	Typical	
B2	0.762	1.016	4 places	0.030	0.040	4 places	
B3	0.203	0.508	4 places	0.008	0.020	4 places	
С	0.203	0.331	Typical	0.008	0.013	Typical	
D	34.163	35.179		1.385	1.395		
D1	33.020	33.020	Reference	1.300	1.300	Reference	
E	7.874	8.382		0.310	0.330		
E1	7.112	7.493		0.280	0.295		
e1	2.540	2.540	Typical	0.100	0.100	Typical	
eA	7.874	7.874	Reference	0.310	0.310	Reference	
eB	8.128	9.652		0.320	0.380		
L	3.175	3.683		0.125	0.145		
N	28	28		28	28		
S	0.584	1.220		0.023	0.048		

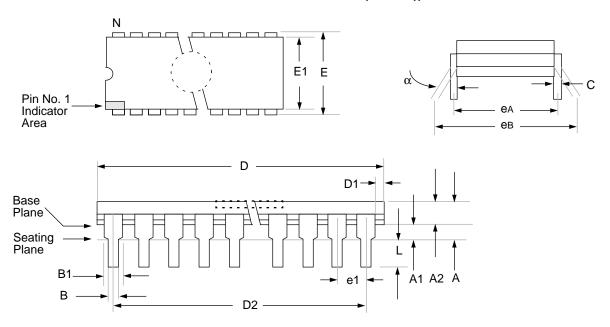
26.3 40-Lead Plastic Dual In-line (600 mil)


		Package Gro	up: Plastic Dual	In-Line (PLA)			
		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	_	5.080		_	0.200		
A1	0.381	_		0.015	_		
A2	3.175	4.064		0.125	0.160		
В	0.355	0.559		0.014	0.022		
B1	1.270	1.778	Typical	0.050	0.070	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.181	52.197		2.015	2.055		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
E	15.240	15.875		0.600	0.625		
E1	13.462	13.970		0.530	0.550		
e1	2.489	2.591	Typical	0.098	0.102	Typical	
eA	15.240	15.240	Reference	0.600	0.600	Reference	
eB	15.240	17.272		0.600	0.680		
L	2.921	3.683		0.115	0.145		
N	40	40		40	40		
S	1.270	_		0.050	_		
S1	0.508	_		0.020	_		

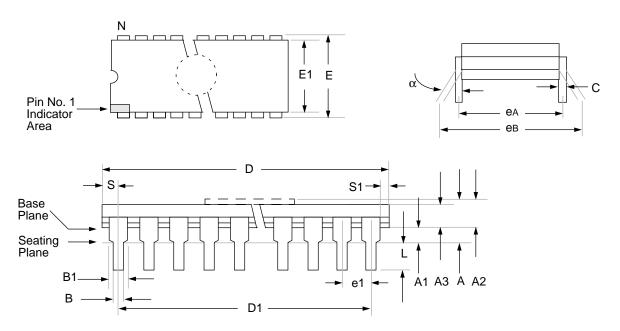
26.4 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)


		Package	Group: Plastic S	SOIC (SO)			
		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	8°		0°	8°		
А	2.362	2.642		0.093	0.104		
A1	0.101	0.300		0.004	0.012		
В	0.355	0.483		0.014	0.019		
С	0.241	0.318		0.009	0.013		
D	11.353	11.735		0.447	0.462		
Е	7.416	7.595		0.292	0.299		
е	1.270	1.270	Reference	0.050	0.050	Reference	
Н	10.007	10.643		0.394	0.419		
h	0.381	0.762		0.015	0.030		
L	0.406	1.143		0.016	0.045		
N	18	18		18	18		
СР	_	0.102		_	0.004		

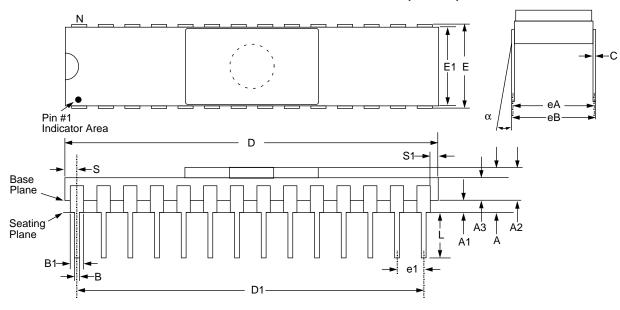
26.5 <u>28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)</u>


	Package Group: Plastic SOIC (SO)											
		Millimeters			Inches							
Symbol	Min	Max	Notes	Min	Max	Notes						
α	0°	8°		0°	8°							
Α	2.362	2.642		0.093	0.104							
A1	0.101	0.300		0.004	0.012							
В	0.355	0.483		0.014	0.019							
С	0.241	0.318		0.009	0.013							
D	17.703	18.085		0.697	0.712							
E	7.416	7.595		0.292	0.299							
е	1.270	1.270	Typical	0.050	0.050	Typical						
Н	10.007	10.643		0.394	0.419							
h	0.381	0.762		0.015	0.030							
L	0.406	1.143		0.016	0.045							
N	28	28		28	28							
СР	_	0.102		_	0.004							

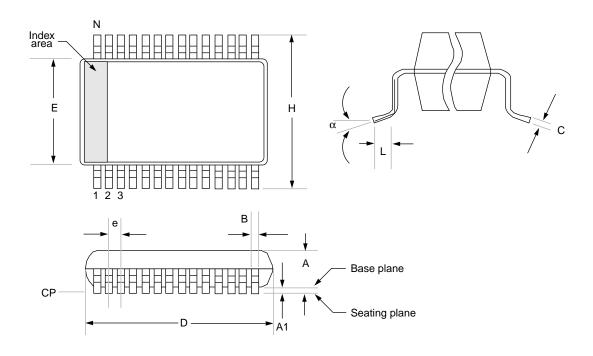
26.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)


Package Group: Ceramic CERDIP Dual In-Line (CDP)							
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	_	5.080		_	0.200		
A1	0.381	1.778		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
А3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	22.352	23.622		0.880	0.930		
D1	20.320	20.320	Reference	0.800	0.800	Reference	
E	7.620	8.382		0.300	0.330		
E1	5.588	7.874		0.220	0.310		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	7.366	8.128	Typical	0.290	0.320	Typical	
eB	7.620	10.160		0.300	0.400		
L	3.175	3.810		0.125	0.150		
N	18	18		18	18		
S	0.508	1.397		0.020	0.055		
S1	0.381	1.270		0.015	0.050		

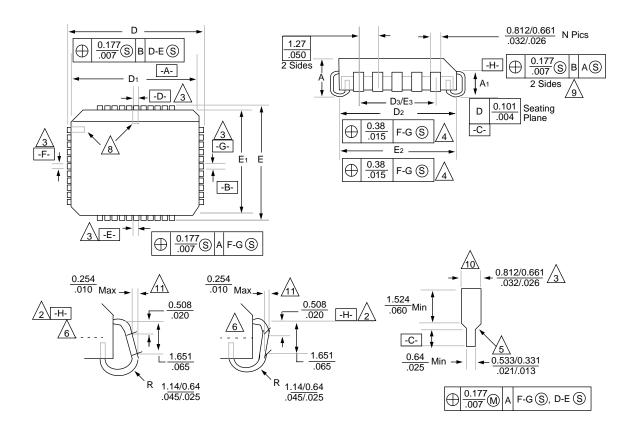
26.7 28-Lead Ceramic CERDIP Dual In-line with Window (300 mil))


Package Group: Ceramic CERDIP Dual In-Line (CDP)						
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
Α	3.30	5.84		.130	0.230	
A1	0.38	_		0.015	_	
A2	2.92	4.95		0.115	0.195	
В	0.35	0.58		0.014	0.023	
B1	1.14	1.78	Typical	0.045	0.070	Typical
С	0.20	0.38	Typical	0.008	0.015	Typical
D	34.54	37.72		1.360	1.485	
D2	32.97	33.07	Reference	1.298	1.302	Reference
Е	7.62	8.25		0.300	0.325	
E1	6.10	7.87		0.240	0.310	
е	2.54	2.54	Typical	0.100	0.100	Typical
eA	7.62	7.62	Reference	0.300	0.300	Reference
eB	_	11.43			0.450	
L	2.92	5.08		0.115	0.200	
N	28	28		28	28	
D1	0.13	_		0.005	_	

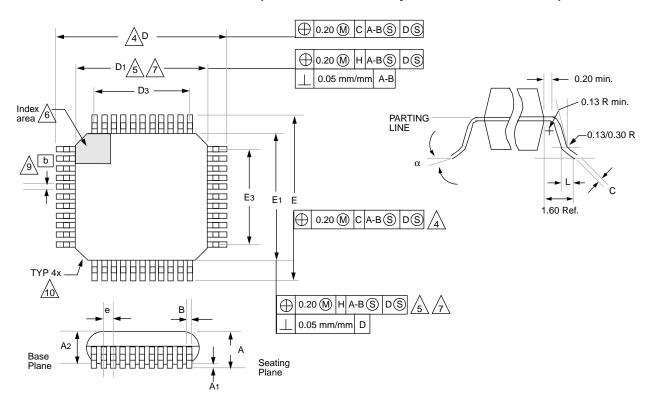
26.8 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil)


Package Group: Ceramic CERDIP Dual In-Line (CDP)							
	Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	4.318	5.715		0.170	0.225		
A1	0.381	1.778		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
A3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.435	52.705		2.025	2.075		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
Е	15.240	15.875		0.600	0.625		
E1	12.954	15.240		0.510	0.600		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	14.986	16.002	Typical	0.590	0.630	Typical	
eB	15.240	18.034		0.600	0.710		
L	3.175	3.810		0.125	0.150		
N	40	40		40	40		
S	1.016	2.286		0.040	0.090		
S1	0.381	1.778		0.015	0.070		

26.9 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)


	Pack	age Group: Ce	ramic Side Braze	ed Dual In-Line	(CER)	
0		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
Α	3.937	5.030		0.155	0.198	
A1	1.016	1.524		0.040	0.060	
A2	2.921	3.506		0.115	0.138	
A3	1.930	2.388		0.076	0.094	
В	0.406	0.508		0.016	0.020	
B1	1.219	1.321	Typical	0.048	0.052	
С	0.228	0.305	Typical	0.009	0.012	
D	35.204	35.916		1.386	1.414	
D1	32.893	33.147	Reference	1.295	1.305	
Е	7.620	8.128		0.300	0.320	
E1	7.366	7.620		0.290	0.300	
e1	2.413	2.667	Typical	0.095	0.105	
eA	7.366	7.874	Reference	0.290	0.310	
eB	7.594	8.179		0.299	0.322	
L	3.302	4.064		0.130	0.160	
N	28	28		28	28	
S	1.143	1.397		0.045	0.055	
S1	0.533	0.737		0.021	0.029	

26.10 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)


		Packag	e Group: Plasti	c SSOP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	8°		0°	8°	
А	1.730	1.990		0.068	0.078	
A1	0.050	0.210		0.002	0.008	
В	0.250	0.380		0.010	0.015	
С	0.130	0.220		0.005	0.009	
D	10.070	10.330		0.396	0.407	
E	5.200	5.380		0.205	0.212	
е	0.650	0.650	Reference	0.026	0.026	Reference
Н	7.650	7.900		0.301	0.311	
L	0.550	0.950		0.022	0.037	
N	28	28		28	28	
СР	-	0.102		-	0.004	

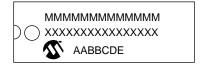
26.11 44-Lead Plastic Leaded Chip Carrier (Square)

	Pa	ckage Group: F	Plastic Leaded C	hip Carrier (PL	CC)	
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
Α	4.191	4.572		0.165	0.180	
A1	2.413	2.921		0.095	0.115	
D	17.399	17.653		0.685	0.695	
D1	16.510	16.663		0.650	0.656	
D2	15.494	16.002		0.610	0.630	
D3	12.700	12.700	Reference	0.500	0.500	Reference
E	17.399	17.653		0.685	0.695	
E1	16.510	16.663		0.650	0.656	
E2	15.494	16.002		0.610	0.630	
E3	12.700	12.700	Reference	0.500	0.500	Reference
N	44	44		44	44	
СР	_	0.102		_	0.004	
LT	0.203	0.381		0.008	0.015	

26.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form)

		Packag	e Group: Plasti	c MQFP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	7°		0°	7°	
Α	2.000	2.350		0.078	0.093	
A1	0.050	0.250		0.002	0.010	
A2	1.950	2.100		0.768	0.083	
b	0.300	0.450	Typical	0.011	0.018	Typical
С	0.150	0.180		0.006	0.007	
D	12.950	13.450		0.510	0.530	
D1	9.900	10.100		0.390	0.398	
D3	8.000	8.000	Reference	0.315	0.315	Reference
E	12.950	13.450		0.510	0.530	
E1	9.900	10.100		0.390	0.398	
E3	8.000	8.000	Reference	0.315	0.315	Reference
е	0.800	0.800		0.031	0.032	
L	0.730	1.030		0.028	0.041	
N	44	44		44	44	
СР	0.102	_		0.004	_	

1.0ø (0.039ø) Ref. 11°/13°(4x) Pin#1 Pin#1 2 == 0° Min Е E1 11°/13°(4x) ПП **Detail B** -3.0ø (0[.].118ø) Ref. R1 0.08 Min Option 1 (TOP side) R 0.08/0.20 Option 2 (TOP side) Gage Plane Base Metal Lead Finish 0.20 Min С · c1 **Detail A Detail B** 1.00 Ref 1.00 Ref. b1 **Detail B Detail A**


26.13 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form)

		Packag	je Group: Plast	ic TQFP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
Α	1.00	1.20		0.039	0.047	
A1	0.05	0.15		0.002	0.006	
A2	0.95	1.05		0.037	0.041	
D	11.75	12.25		0.463	0.482	
D1	9.90	10.10		0.390	0.398	
E	11.75	12.25		0.463	0.482	
E1	9.90	10.10		0.390	0.398	
L	0.45	0.75		0.018	0.030	
е	0.80	BSC		0.031	BSC	
b	0.30	0.45		0.012	0.018	
b1	0.30	0.40		0.012	0.016	
С	0.09	0.20		0.004	0.008	
c1	0.09	0.16		0.004	0.006	
N	44	44		44	44	
Θ	0°	7°		0°	7°	

- Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.
 - 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
 - 3: This outline conforms to JEDEC MS-026.

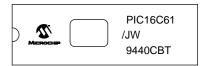
26.14 Package Marking Information

18-Lead PDIP

18-Lead SOIC

Example

Example


PIC16C61-04/P

9450CBA

18-Lead CERDIP Windowed

Example

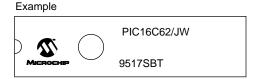
28-Lead PDIP (.300 MIL)

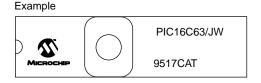
Example

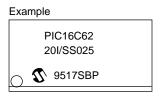


Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁	Mask revision number for microcontroller
	D_2	Mask revision number for EEPROM
	E	Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of caracters for customer specific information.

^{*} Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.


Package Marking Information (Cont'd)


28-Lead CERDIP Skinny Windowed

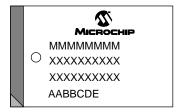

28-Lead Side Brazed Skinny Windowed

Example

40-Lead PDIP

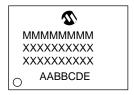
MICROCHIP

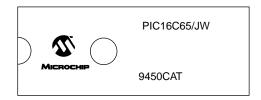
Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of paracters for customer specific information.


Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Cont'd)

40-Lead CERDIP Windowed


44-Lead PLCC


44-Lead MQFP

44-Lead TQFP


Example

Example

Example

Example

Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will b	It the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: MODIFICATIONS

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits.
 This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (192 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- OPTION and TRIS registers are made addressable.
- Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 pin is also a port pin (RA4/T0CKI) now.
- 14. FSR is made a full 8-bit register.
- "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, VPP, RB6 (clock) and RB7 (data in/out).
- Power Control register (PCON) is added with a Power-on Reset status bit (POR). (Not on the PIC16C61).
- Brown-out Reset has been added to the following devices: PIC16C62A/R62/63/64A/R64/65A.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

APPENDIX C: WHAT'S NEW

The format of this data sheet has been changed to be consistent with other product families. This ensures that important topics are covered across all PIC16/17 families. Here is an overview list of new features:

- · Added the following new devices:
 - PIC16C62
 - PIC16C62A
 - PIC16CR62
 - PIC16C63
 - PIC16C64A
 - PIC16CR64
 - PIC16C65A

A Brown-out Detect Enable Bit (BODEN) has been added to the Configuration Word register for PIC16C62A, PIC16CR62, PIC16C63, PIC16C64A, PIC16CR64, and the PIC16C65A.

A Brown-out Reset detect bit (BOR) has been added to the PCON register (for the devices with brown-out detect circuitry).

A $\overline{\text{MCLR}}$ filter circuit has been added to minimize the influence of pin state changes to the $\overline{\text{MCLR}}$ line.

Changed low voltage specification for LC devices on the following parts to 2.5V:

- PIC16C62
- PIC16C62A
- PIC16CR62
- PIC16C63
- PIC16C64A
- PIC16CR64
- PIC16C65A

APPENDIX D: WHAT'S CHANGED

All product and device family tables have been updated for the latest devices and specifications. Added information on ROM devices.

TX8/9 (TXSTA<6>) has been changed to TX9 - 9-bit Transmit Enable bit.

RC8/9 (RCSTA<6>) has been changed to RX9 - 9-bit Receive Enable bit.

RCD8 (RCSTA<0>) has been changed to RX9D.

TXD8 (TXSTA<0>) has been changed to TX9D.

APPENDIX E: PIC16/17 MICROCONTROLLERS

TABLE E-1: PIC16C5X FAMILY OF DEVICES

					Clock	Memory		Peripherals	erals Features
			`	Tolis	Tour (Strio) rolling	(50			
			50 Tollone	80 ×	TO TIOUS!	(8)0	`	190	Stolourist (Slov)
·	- Ch	A ANDUNA	1000	10	TOOM SOLIT	Judon torrit	1 %/ \	Sue N	Selegoe of Sued elegon
PIC16C54	20	512		25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C54A	20	512	I	25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54 ⁽²⁾	20	I	512	25	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54A	20		512	25	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54B ⁽¹⁾	20	I	512	25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C55	20	512	I	24	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C56	20	ź	1	25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR56 ⁽¹⁾	20		1K	25	TMR0	12	2.5-6.25	88	18-pin DIP, SOIC; 20-pin SSOP
PIC16C57	20	2K	1	72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16CR57A ⁽²⁾	20	١	2K	72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16CR57B	20	I	2K	72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C58A	20	2K	1	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR58A	20	1	2K	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR58B ⁽¹⁾	20	1	2K	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP

All PIC16/17 Family devices have Power-On Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.
Please contact your local sales office for availability of these devices.
Not recommended for new designs.

.. % Note

TABLE E-2: PIC16C62X FAMILY OF DEVICES

Features	Califfre to 14 Strong to 15 Str	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP
	(\$10\) 80184 80810\	Yes	Yes	Yes
	Oiled 80%	Yes	Yes	Yes
Peripherals	Store ted of the state of the s	3.0-6.0	3.0-6.0	3.0-6.0
Pe	Ougles daying	13	13	13
ory	S. letter	4	4	4
Memory		Yes	Yes	Yes
Clock	Tolian (Sandon tali)	2	2	2
O	TOUGH ON THE SOLD TO THE WOOD THE SOLD TO THE SOLD TO THE SOLD THE	TMR0	TMR0	TMR0
	TO TO LIGHT TO CO.	80	80	128
	Si tentin	512	¥	2K
	St.	20	20	20
		PIC16C620	PIC16C621	PIC16C622

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7.

TABLE E-3: PIC16C6X FAMILY OF DEVICES

						Memory	ory			Peripherals	erals			Features
				OHE FOR IT	Tolli Sex			TA SO	TOOM SILE	(8) 44 / 46			(SHO)	Gunde Sole
	No.	THE REAL PROPERTY.	ELBAR TOLK!	180	SOUDOW SUIT SEC NOS INVESTIGATION SEC	Tolybon V	Solnos ignients (Selno)	SHOP IS	to to let the	O STORIES!	3/2/3//	Elis inoto in	10 110 15 A	is set though the set of the set
PIC16C61	20	ź		36			ı	ī	က	13	3.0-6.0	Yes	Ι	18-pin DIP, SOIC
PIC16C62	20	X	ı	128	TMR0, TMR1, TMR2	-	SPI/I2C	I	_	22	3.0-6.0	Yes	ı	28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	7X	I	128	TMR0, TMR1, TMR2	-	SPI/I²C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20	I	X	128	TMR0, TMR1, TMR2	-	SPI/I2C	I	_	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63 ⁽¹⁾	20	¥ X	I	192	TMR0, TMR1, TMR2	2	SPI/I²C, USART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K	ı	128	TMR0, TMR1, TMR2	1	SPI/I²C	Yes	8	33	3.0-6.0	Yes	1	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K	ı	128	TMR0, TMR1, TMR2	1	SPI/I²C	Yes	8	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	I	2K	128	TMR0, TMR1, TMR2	1	SPI/I2C	Yes	80	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65	20	4K	I	192	TMR0, TMR1, TMR2	2	SPI/I²C, USART	Yes	11	33	3.0-6.0	Yes		40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4	I	192	TMR0, TMR1, TMR2	7	SPI/I²C, USART	Yes	1	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability. All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7. Please contact your local sales office for availability of these devices. Note 1:

TABLE E-4: **PIC16C7X FAMILY OF DEVICES**

				Clock		Memory			Peri	Peripherals	တ္ဆ			Features
			`	Tottom use	To			Stock	CANON CONTRACTOR		Souley			Cinne
	The state of the s	To the life	Tolono Toda	Sandon suit inusen	1200	Solo of the solo o	The Stop &	SILES PROPERTY	HOD STUDIES	TO STORY	Story Solds Sellor Story	Soled Sol	(SHO) SHOPIS	Selectory thought of the selection of th
PIC16C710 ⁽¹⁾	20	512	36	TMR0			1	4	4	13	3.0-6.0	Yes	≺es	3-pin
PIC16C71	20	7	36	TMR0	Π	I	I	4	4	13	3.0-6.0	Yes	I	18-pin DIP, SOIC
PIC16C711 ⁽¹⁾	20	,	89	TMR0		I	1	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C72 ⁽¹⁾	20	7 X	128	TMR0, TMR1, TMR2	_	SPI/I2C	1	2	∞	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C73	20	4	192	TMR0, TMR1, TMR2	2	SPI/I²C, USART	I	2	7	22	3.0-6.0	Yes		28-pin SDIP, SOIC
PIC16C73A ⁽¹⁾	20	4	192	TMR0, TMR1, TMR2	2	SPI/I²C, USART	I	2	7	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C74	20	4	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	8	12	33	3.0-6.0	Yes		40-pin DIP; 44-pin PLCC, MQFP
PIC16C74A ⁽¹⁾	20	4	192	TMR0, TMR1, TMR2	2	SPI/I²C, USART	Yes	8	12	33	3.0-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7.

Please contact your local sales office for availability of these devices.

Note 1:

TABLE E-5: PIC16C8X FAMILY OF DEVICES

					Clock		Memory		Per	Peripherals	Features
				A GRING LONG	(Flate)	Today (The lose					QUILLE
		•	TUBE	\$ 80 to	(B/BO)	150	(8) (8) (8) (8) (8) (8) (8) (8) (8) (8)		(29)		SIRN OF SOIL RES
	`	Yana	Sold Sold	1	TUBINE	Addition to	TOOL.	S'ON J	Suid Sund	/ O	SOREX OF
	No.	1×1		\$			N.		4		\ \d
PIC16C83 ⁽¹⁾	10	512	_	98	64	TMR0	4	13	Yes	2.0-6.0	18-pin DIP, SOIC
PIC16CR83 ⁽¹⁾	10		512	36	64	TMR0	4	13	Yes	2.0-6.0	18-pin DIP, SOIC
PIC16C84	10	눚	I	36	64	TMR0	4	13	Yes	2.0-6.0	18-pin DIP, SOIC
PIC16C84A ⁽¹⁾	10	눚	ı	89	64	TMR0	4	13	Yes	2.0-6.0	18-pin DIP, SOIC
PIC16CR84 ⁽¹⁾	10	1	1K	89	64	TMR0	4	13	Yes	2.0-6.0	18-pin DIP, SOIC

All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability.

All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7.

Please contact your local sales office for availability of these devices.

Note 1:

TABLE E-6: PIC17CXX FAMILY OF DEVICES

				NOO!	┙											T
	Ton .	24 anus	To To Land HO de	Selvo vollen etechnos	(So. 100)		\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(14 SU) (SUO RELIES SUS	(1 dy Styll Sells	Statule In I le ries 23	Sidvi siring signal sind signal signa	, stiff of	Silon Stewolet		SION SEGRETORY SIGNIFIA SEGRITORY SIGNIFIA SEGRITORY SION S	
PIC17C42	25	2 K	232	TMR0,TMR1, TMR2,TMR3	, ,	2	Yes	Yes	11	33	4.5-5.5	I	Yes	22	40-pin DIP; 44-pin PLCC, MQFP	
PIC17C43	33	\$	454	TMR0,TMR1, TMR2,TMR3		2	Yes	Yes	=	33	2.5-6.0	Yes	Yes	28	40-pin DIP; 44-pin PLCC, TQFP	
PIC17C44	33	쏫	454	TMR0,TMR1, TMR2,TMR3		2	Yes	Yes	-	33	2.5-6.0	Yes	Yes	28	40-pin DIP; 44-pin PLCC, TQFP	

E.1 Pin Compatibility

Devices that have the same package type and VDD, Vss and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

TABLE E-7: PIN COMPATIBLE DEVICES

Pin Compatible Devices	Package
PIC16C54, PIC16C54A, PIC16CR54, PIC16CR54A, PIC16CR54B, PIC16C56, PIC16CR56, PIC16C58A, PIC16CR58A, PIC16CR58B, PIC16C61, PIC16C620, PIC16C621, PIC16C622, PIC16C70, PIC16C71, PIC16C71A PIC16C83, PIC16CR83, PIC16C84, PIC16C84A, PIC16CR84	18 pin (20 pin)
PIC16C55, PIC16CR55, PIC16C57, PIC16CR57A, PIC16CR57B	28 pin
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28 pin
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40 pin
PIC17C42, PIC17C43, PIC17C44	40 pin

C **INDEX** C Compiler (MP-C)143, 147 Α Capture/Compare/PWM (CCP) Capture Mode......74 Absolute Maximum Ratings 149, 171, 189, 209, 227 CCP1......73 ALU9 CCP2......73 **Application Notes** Compare Mode......75 AN552......49 Compare Mode Block Diagram75 AN556......45 Overview......59 AN594 73 Prescaler75 Architectural Overview9 PWM Block Diagram76 PWM Mode......76 PWM, Example Frequencies/Resolutions77 Baud Rate Formula......97 Baud Rate Generator......97 Carry......9 **Baud Rates** CCP1CON23, 25, 27, 29 Asynchronous Mode98 CCP2CON23, 25, 27, 29 Error, Calculating97 CCPR1H......23, 25, 27, 29 RX Pin Sampling, Timing Diagrams......100 CCPR1L23, 25, 27, 29 Sampling.......100 CCPR2H.....23, 25, 27, 29 Synchronous Mode98 CCPR2L23, 25, 27, 29 **Block Diagrams** Clock Polarity, SPI Mode.....82 Clocking Scheme......17 Crystal Oscillator, Ceramic Resonator......113 Code Examples Changing Between Capture Prescalers75 Changing Prescaler (T0 to WDT)65 External Power-on Reset 123 Changing Prescaler (WDT to T0)65 Ensuring Interrupts are Globally Disabled124 I²C, Idle Mode......93 I²C, Receive Mode93 On-chip Reset Circuit......116 I²C, Transmit Mode93 Parallel Slave Port, PORTD-PORTE57 Indirect Addressing......46 PIC16C61 10 Initializing PORTA47 PIC16C62 11 Initializing PORTB49 PIC16C62A......11 Initializing PORTC51 PIC16C63 12 Loading the SSPBUF Register.....81 PIC16C6411 Reading a 16-bit Free-running Timer69 PIC16C64A......11 Read-Modify-Write on an I/O Port56 PIC16C6512 Saving Status and W Registers.....127 PIC16C65A......12 Subroutine Call, Page0 to Page146 PIC16CR62......11 Code Protection......130 PIC16CR64......11 Computed GOTO45 PORTC51 Configuration Bits111 PORTD (I/O Mode)53 Configuration Word, Diagram112 PORTE (I/O Mode)54 Connecting Two Microcontrollers82, 84 RA4......47 **Data Memory** Organization20 RB3:RB0 pins50 Data Sheet RC Oscillator Mode......115 Compatibility261 SPI Master/Slave Connection......82 Modifications......261 SSP, I²C Mode......88 What's New262 DC CHARACTERISTICS150, 172, 210, 228 SSP, SPI Mode......81 DC Characteristics......190 Timer0......61 Timer0/WDT Prescaler64 Development Support......143 Timer1......68 Development Systems......147 Timer2......71 Development Tools......143 **Device Drawings** 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)250 BOR119 18-Lead Plastic Dual In-line (300 mil)......245 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)248 28-Lead Ceramic CERDIP Dual In-line with Window (300 mil)......251

28-Lead Ceramic Side Brazed Dual In-Line	NOP139
with Window (300 mil)253	OPTION139
28-Lead Plastic Dual In-line (300 mil)	RETFIE 139
28-Lead Plastic Surface Mount	
	RETLW
(SOIC - Wide, 300 mil Body)249	RETURN
28-Lead Plastic Surface Mount	RLF
(SSOP - 209 mil Body 5.30 mm)254	RRF140
40-Lead Ceramic CERDIP Dual In-line	SLEEP140
with Window (600 mil)252	SUBLW14 ²
40-Lead Plastic Dual In-line (600 mil)247	SUBWF14
44-Lead Plastic Leaded Chip Carrier (Square) 255	SWAPF
44-Lead Plastic Surface Mount (MQFP	TRIS
· ·	
10x10 mm Body 1.6/0.15 mm Lead Form) 256, 257	XORLW
Digit Carry9	XORWF 142
Direct Addressing46	Section131
Dynamic Data Exchange (DDE)143	Summary Table132
Ē	INTCON
	Inter-IC Bus84
Electrical Characteristics149, 171, 189, 209, 227	Interrupt on Change Feature
F	Interrupts
Family of Devices	Context Saving
PIC16C5X263	Port RB49
PIC16C62X264	RB0/INT 50, 126
PIC16C6X	RB0/INT Timing Diagram126
PIC16C7X	Timer0 61
PIC16C8X267	Timer0, Timing
PIC17CXX268	Timing Diagram, Wake-up from SLEEP 129
FSR23, 24, 25, 26, 27, 28, 29, 30	TMR0126
Fuzzy Logic Dev. System (<i>fuzzy</i> TECH®-MP)143, 147	Wake-up from SLEEP
- Logic Dev. System (1022) I Long-IVIF) 143, 147	Section
G	3ection124
General Purpose Registers20	L
Graphs, PIC16C61	Loading the Program Counter45
Oraprio, 1 10 1000 1 100	
	M
I I/O Ports, Section	
	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP)	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations130	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations	MPASM Assembler
1 ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17	MPASM Assembler
1 ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17	MPASM Assembler
1 ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131	MPASM Assembler
12C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set	MPASM Assembler
12C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set ADDLW 133	MPASM Assembler
12C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ADDWF 133	MPASM Assembler
12C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ADDWF 133 ANDLW 133 ANDLW 133	MPASM Assembler
12C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ADDWF 133	MPASM Assembler
12C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ADDWF 133 ANDLW 133 ANDLW 133	MPASM Assembler
12C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ADDWF 133 ANDLW 133 ANDLW 133 ANDWF 133 ANDWF 133	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OPCODE 130 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 65 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ANDWF 133 ANDWF 133 BCF 134 BSF 134	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set ADDLW ADDWF 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ADDWF 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ADDWF 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135	MPASM Assembler
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OPCODE 13 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 66 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 113
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ADDWF 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OPCODE 13 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 69 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 115 P Packaging Information 245
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OPCODE 7 OPCION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 66 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 113 P Packaging Information 245 Parallel Slave Port 245
I ² C - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ADDWF 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135 CLRW 135	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OPCODE 13 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 69 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 115 P Packaging Information 245
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135 CLRW 135 CLRWDT 136	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OPCODE 7 OPCION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 66 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 113 P Packaging Information 245 Parallel Slave Port 245
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 133 ADDLW 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135 CLRW 135 CLRWDT 136 DECF 136	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OC 130 OPCODE 131 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 66 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 XT 115 RC, Section 115 XT 113 P Packaging Information 245 Parallel Slave Port 56 Section 57 Section 57
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ANDWF 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135 CLRW 135 CLRWDT 136 DECF 136 DECFSZ 136	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 O 143, 147 OPCODE 13 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal . 115 Capacitor Selection 66 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 XT 113 P Packaging Information 245 Parallel Slave Port 56 Section 57 PCL 23, 24, 25, 26, 27, 28, 29, 30
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135 CLRW 135 CLRW 136 DECF 136 DECF 136 DECFSZ 136 GOTO 137	MPASM Assembler
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135 CLRW 135 CLRWDT 136 DECF 136 DECFSZ 136 GOTO 137 INCF 137	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OC 130 OPCODE 131 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 66 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 113 P Packaging Information 245 Parallel Slave Port 56 Section 57 PCL 23, 24, 25, 26, 27, 28, 29, 30 PCLATH 23, 24, 25, 26, 27, 28, 29, 30 PCLATH 23, 24, 25, 26, 27, 28, 29, 30 PCON 24, 26, 28, 30
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDLW 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRW 135 CLRW 136 DECF 136 DECF 136 DECFSZ 136 GOTO 137 INCF 137 INCFSZ 137	MPASM Assembler
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Format 131 Instruction Set 133 ADDLW 133 ANDLW 133 ANDWF 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRF 135 CLRW 135 CLRWDT 136 DECF 136 DECFSZ 136 GOTO 137 INCF 137	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 OC 130 OPCODE 131 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 66 Configuration 113 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 113 P Packaging Information 245 Parallel Slave Port 56 Section 57 PCL 23, 24, 25, 26, 27, 28, 29, 30 PCLATH 23, 24, 25, 26, 27, 28, 29, 30 PCLATH 23, 24, 25, 26, 27, 28, 29, 30 PCON 24, 26, 28, 30
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDLW 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRW 135 CLRW 136 DECF 136 DECF 136 DECFSZ 136 GOTO 137 INCF 137 INCFSZ 137	MPASM Assembler
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDLW 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRW 135 CLRW 135 CLRWDT 136 DECF 136 DECFSZ 136 GOTO 137 INCF 137 INCFSZ 137 IORLW 137	MPASM Assembler
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDLW 133 BCF 134 BSF 134 BTFSC 134 BTFSS 135 CALL 135 CLRW 135 CLRW 135 CLRWDT 136 DECF 136 DECFSZ 136 GOTO 137 INCF 137 INCFSZ 137 IORWF 138 MOVF 138	MPASM Assembler 143, 146 MP-C C Compiler 147 MPSIM Software Simulator 143, 147 O 143, 147 O 143, 147 OPCODE 13 OPTION 24, 26, 28, 30 Oscillator Start-up Timer (OST) 111, 117 Oscillators Block Diagram, External Parallel Resonant Crystal 115 Capacitor Selection 65 Configuration 115 External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 115 P Packaging Information 245 Parallel Slave Port 56 Section 57 PCL 23, 24, 25, 26, 27, 28, 29, 30 PCL 23, 24, 25, 26, 27, 28, 29, 30 PCON 24, 26, 28, 30 PD 119 PICDEM-1 Low-Cost PIC16/17 Demo Board 143, 145 PICDEM-2 Low-Cost PIC16CXX Demo Board 143, 145 PICMASTER System Configuration 143
IPC - See Synchronous Serial Port (SSP) ID Locations 130 In-circuit Serial Programming 130 INDF 23, 25, 27, 29 Indirect Addressing 46 Instruction Cycle 17 Instruction Flow/Pipelining 17 Instruction Set 131 ADDLW 133 ANDLW 133 ANDLW 133 ANDWF 134 BSF 134 BFFSC 134 BTFSS 135 CALL 135 CLRW 135 CLRW 135 CLRWDT 136 DECF 136 DECF 136 DECFSZ 136 GOTO 137 INCF 137 INCFSZ 137 IORWF 138	MPASM Assembler

PIE1		Organization	
PIE2		Paging	
Pin Compatible Devices	269	Section	19
Pin Functions		Programming while In-circuit	130
MCLR/Vpp	15	PUSH	45
OSC1/CLKIN	15	Q	
OSC2/CLKOUT	15	-,	
PORTA		Quadrature Clocks	
PORTB		Quick-Turnaround-Production	7
PORTC		R	
			40
PORTD		RBPU	• • • • • • • • • • • • • • • • • • • •
PORTE		RC Oscillator	
RA4/ <u>T0</u> CKI	•	RCREG	23, 25, 27, 29
RA5/SS	15, 48	RCSTA	23, 25, 27, 29
RB0/INT	15, 50	Registers	
RB6	130	CCP1CON	
RB7	130	Diagram	74
RC0/T10SI/T1CKI		Section	
RC0/T1OSO/T1CKI		Summary	
RC1/T10SI	,	•	23, 23, 27, 29
RC1/T1031		CCP2CON	7.4
	•	Diagram	
RC1/T1OSO		Section	
RC2/CCP1	· ·	Summary	25, 29
RC3/SCK/SCL	15, 51, 52	CCPR1H	
RC4/SDI/SDA	15, 51, 52	Summary	23, 25, 27, 29
RC5/SDO	15, 51, 52	CCPR1L	
RC6/TX/CK	. 15, 51, 52, 95–109	Summary	23, 25, 27, 29
RC7/RX/DT	. 15. 51. 52. 95–109	CCPR2H	
RD7/PSP7:RD0/PSP0		Summary	25 20
RE0/RD		·	25, 29
		CCPR2L	05.00
RE1/WR		Summary	25, 29
RE2/CS		FSR	
SCK		Indirect Addressing	
SDI		Summary	23, 25, 27, 29
SDO	81–83	INDF	
SS	81–83	Indirect Addressing	46
VDD	16	Summary	23, 25, 27, 29
Vss	16	INTCON	
PIR1	23. 25. 27. 29	Diagram	34
PIR2		Section	
POP	, , ,	Summary	
POR	40	OPTION	25, 25, 27, 29
Time-Out Sequence on Power-Up	122		22
· · · ·		Diagram	
POR		Section	
Port RB Interrupt		Summary	24, 26, 28, 30
PORTA		PCL	
PORTB	23, 25, 27, 29	Section	45
PORTC	23, 25, 27, 29	Summary	23, 25, 27, 29
PORTD	23, 25, 27, 29	PCLATH	
PORTE	23, 25, 27, 29	Section	45
Ports		Summary	
Bi-directional	56	PCON	-, -, , -
I/O Programming Considerations		Diagram	44
• •		Section	
PORTA			
PORTB		Summary	24, 26, 26, 30
PORTC		PIE1	
PORTD		Diagram	
PORTE	16	Section	35
Successive Operations on an I/O Po	rt56	Summary	24, 26, 28, 30
Power-down Mode	129	PIE2	
Power-on Reset (POR)		Diagram	42
Power-up Timer (PWRT)		Section	
PR2		Summary	
		PIR1	20, 30
Prescaler			4.4
PRO MATE™ Universal Programmer	143, 145	Diagram	
Program Memory		Section	
Map	19	Summary	23, 25, 27, 29

PIR2	TRISC
Diagram43	Section51
Section43	Summary 24, 26, 28, 30
Summary25, 29	TRISD
PORTA	Section53
Section47	Summary
Summary23, 25, 27, 29	TRISE
PORTB	Diagram 54
Section49	Section
Summary23, 25, 27, 29	Summary
PORTC	TXREG
Section51	Summary 25, 29
Summary23, 25, 27, 29	TXSTA
PORTD	Diagram95
Section53	Section
Summary27, 29	Summary
PORTE	W
Section54	Special Function Registers, Initialization Conditions 120
Summary	Special Function Registers, Reset Conditions 119
PR2	· · · · · · · · · · · · · · · · · · ·
	Special Function Register Summary 23, 25, 27, 29
Summary24, 26, 28, 30	File Maps
RCREG	Resets
Summary25, 29	RP0 bit
RCSTA	S
Diagram96	_
Summary25, 29	SCI - See Universal Synchronous Asynchronous Receive
SPBRG	Transmitter (USART)
Summary26, 30	SCK 8 ²
SSPBUF	SDI8′
Section81	SDO81
	Serial Programming130
Summary	Serial Programming, Block Diagram
SSPCON	Serialized Quick-Turnaround-Production
Diagram80	SLEEP Mode111, 129
Summary23, 25, 27, 29	Software Simulator (MPSIM)
SSPSR	
Section81	SPBRG
SSPSTAT	Special Features, Section
Diagram79	<u>SPI</u> Mode81
Section79	SS8 ²
Summary24, 26, 28, 30	SSPADD24, 26, 28, 30
STATUS	SSPBUF 23, 25, 27, 29
Diagram31	SSPCON
	SSPSTAT 24, 26, 28, 30
Section31	Stack
Summary23, 25, 27, 29	STATUS
T1CON	
Diagram67	Status Bits
Section67	Status Bits During Various Resets
Summary23, 25, 27, 29	Switching Prescalers65
T2CON	Synchronous Serial Port (SSP)
Diagram71	Block Diagram, SPI Mode87
Section71	I ² C
Summary	7-bit, 10-bit Address Format85
· · · · · · · · · · · · · · · · · · ·	Addressing85
TMR0	Arbitration
Summary23, 25, 27, 29	Block Diagram
TMR1H	
Summary23, 25, 27, 29	Clock Synchronization
TMR1L	Combined Master-Receiver/Transmitter Sequence
Summary23, 25, 27, 29	86
TMR2	Data Transfer85
Summary23, 25, 27, 29	Initiating and Terminating Data Transfer84
TRISA	Master Mode92
Section47	Master-Receiver Sequence
_	Master-Transmitter Sequence
Summary24, 26, 28, 30	Multi-Master
TRISB	Multi-Master Mode
Section49	
Summary24, 26, 28, 30	Operation
	Slave Mode89

Slave Mode, Addressing	89	I ² C Bus Data	.18
Slave Mode, Reception		I ² C Bus Start/Stop Bits	
Slave Mode, Transmission		Oscillator Start-up Timer	
Terminology, Table		Power-up Timer	
Timing Diagram, Slave Mode Reception		Reset	
Timing Diagram, Transmission, 7-bit		SPI Mode	.183
Transfer Acknowledge	85	Timer0	.18
I ² C Section		Timer1	.180
Section	79	Watchdog Timer	.179
SPI Master/Slave Diagram	82	PIC16C62A	
SPI Mode		Brown-out Reset	.19
т		Capture/Compare/PWM	.20
		CLKOUT and I/O	
T1CON		External Clock	
T2CON	' '	I ² C Bus Data	.20
Time-out Sequence	118	I ² C Bus Start/Stop Bits	.204
Timer Modules	50	Oscillator Start-up Timer	
Overview, all	59	Power-up Timer	
Timer0	0.4	Reset	
Block Diagram		SPI Mode	.203
Counter Mode		Timer0	.200
External Clock		Timer1	.200
Interrupt		Watchdog Timer	.199
Overview		PIC16C63	
Prescaler	_	Brown-out Reset	.23
Section	_	Capture/Compare/PWM	.23
Timer Mode		CLKOUT and I/O	.23
Timing Diagram		External Clock	.23
TMR0 register	61	I ² C Bus Data	.24
Timer1	00	I ² C Bus Start/Stop Bits	.240
Block Diagram		Oscillator Start-up Timer	.23
Capacitor Selection		Power-up Timer	
Counter Mode, Asynchronous		Reset	.23
Counter Mode, Synchronous		SPI Mode	.239
External Clock		Timer0	.23
Oscillator		Timer1	.23
Overview		USART Synchronous Receive (Master/Slave).	.242
Prescaler		USART Synchronous Transmission	
Section		(Master/Slave)	.242
Timer Mode		Watchdog Timer	.23
TMR1 Register Pair	07	PIC16C64	
Timer2 Block Diagram	71	Capture/Compare/PWM	
Overview		CLKOUT and I/O	
Postscaler		External Clock	.17
Prescaler		I ² C Bus Data	.18
		I ² C Bus Start/Stop Bits	.184
Section		Oscillator Start-up Timer	
TMR2 Register	/ 1	Parallel Slave Port	.182
Timing Diagrams	447	Power-up Timer	
Brown-out Reset I ² C Slave Reception, 7-bit		Reset	
		SPI Mode	.183
I ² C, Clock Synchronization		Timer0	.180
I ² C, Data Transfer		Timer1	.180
I ² C, Multi-Master Arbitration		Watchdog Timer	.179
I ² C, Slave Mode Transmission - 7-bit	91	PIC16C64A	
PIC16C61 CLKOUT and I/O	450	Brown-out Reset	.19
		Capture/Compare/PWM	.20
External Clock		CLKOUT and I/O	.19
Oscillator Start-up Timer		External Clock	.19
Power-up Timer		I ² C Bus Data	
Reset		I ² C Bus Start/Stop Bits	
Timer0		Oscillator Start-up Timer	
Watchdog Timer	15/	Parallel Slave Port	
PIC16C62	404	Power-up Timer	.199
Capture/Compare/PWM		Reset	.199
CLKOUT and I/O		SPI Mode	
External Clock	177	Timer0	.200

Timer1	200	SPI Mode, Slave Mode With SS Control
Watchdog Timer	199	USART, Asynchronous Reception 10
PIC16C65		USART, Synchronous Tranmission
Capture/Compare/PWM	. 219	Wake-up from SLEEP Through Interrupts
CLKOUT and I/O		TMR0
External Clock		TMR1H
I ² C Bus Data		TMR1L
I ² C Bus Start/Stop Bits		TMR2
Oscillator Start-up Timer		TO
Parallel Slave Port		TRISA
Reset		TRISB
SPI Mode		TRISC24, 26, 28, 3
Timer0		TRISD24, 26, 28, 3
Timer1		TRISE 24, 26, 28, 3
USART Synchronous Receive (Master/Slave)	. 224	TXREG 23, 25, 27, 2
USART Synchronous Transmission		TXSTA 24, 26, 28, 3
(Master/Slave)	224	U
Watchdog Timer	217	-
PIC16C65A		Universal Synchronous Asynchronous Receiver Transmitt
Brown-out Reset	235	(USART)
Capture/Compare/PWM	237	Asynchronous Mode
CLKOUT and I/O		Setting Up Transmission
External Clock		Timing Diagram, Master Transmission 10
I ² C Bus Data		Transmitter 10
I ² C Bus Start/Stop Bits		Asynchronous Receiver
Oscillator Start-up Timer		Setting Up Reception10
•		Timing Diagram 10
Parallel Slave Port		Asynchronous Receiver Mode
Power-up Timer		Block Diagram10
Reset		Section
SPI Mode		Section
Timer0		Synchronous Master Mode
Timer1		
USART Synchronous Receive (Master/Slave)	. 242	Reception
USART Synchronous Transmission		Section
(Master/Slave)	242	Setting Up Reception
Watchdog Timer	235	Setting Up Transmission
PIC16CR62		Timing Diagram, Reception
Capture/Compare/PWM	201	Timing Diagram, Transmission 10
CLKOUT and I/O		Transmission 10
External Clock	196	Synchronous Slave Mode
I ² C Bus Data	205	Reception10
I ² C Bus Start/Stop Bits		Section10
Oscillator Start-up Timer	199	Setting Up Reception10
Power-up Timer		Setting Up Transmission
Reset		Transmit10
SPI Mode		Transmit Block Diagram 10
		UV Erasable Devices
Timer0		W
Timer1		
Watchdog Timer	199	Wake-up from Sleep12
PIC16CR64		Wake-up on Key Depression
Capture/Compare/PWM		Watchdog Timer (WDT)
CLKOUT and I/O		Block Diagram12
External Clock		Period
I ² C Bus Data		Programming Considerations
I ² C Bus Start/Stop Bits	204	Section
Oscillator Start-up Timer		Weak Internal Pull-ups
Parallel Slave Port	202	·
Power-up Timer		X
Reset		XT 1′
SPI Mode		Z
Timer0		
Timer1		Zero bit
Watchdog Timer		
•		
Power-up Timer		
RB0/INT Interrupt		
RX Pin Sampling		
SPI Mode, Master/Slave Mode, No SS Control	გვ	

LIST OF	EXAMPLES		Figure 4-21:	PCON Register for PIC16C62/64/65 (Address 8Eh)4	1
Example 3-1:	Instruction Pipeline Flow1	7	Figure 4-22:	PCON Register for	+
Example 4-1:			riguic + ZZ.	PIC16C62A/R62/63/64A/R64/65A	
•	S S			(Address 8Eh)4	1
Example 4-2:	Indirect Addressing4 Initializing PORTA4		Figure 4-23:	Loading of PC in Different Situations4	
Example 5-1:	•		Figure 4-24:	Direct/Indirect Addressing4	
Example 5-2:	Initializing PORTS 4		Figure 5-1:	Block Diagram of the	U
Example 5-3:	Initializing PORTC	1	rigule 5-1.	RA3:RA0 Pins and the RA5 Pin4	7
Example 5-4:	•	0	Figure 5-2:	Block Diagram of the RA4/T0CKI Pin4	
F.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I/O Port		Figure 5-2:	Block Diagram of the	′
Example 7-1:	,		rigule 5-5.	•	_
	Changing Prescaler (WDT→Timer0) 6	5	Eiguro E 4:	RB7:RB4 Pins FOR PIC16C61/62/64/654	9
Example 8-1:	Reading a 16-bit	_	Figure 5-4:	Block Diagram of the	
F	Free-running Timer			RB7:RB4 Pins FOR	^
•	: Changing Between Capture Prescalers7		Ciaura E E	PIC16C62A/63/64A/65A	U
•	: PWM Period and Duty Cycle Calculation 7		Figure 5-5:	Block Diagram of the	_
	: Loading the SSPBUF (SSPSR) Register 8		F:	RB3:RB0 Pins	U
•	: Calculating Baud Rate Error9	7	Figure 5-6:	PORTC Block Diagram (Peripheral	
Example 13-1	: Saving Status and W Registers in RAM	_	F' 5. 7	Output Override)5	1
	(PIC16C61)12	7	Figure 5-7:	PORTD Block Diagram	_
Example 13-2	: Saving Status and W Registers in RAM		E: 5.0	(In I/O Port Mode)5	3
	(PIC16C62/62A/R62/63/64/		Figure 5-8:	PORTE Block Diagram	_
	64A/R64/65/65A)12	7		(In I/O Port Mode)5	
			Figure 5-9:	TRISE Register (Address 89h)5	
LIST OF	FIGURES		Figure 5-10:	Successive I/O Operation5	6
			Figure 5-11:	PORTD and PORTE as a Parallel Slave	
Figure 3-1:	PIC16C61 Block Diagram1	0		Port5	7
Figure 3-2:	PIC16C62/62A/R62/64/64A/R64 Block		Figure 7-1:	Timer0 Block Diagram6	
	Diagram1		Figure 7-2:	Timer0 Timing: Internal Clock/No Prescaler6	
Figure 3-3:	PIC16C63/65/65A Block Diagram 1	2	Figure 7-3:	Timer0 Timing: Internal Clock/Prescale 1:2 6	
Figure 3-4:	Clock/Instruction Cycle 1	7	Figure 7-4:	Timer0 Interrupt Timing6	2
Figure 4-1:	PIC16C61 Program Memory Map and		Figure 7-5:	Timer0 Timing With External Clock6	3
	Stack1	9	Figure 7-6:	Block Diagram of the Timer0/WDT	
Figure 4-2:	PIC16C62/62A/R62/64/64A/			Prescaler6	4
	R64 Program Memory Map and Stack 1	9	Figure 8-1:	T1CON: Timer1 Control Register	
Figure 4-3:	PIC16C63/65/65A Program Memory Map			(Address 10h)6	7
	and Stack1	9	Figure 8-2:	Timer1 Block Diagram6	8
FIGURE 4-4:	PIC16C61 Register File Map2	0	Figure 9-1:	Timer2 Block Diagram7	1
FIGURE 4-5:	PIC16C62/62A/R62/64/64A/		Figure 9-2:	T2CON: Timer2 Control Register	
	R64 Register File Map2	1		(Address 12h)7	1
Figure 4-6:	PIC16C63/65/65A Register File Map2	1	Figure 10-1:	CCP1CON Register (Address 17h) /	
Figure 4-7:	STATUS Register (Address 03h, 83h) 3	1		CCP2CON Register (Address 1Dh)7	4
Figure 4-8:	OPTION Register (Address 81h)3	2	Figure 10-2:	Capture Mode Operation Block Diagram7	4
Figure 4-9:	INTCON Register for PIC16C61		Figure 10-3:	Compare Mode Operation Block Diagram7	5
	(Address 0Bh, 8Bh)3	3	Figure 10-4:	Simplified PWM Block Diagram7	6
Figure 4-10:	INTCON Register for			PWM Output7	
	PIC16C62/62A/R62/63/64/64A/R64/65/65A		Figure 11-1:	SSPSTAT: Sync Serial Port Status Register	
	(Address 0Bh, 8Bh)3	4	-	(Address 94h)7	
Figure 4-11:	PIE1 Register for PIC16C62/62A/R62		Figure 11-2:	SSPCON: Sync Serial Port Control Register	
Ü	(Address 8Ch)3	5	Ü	(Address 14h)8	0
Figure 4-12:	PIE1 Register for PIC16C63		Figure 11-3:	SSP Block Diagram	
3	(Address 8Ch)3	6	3	(SPI Mode)8	1
Figure 4-13:	PIE1 Register for PIC16C64/64A/R64		Figure 11-4:	SPI Master/Slave Connection8	
3	(Address 8Ch)3	6	Figure 11-5:	SPI Mode Timing (Master Mode or Slave	
Figure 4-14:	PIE1 Register for PIC16C65/65A		3	Mode w/o SS Control)8	3
3	(Address 8Ch)	7	Figure 11-6:	SPI Mode Timing (Slave Mode with SS	
Figure 4-15:	PIR1 Register for PIC16C62/62A/R62	-		Control)8	3
ga	(Address 0Ch)3	8	Figure 11-7:	Start and Stop Conditions8	
Figure 4-16:	PIR1 Register for PIC16C63		Figure 11-8:	7-bit Address Format8	
	(Address 0Ch)3	9	Figure 11-9:	I ² C 10-bit Address Format8	
Figure 4-17:	PIR1 Register for PIC16C64/64A/R64	-		Slave-Receiver Acknowledge8	
3	(Address 0Ch)4	0		Data Transfer Wait State8	
Figure 4-18:	PIR1 Register for PIC16C65/65A	-	-	Master-Transmitter Sequence8	
ga.o + 10.	(Address 0Ch)4	1		Master-Receiver Sequence8	
Figure 4-19:	PIE2 Register (Address 8Dh)			Combined Format8	
Figure 4-19.	PIR2 Register (Address 0Dh)			Multi-master Arbitration (Two Masters) 8	

Figure 13-2: Configuration Word for PIC16C62/64/65112 Figure 13-3: Configuration Word for PIC16C62/64/65		Clock Synchronization87 SSP Block Diagram	Figure 16-1:	Load Conditions for Device Timing Specifications	154
Figure 11-12 CV waveforms for Transmission Pigure 11-2 Transmission Pigure 11-2 Transmission Pigure 12-2 Transmission Pigure 12-1 Pigure 13-1			Figure 16-2:	External Clock Timing	155
Figure 1-19: Third Address) Figure 1-19: Third Address	Figure 11-18:	I ² C Waveforms for Reception	Figure 16-3:	CLKOUT and I/O Timing	156
Figure 11-20 Operation of the Figure 20-21 Figure 15-31 Figure 17-32 Figure 17-32 Figure 17-32 Figure 17-32 Figure 17-33 Figure 17-34 Fi		(7-Bit Address)90	Figure 16-4:	Reset, Watchdog Timer, Oscillator Start-u	р
Figure 12-0: Operation of the *C Module in IDLE, MODE, RC MODE or WITT MODE 93	Figure 11-19:	I ² C Waveforms for Transmission		Timer and Power-up Timer Timing	157
RCV_MODE or XMIT_MODE 93		(7-bit Address)91	Figure 16-5:	Timer0 Clock Timings	158
Figure 12-1: XSTA. Transmit Status and Control Register (Address 98h)	Figure 11-20:	Operation of the I ² C Module in IDLE_MODE,	Figure 17-1:	Typical RC Oscillator Frequency vs.	
Figure 12-1: XSTA. Transmit Status and Control Register (Address 98h)	•		•	Temperature	159
Figure 12-2. RCSTA: Receives Status and Control Register (Address 18h)	Figure 12-1:		Figure 17-2:		
Figure 12-2: RCSTA: Receive Status and Control Register (Address 18h)	Ü	Register (Address 98h)	-		
Register (Address 18h)	Figure 12-2		ū	* * *	
Figure 12-3: RX Pin Sampling Scheme (BRGH = 1)100	1 iguio 12 2.		•		
Figure 12-4: RX Pin Sampling Scheme (BRGH = 1)100 Figure 12-6: USART Transmit Block Diagram	Figure 12-3:		rigulo 17 o.		161
Figure 12-5: X.7 Pin Sampling Scheme (BRGH = 1)	-	. •	Figure 17.6:		101
Figure 12-6: USART Transmit Block Diagram 101 Figure 12-7: Maximum IP ov s. VDD Watchdog 162 Figure 12-8: Asynchronous Master Transmission 102 Figure 12-8: Watchdog Enabled 163 Maximum IP ov s. VDD Watchdog 163 Figure 17-10 VIr Hinput Threshold Voltage) of IV of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) VIV II of MCLR, IT of IR (IR Node) V	-		rigule 17-0.		162
Figure 12-7: Asynchronous Master Transmission	•		Figure 17 7:		102
Figure 12-8: Asynchronous Master Transmission (Back to Back) 102 103 103 103 104 104 105 1	•	_	rigule 17-7.		400
(Back to Back)	-	·	F: 47 0:		102
Figure 12-9: USART Receive Block Diagram	Figure 12-8:		Figure 17-8:		400
Figure 12-10: Synchronous Reception 103 Figure 17-10: Synchronous Transmission 106 Figure 17-10: Synchronous Transmission 106 Figure 17-10: Synchronous Transmission (Through TXEN) 108 Figure 17-11: This (Input Threshold Voltage) of OSC1 164 Figure 17-12: Typical Ibo vs. Frequency (External Clock, 25°C) 165 Figure 13-2: Configuration Word for PIC16C62/64/65		· ·			163
Figure 12-11: Synchronous Transmission	•	_	Figure 17-9:		
Figure 12-12 Synchronous Transmission 166 Figure 17-13 Synchronous Reception (Master Mode, SREN)	ū	· ·			163
Through TXEN	Figure 12-11:	·	Figure 17-10:		
Figure 12-13: Synchronous Reception (Master Mode, SREN)	Figure 12-12:	Synchronous Transmission		(in RC Mode) vs. VDD	164
SREN 108		(Through TXEN)106	Figure 17-11:		
SREN 108	Figure 12-13:	Synchronous Reception (Master Mode,		Input (in XT, HS, and LP Modes) vs. VDD	164
Figure 13-1: Configuration Word for PIC16C61 111 Clock, 25°C) 165		SREN)108	Figure 17-12:		
Figure 13-2: Configuration Word for PIC16C62/64/65112 Figure 13-3: Configuration Word for PIC16C62/R62/65	Figure 13-1:		•	Clock, 25°C)	165
Figure 13-3:	Figure 13-2:	-	Figure 17-13:		
PicTeGG2A/R62/G3/64A/R64/65A	•	•	J		165
Figure 13-4: Crystal/Ceramic Resonator Operation (HS, XT or LP OSC Configuration) 113 Figure 13-5: External Clock Input Operation (HS, XT or LP OSC Configuration) 113 Figure 13-6: External Parallel Resonant Crystal Oscillator Circuit 115 Figure 13-7: External Series Resonant Crystal Oscillator Circuit 115 Figure 13-7: External Series Resonant Crystal Simplified Block Diagram of On-chip Reset Circuit 116 Figure 13-8: Simplified Block Diagram of On-chip Reset Circuit 116 Figure 13-10: Figure 13-11: Time-out Sequence on Power-up (MCLR not Tied to Vob): Case 2 122 Figure 13-12: Time-out Sequence on Power-up Figure 13-13: Time-out Sequence on Power-up Figure 13-14: External Brown-out Protection Circuit 123 Figure 13-16: External Brown-out Protection Circuit 2 123 Figure 13-16: External Brown-out Protection Circuit 2 123 Figure 13-19: Interrupt Logic for PIC16C62/62A/R62/63 125 Figure 13-2: Watchdog Timer Block Diagram 128 Figure 13-2: Watchdog Timer Block Diagram 128 Figure 13-2: Watchdog Timer Registers 128 Figure 13-2: Watchdog Timer Registers 128 Figure 13-2: Watchdog Timer Block Diagram 128 Figure 13-2: Watchdog Timer Registers 129 Figure 13-2: External Brown-out Protection Circuit 1 129 Figure 13-2: Watchdog Timer Registers 128 Figure 13-2: Watchdog Timer Registers 128 Figure 13-2: Watchdog Timer Registers 128 Figure 13-2: Watchdog Timer Registers 129 Figure 13-2: External Brown Four Protection Circuit 1 129 Figure 13-2: External Brown Four Protection Circuit 1 129 Figure 13-2: External Brown Four Protection Circuit 1 129 Figure 13-2: Curcuit Continue 129 Figure 13-2: Figure 13-2		•	Figure 17-14:		
(HS, XT or LP OSC Configuration)	Figure 13-4:		rigulo II I II		166
Figure 13-5: External Clock Input Operation (HS, XT or LP OSC Configuration)	rigare to 4.	· ·	Figure 17-15		
Continue	Figure 13-5:	• •			100
Figure 13-6: External Parallel Resonant Crystal Oscillator Circuit	rigule 15-5.		rigule 17-10.		167
Circuit	Figure 40 C	· ,	F: 47 47.		107
Figure 13-7: External Series Resonant Crystal Oscillator Circuit	rigure 13-6.		rigure 17-17.		407
Oscillator Circuit	Fig. 40.7		F' 47 40		107
Figure 13-8: RC Oscillator Mode	Figure 13-7:		Figure 17-18:	, · · · ·	
Figure 13-9: Simplified Block Diagram of On-chip Reset Circuit					
Reset Circuit 116	0				
Figure 13-10: Brown-out Situations	Figure 13-9:				
Figure 13-11: Time-out Sequence on Power-up (MCLR not Tied to VDD): Case 1			Figure 17-21:	IOL vs. VOL, VDD = 3V	169
Figure 13-12: Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2	-		Figure 17-22:		170
Figure 13-12: Time-out Sequence on Power-up (MCLR Not Tied To VDD): Case 2 Figure 13-13: External Clock Timing 177 Figure 13-13: Time-out Sequence on Power-up (MCLR Tied to VDD) Figure 18-14: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Start-up Timer and Power-up Timer 179 Figure 13-14: External Brown-out Protection Circuit (For Slow VDD Power-up) 123 Figure 18-5: Timer0 and Timer1 Clock Timings 180 Figure 13-15: External Brown-out Protection Circuit 1 123 Figure 18-6: Capture/Compare/PWM Timings (CCP1) 181 Figure 13-16: External Brown-out Protection Circuit 2 123 Figure 18-6: Capture/Compare/PWM Timings (CCP1) 181 Figure 13-17: Interrupt Logic for PIC16C61 125 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 13-18: Interrupt Logic for PIC16C62/62A/R62/63 125 Figure 18-9: 1/2 Bus Start/Stop Bits Timing 183 Figure 13-20: INT Pin Interrupt Timing 126 Figure 18-10: 1/2 Bus Data Timing 185 Figure 13-21: Watchdog Timer Block Diagram 128 Figure 20-1:	Figure 13-11:		Figure 18-1:	Load Conditions for Device Timing	
Figure 13-13: Time-out Sequence on Power-up (MCLR Tied to VDD)		(MCLR not Tied to VDD): Case 1122		Specifications	176
Figure 13-13: Time-out Sequence on Power-up (MCLR Tied to VDD)	Figure 13-12:	Time-out Sequence on Power-up	Figure 18-2:	External Clock Timing	177
Figure 13-13: Time-out Sequence on Power-up (MCLR Tied to VDD)		(MCLR Not Tied To VDD): Case 2 122	Figure 18-3:	CLKOUT and I/O Timing	178
Figure 13-14: External Power-on Reset Circuit (For Slow VDD Power-up)	Figure 13-13:	Time-out Sequence on Power-up	Figure 18-4:		
Figure 13-14: External Power-on Reset Circuit (For Slow VDD Power-up)	· ·		Ü	Start-up Timer and Power-up Timer	
Slow VDD Power-up)	Figure 13-14:				179
Figure 13-15: External Brown-out Protection Circuit 1 123 Figure 13-16: External Brown-out Protection Circuit 2 123 Figure 13-17: Interrupt Logic for PIC16C61 125 Figure 13-18: Interrupt Logic for PIC16C62/62A/R62/63 125 Figure 13-19: Interrupt Logic for PIC16C64/64A/R64/65/65A 125 Figure 13-20: INT Pin Interrupt Timing 126 Figure 13-21: Watchdog Timer Block Diagram 128 Figure 13-22: Summary of Watchdog Timer Registers 128 Figure 13-23: Wake-up from Sleep Through Interrupt 129 Figure 13-24: Typical In-circuit Serial Programming Connection 130 Figure 15-1: PICMASTER System Configuration 143 Figure 18-6: Capture/Compare/PWM Timings (CCP1) 181 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing For The PIC16C64 Only) 182 Figure 18-7: Parallel Slave Port Timing Figure 18-7	gao .o	· ·	Figure 18-5:		
Figure 13-16: External Brown-out Protection Circuit 2123 Figure 13-17: Interrupt Logic for PIC16C61	Figure 13-15:	• *			
Figure 13-17: Interrupt Logic for PIC16C61 125 PIC16C64 Only) 182 Figure 13-18: Interrupt Logic for PIC16C62/62A/R62/63 125 Figure 18-8: SPI Mode Timing 183 Figure 13-19: Interrupt Logic for PIC16C64/64A/R64/65/65A 125 Figure 18-9: I²C Bus Start/Stop Bits Timing 184 Figure 13-20: INT Pin Interrupt Timing 126 Figure 18-10: I²C Bus Data Timing 185 Figure 13-21: Watchdog Timer Block Diagram 128 Figure 20-1: Load Conditions for Device Timing Specifications 195 Figure 13-22: Summary of Watchdog Timer Registers 128 Figure 20-2: External Clock Timing 196 Figure 13-24: Typical In-circuit Serial Programming Figure 20-3: CLKOUT and I/O Timing 198 Figure 14-1: General Format for Instructions 131 Start-up Timer and Power-up Timer Timing 199 Figure 15-1: PICMASTER System Configuration 143 Figure 20-5: Brown-out Reset Timing 199	-		•		101
Figure 13-18: Interrupt Logic for PIC16C62/62A/R62/63 125 Figure 13-19: Interrupt Logic for PIC16C64/64A/R64/65/65A	-		rigule 10-7.	_	100
Figure 13-19: Interrupt Logic for PIC16C64/64A/R64/65/65A	-	. •	F: 40 0:		
Figure 13-20: INT Pin Interrupt Timing			-		
Figure 13-20: INT Pin Interrupt Timing	Figure 13-19:	. •	•	•	
Figure 13-21: Watchdog Timer Block Diagram	Fig. 40.00		-		185
Figure 13-22: Summary of Watchdog Timer Registers 128 Figure 13-23: Wake-up from Sleep Through Interrupt 129 Figure 13-24: Typical In-circuit Serial Programming Connection			Figure 20-1:		
Figure 13-23: Wake-up from Sleep Through Interrupt 129 Figure 13-24: Typical In-circuit Serial Programming Connection	-				
Figure 13-24: Typical In-circuit Serial Programming Connection	-	, , , , , , , , , , , , , , , , , , , ,			
Connection			Figure 20-3:	CLKOUT and I/O Timing	198
Figure 14-1: General Format for Instructions	Figure 13-24:	Typical In-circuit Serial Programming	Figure 20-4:	Reset, Watchdog Timer, Oscillator	
Figure 15-1: PICMASTER System Configuration 143 Figure 20-5: Brown-out Reset Timing		Connection130		Start-up Timer and Power-up Timer	
Figure 15-1: PICMASTER System Configuration 143 Figure 20-5: Brown-out Reset Timing	Figure 14-1:	General Format for Instructions 131		Timing	199
	Figure 15-1:	PICMASTER System Configuration 143	Figure 20-5:	Brown-out Reset Timing	199
			Figure 20-6:	Timer0 and Timer1 Clock Timings	200

PIC16C64A/R64 Only
Figure 20-10: I²C Bus Start/Stop Bits Timing
Figure 20-11: I²C Bus Data Timing 205 Figure 22-1: Load Conditions for Device Timing 214 Figure 22-2: External Clock Timing 215 Figure 22-3: CLKOUT and I/O Timing 216 Figure 22-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing 217 Figure 22-5: Timer0 and Timer1 Clock Timings 218 Figure 22-6: Capture/Compare/PWM Timings (CCP1 219 Figure 22-7: Parallel Slave Port Timing 220 Figure 22-8: SPI Mode Timing 221 Figure 22-9: I²C Bus Start/Stop Bits Timing 222 Figure 22-10: I²C Bus Data Timing 223 Figure 22-11: USART Module: Synchronous 23 Figure 22-12: USART Module: Synchronous Receive (Master/Slave) Timing 224 Figure 24-1: Load Conditions for Device Timing 232 Figure 24-2: External Clock Timing 233 Figure 24-3: CLKOUT and I/O Timing 234 Figure 24-4: Reset, Watchdog Timer, Oscillator <
Figure 22-1: Load Conditions for Device Timing Specifications
Specifications
Figure 22-2: External Clock Timing
Figure 22-3: CLKOUT and I/O Timing
Figure 22-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing 217 Figure 22-5: Timer0 and Timer1 Clock Timings 218 Figure 22-6: Capture/Compare/PWM Timings (CCP1 and CCP2) 219 Figure 22-7: Parallel Slave Port Timing 220 Figure 22-8: SPI Mode Timing 221 Figure 22-9: I²C Bus Start/Stop Bits Timing 222 Figure 22-10: I²C Bus Data Timing 223 Figure 22-11: USART Module: Synchronous Transmission (Master/Slave) Timing 224 Figure 22-12: USART Module: Synchronous Receive (Master/Slave) Timing 224 Figure 24-1: Load Conditions for Device Timing 224 Figure 24-2: External Clock Timing 233 Figure 24-3: CLKOUT and I/O Timing 234 Figure 24-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer 235
Start-up Timer and Power-up Timer Timing
Timing
Figure 22-5: Timer0 and Timer1 Clock Timings 218 Figure 22-6: Capture/Compare/PWM Timings (CCP1 and CCP2) 219 Figure 22-7: Parallel Slave Port Timing 220 Figure 22-8: SPI Mode Timing 221 Figure 22-9: I²C Bus Start/Stop Bits Timing 222 Figure 22-10: I²C Bus Data Timing 223 Figure 22-11: USART Module: Synchronous Transmission (Master/Slave) Timing 224 Figure 22-12: USART Module: Synchronous Receive (Master/Slave) Timing 224 Figure 24-1: Load Conditions for Device Timing Specifications 232 Figure 24-2: External Clock Timing 233 Figure 24-3: CLKOUT and I/O Timing 234 Figure 24-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer 235
Figure 22-6: Capture/Compare/PWM Timings (CCP1 and CCP2) 219 Figure 22-7: Parallel Slave Port Timing 220 Figure 22-8: SPI Mode Timing 221 Figure 22-9: I²C Bus Start/Stop Bits Timing 222 Figure 22-10: I²C Bus Data Timing 223 Figure 22-11: USART Module: Synchronous Transmission (Master/Slave) Timing 224 Figure 22-12: USART Module: Synchronous Receive (Master/Slave) Timing 224 Figure 24-1: Load Conditions for Device Timing Specifications 232 Figure 24-2: External Clock Timing 233 Figure 24-3: CLKOUT and I/O Timing 234 Figure 24-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing 235
and CCP2)
Figure 22-7: Parallel Slave Port Timing 220 Figure 22-8: SPI Mode Timing 221 Figure 22-9: I²C Bus Start/Stop Bits Timing 222 Figure 22-10: I²C Bus Data Timing 223 Figure 22-11: USART Module: Synchronous 224 Figure 22-12: USART Module: Synchronous Receive (Master/Slave) Timing 224 Figure 24-1: Load Conditions for Device Timing 232 Figure 24-2: External Clock Timing 233 Figure 24-3: CLKOUT and I/O Timing 234 Figure 24-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing 235
Figure 22-8: SPI Mode Timing 221 Figure 22-9: I²C Bus Start/Stop Bits Timing 222 Figure 22-10: I²C Bus Data Timing 223 Figure 22-11: USART Module: Synchronous 224 Figure 22-12: USART Module: Synchronous Receive (Master/Slave) Timing 224 Figure 24-1: Load Conditions for Device Timing 232 Figure 24-2: External Clock Timing 233 Figure 24-3: CLKOUT and I/O Timing 234 Figure 24-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing 235
Figure 22-9: I²C Bus Start/Stop Bits Timing
Figure 22-10: I ² C Bus Data Timing
Figure 22-11: USART Module: Synchronous Transmission (Master/Slave) Timing
Transmission (Master/Slave) Timing
Figure 22-12: USART Module: Synchronous Receive (Master/Slave) Timing
(Master/Slave) Timing
Figure 24-1: Load Conditions for Device Timing Specifications
Specifications
Figure 24-2: External Clock Timing
Figure 24-3: CLKOUT and I/O Timing
Figure 24-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing
Start-up Timer and Power-up Timer Timing235
Timing235
Element O.A.E. Description of Descri
Figure 24-5: Brown-out Reset Timing
Figure 24-6: Timer0 and Timer1 Clock Timings
Figure 24-7: Capture/Compare/PWM Timings
(CCP1 and CCP2)
Figure 24-8: Parallel Slave Port Timing For the PIC16C65A Only
Figure 24-9: SPI Mode Timing
Figure 24-10: I ² C Bus Start/Stop Bits Timing240
Figure 24-11: I ² C Bus Data Timing
Figure 24-12: USART Module: Synchronous
Transmission (Master/Slave) Timing 242
Figure 24-13: USART Module: Synchronous Receive

LIST OF TABLES

Table	1-1:	PIC16C6X Family of Devices	6
Table	3-1:	PIC16C61 Pinout Description	
Table	3-2:	PIC16C62/62A/R62/63 Pinout Description.	.14
Table	3-3:	PIC16C64/64A/R64/65/65A Pinout Description	
Table	4-1:	Special Function Registers for the	
Table	4-2.	PIC16C61Special Function Registers for the	.22
Table	T 2.	PIC16C62/62A/R62	.23
Table	4-3:	Special Function Registers for the PIC16C63	.25
Table	4-4:	Special Function Registers for the PIC16C64/64A/R64	
Table	4-5:	Special Function Registers for the	
Table	5-1:	PIC16C65/65A PORTA Functions	
Table		Summary of Registers Associated with	
		PORTA	
Table		PORTB Functions	.50
Table	5-4:	Summary of Registers Associated with PORTB	.50
Table	5-5:	PORTC Functions for PIC16C62/64	.51
Table	5-6:	PORTC Functions for	
		PIC16C62A/R62/64A/R64	
Table Table		PORTC Functions for PIC16C63/65/65A Summary of Registers Associated with	.52
Table	J-0.	PORTC	.52
Table	5-9:	PORTD Functions	
Table		Summary of Registers Associated with	
		PORTD	
Table		PORTE Functions	.55
Table	5-12:	Summary of Registers Associated with	
Table	5-13:	PORTE Registers Associated with Parallel Slave	.55
		Port	
Table	7-1:	Registers Associated with Timer0	.65
Table	8-1:	Capacitor Selection for the Timer1 Oscillator	.69
Table	8-2:	Registers Associated with Timer1 as a	
Table	0.1.	Timer/Counter	.70
Table	9-1.	Timer/Counter	.72
Table	10-1:	CCP Mode - Timer Resource	
Table	10-2:	Interaction of Two CCP Modules	
Table	10-3:	Example PWM Frequencies and	
		Resolutions at 20 MHz	.//
Table	10-4:	Registers Associated with Timer1, Capture and Compare	77
Table	10-5:	Registers Associated with PWM and	
T-1-1-		Timer2	
Table		Registers Associated with SPI Operation	
Table		I ² C Bus Terminology	
Table		Data Transfer Received Byte Actions	
Table		Registers Associated with I ² C Operation	
Table		Baud Rate Formula	.97
Table	12-2:	Registers Associated with Baud Rate Generator	.97
Table	12-3:	Baud Rates for Synchronous Mode	
Table		Baud Rates for Asynchronous Mode	
	• •	(BRGH = 0)	.98
Table	12-5:	Baud Rates for Asynchronous Mode	
-	10.6	(BRGH = 1)	.99
Table	12-6:	Registers Associated with Asynchronous Transmission	102

Table 12-7:	Registers Associated with Asynchronous		Table 20-1:	Cross Reference of Device Specs for	
Table 12-7.	Reception	104	1 able 20-1.	Oscillator Configurations and	
Table 12-8:	Registers Associated with Synchronous	104		Frequencies of Operation (Commercial	
1 able 12-0.	Master Transmission	106			190
Table 12-9:		100	Table 20-2:	Devices) External Clock Timing Requirements	
1 able 12-9.	Registers Associated with Synchronous	107	Table 20-2:	- · · · · · · · · · · · · · · · · · · ·	
Toble 12 10:	Master Reception	107	Table 20-3.	CLKOUT and I/O Timing Requirements	190
Table 12-10:	Registers Associated with Synchronous	440	1 able 20-4:	Reset, Watchdog Timer, Oscillator	
T-1-1- 40 44	Slave Transmission	110		Start-up Timer, Power-up Timer, and	400
Table 12-11:	Registers Associated with Synchronous	440	Table 00 F	Brown-out Reset Requirements	
T-1-1- 40 4	Slave Reception		Table 20-5:	Timer0 and Timer1 Clock Requirements	200
Table 13-1:	Ceramic Resonators PIC16C61	114	Table 20-6:	Capture/Compare/PWM Requirements	004
Table 13-2:	Capacitor Selection for Crystal Oscillator			(CCP1)	201
	for PIC16C61	114	Table 20-7:	Parallel Slave Port Requirements for the	
Table 13-3:	Ceramic Resonators			PIC16C64A/R64 Only	
	PIC16C62/62A/R62/63/64/		Table 20-8:	SPI Mode Requirements	
	64A/R64/65/65A		Table 20-9:	I ² C Bus Start/Stop Bits Requirements	
Table 13-4:	Capacitor Selection for Crystal Oscillator f	or	Table 20-10:	I ² C Bus Data Requirements	205
	PIC16C62/62A/R62/63/64/		Table 22-1:	Cross Reference of Device Specs for	
	64A/R64/65/65A	114		Oscillator Configurations and	
Table 13-5:	Time-out in Various Situations,			Frequencies of Operation (Commercial	
	PIC16C61/62/64/65	118		Devices)	209
Table 13-6:	Time-out in Various Situations,		Table 22-2:	External Clock Timing Requirements	215
	PIC16C62A/R62/63/64A/R64/65A	118	Table 22-3:	CLKOUT and I/O Timing Requirements	216
Table 13-7:	Status Bits and Their Significance,		Table 22-4:	Reset, Watchdog Timer, Oscillator	
	PIC16C61	118		Start-up Timer and Power-up Timer	
Table 13-8:	Status bits and Their Significance,			Requirements	217
	PIC16C62/64/65	118	Table 22-5:	Timer0 and Timer1 Clock Requirements	
Table 13-9:	Status Bits and Their Significance for		Table 22-6:	Capture/Compare/PWM Requirements	
	PIC16C62A/R62/63/64A/R64/65A	119	. 42.0 0.	(CCP1 and CCP2)	219
Table 13-10:	Reset Condition for Special Registers on		Table 22-7:	Parallel Slave Port Requirements	
Table 15-10.	PIC16C61/62/64/65	110	Table 22-8:	SPI Mode Requirements	
Table 13-11:	Reset Condition for Special Registers on	113	Table 22-9:	I ² C Bus Start/Stop Bits Requirements	
Table 13-11.	PIC16C62A/R62/63/64A/R64/65A	110	Table 22-9.	i ² C Bus Data Requirements	
Table 13-12:	Initialization Conditions for all Registers		Table 22-10.	Serial Port Synchronous Transmission	223
	<u> </u>		1 able 22-11.	•	224
Table 14-1:	Opcode Field Descriptions		Table 22 42.	Requirements	224
Table 14-2:	PIC16CXX Instruction Set		Table 22-12:	Serial Port Synchronous Receive	004
Table 15-1:	PICMASTER Probe Specification		T-1-1- 04 4	Requirements	224
Table 15-2:	Development System Packages	147	Table 24-1:	Cross Reference of Device Specs for	
Table 16-1:	Cross Reference of Device Specs for			Oscillator Configurations and	
	Oscillator Configurations and Frequencies			Frequencies of Operation (Commercial	
	of Operation (Commercial Devices)			Devices)	
Table 16-2:	External Clock Timing Requirements		Table 24-2:	External Clock Timing Requirements	
Table 16-3:	CLKOUT and I/O Timing Requirements	156	Table 24-3:	CLKOUT and I/O Timing Requirements	234
Table 16-4:	Reset, Watchdog Timer, Oscillator		Table 24-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer and Power-up Timer			Start-up Timer, Power-up Timer, and	
	Requirements	157		Brown-out Reset Requirements	
Table 16-5:	Timer0 Clock Requirements	158	Table 24-5:	Timer0 and Timer1 Clock Requirements	236
Table 17-1:	RC Oscillator Frequencies	159	Table 24-6:	Capture/Compare/PWM Requirements	
Table 17-2:	Input Capacitance*	170		(CCP1 and CCP2)	237
Table 18-1:	Cross Reference of Device Specs for		Table 24-7:	Parallel Slave Port Requirements for the	
	Oscillator Configurations and Frequencies	;		PIC16C65A Only	238
	of Operation (Commercial Devices)		Table 24-8:	SPI Mode Requirements	
Table 18-2:	External Clock Timing Requirements		Table 24-9:	I ² C Bus Start/Stop Bits Requirements	
Table 18-3:	CLKOUT and I/O Timing Requirements		Table 24-10:	I ² C Bus Data Requirements	
Table 18-4:	Reset, Watchdog Timer, Oscillator		Table 24-11:	Serial Port Synchronous Transmission	
	Start-up Timer and Power-up Timer			Requirements	242
	Requirements	170	Table 24-12:	Serial Port Synchronous Receive	272
Table 18-5:	Timer0 and Timer1 Clock Requirements		14510 24 12.	Requirements	242
Table 18-6:		100	Table E-1:	PIC16C5X Family of Devices	
1 abic 10-0.	Capture/Compare/PWM Requirements (CCP1)	181	Table E-1:	PIC16C62X Family of Devices	
Table 18-7:	Parallel Slave Port Requirements for the	101	Table E-2: Table E-3:	PIC16C6X Family of Devices	
1 abic 10-1.	·	192			
Table 40.0	PIC16C64 Only		Table E-4:	PIC16C7X Family of Devices	
Table 18-8:	SPI Mode Requirements		Table E-5:	PIC17CXX Family of Devices	
Table 18-9:	I ² C Bus Start/Stop Bits Requirements		Table E-6:	PIC17CXX Family of Devices	
Table 18-10:	I ² C Bus Data Requirements	185	Table E-7:	Pin Compatible Devices	269

CONNECTING TO MICROCHIP BBS

Connect worldwide to the Microchip BBS using the CompuServe® communications network. In most cases a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS.

There is **no charge** for connecting to the BBS, except for a toll charge to the CompuServe access number, where applicable. You do not need to be a CompuServe member to take advantage of this connection (you never actually log in to CompuServe).

The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allows multiple users at baud rates up to 14400 bps.

The following connect procedure applies in most locations:

- Set your modem to 8 bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- Depress **<ENTER** → and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress <ENTER→> and Host Name: will appear.
- Type MCHIPBBS, depress < ENTER

 → and you will be connected to the Microchip BBS.

In the United States, to find CompuServe's phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with Host Name:, type

NETWORK, depress < **ENTER** → and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 457-1550 for your local CompuServe number.

Trademarks:

The Microchip name, logo, PIC, PICMASTER, and PICSTART are registered trademarks of Microchip Technology Incorporated in the U.S.A.

MPLAB, PRO MATE, and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip Technology Incorporated.

fuzzyTECH is a registered trademark of Inform Software Corporation.

IBM, IBM PC-AT are registered trademarks of International Business Machines Corp.

Pentium is a trademark of Intel Corporation.

MS-DOS and Microsoft Windows are registered trademarks of Microsoft Corporation. Windows is a trademark of Microsoft Corporation.

CompuServe is a registered trademark of CompuServe Incorporated.

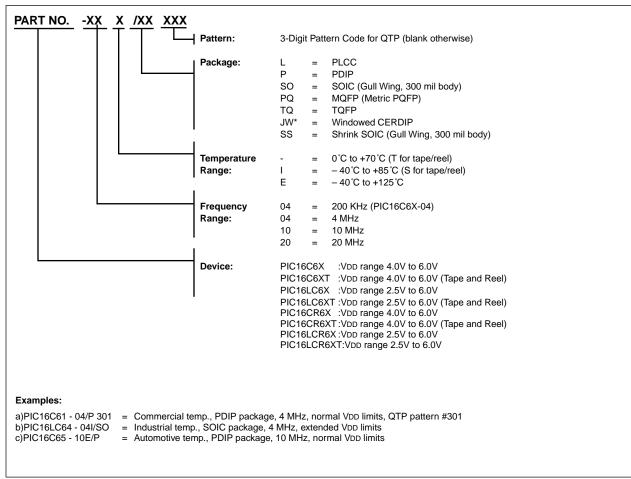
All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

IO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
Fror	City / State / ZIP / Country			
App	olication (optional):			
Wou	uld you like a reply?YN			
Dev	vice: PIC16C6X Literature	Number: DS30234B		
Que	estions:			
1.	What are the best features of this document	?		
2.	How does this document meet your hardware	re and software development needs?		
3.	Do you find the organization of this data sheet easy to follow? If not, why?			
4.	What additions to the data sheet do you think would enhance the structure and subject?			
5.	What deletions from the data sheet could be	e made without affecting the overall usefullness?		
6.	Is there any incorrect or misleading informat	tion (what and where)?		
7.	How would you improve this document?			
8.	How would you improve our software, system	ms. and silicon products?		
٥.				


NOTES:

© 1996 Microchip Technology Inc.

PIC16C6X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

^{*} JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office.
- The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602 786-7200 Fax: 602 786-7277 Technical Support: 602 786-7627 Web: http://www.mchip.com/microchip

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350

Fax: 770 640-0307 Tel: 770 640-0034

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752

Tel: 508 480-9990 Fax: 508 480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 708 285-0071 Fax: 708 285-0075

Dallas

Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809

Tel: 214 991-7177 Fax: 214 991-8588

Dayton

Microchip Technology Inc. Suite 150 Two Prestige Place Miamisburg, OH 45342

Tel: 513 291-1654 Fax: 513 291-9175

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92715

Tel: 714 263-1888 Fax: 714 263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 416 Hauppauge, NY 11788 Tel: 516 273-5305 Fax: 516 273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131

Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC

Hona Kona

Microchip Technology Unit No. 3002-3004, Tower 1 Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852 2 401 1200 Fax: 852 2 401 3431

Korea

Microchip Technology 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku, Seoul, Korea

Tel: 82 2 554 7200 Fax: 82 2 558 5934

Singapore

Microchip Technology 200 Middle Road #10-03 Prime Centre Singapore 188980

Fax: 65 334 8850 Tel: 65 334 8870

Taiwan

Microchip Technology 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC

Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd. Unit 6, The Courtyard Meadow Bank, Furlong Road Bourne End, Buckinghamshire SL8 5AJ Tel: 44 1 628 851077 Fax: 44 1 628 850259

France

Arizona Microchip Technology SARL 2 Rue du Buisson aux Fraises 91300 Massy - France Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Muenchen, Germany Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Pegaso Ingresso No. 2 Via Paracelso 23, 20041 Agrate Brianza (MI) Italy

Tel: 39 39 689 9939 Fax: 39 39 689 9883

JAPAN

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shin Yokohama Kohoku-Ku, Yokohama Kanagawa 222 Japan Tel: 81 45 471 6166 Fax: 81 45 471 6122

1/05/96

All rights reserved. © 1996, Microchip Technology Incorporated, USA.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use, or otherwise. Use of Microchip's products as critical components in medical devices is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.