

PN4122

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 100 mA. Sourced from Process 66. See 2N3906 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units	
V_{CEO}	Collector-Emitter Voltage	40	V	
V _{CBO}	Collector-Base Voltage	40	V	
V _{EBO}	Emitter-Base Voltage 5.0		V	
Ic	Collector Current - Continuous 200		mA	
T _J , T _{stg}	Operating and Storage Junction Temperature Range -55 to +150 °C			

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

1) These ratings are based on a maximum junction temperature of 150 degrees C.

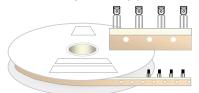
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units	
		PN4122		
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W	

PNP General Purpose Amplifier (continued)

$ \begin{array}{c} V_{\text{CRICIORO}} & \text{Collector-Base Breakdown Voltage} & I_{\text{C}} = 10 \ \mu\text{A}, I_{\text{C}} = 0 & 40 \\ V_{\text{CRICION}} & \text{Emitter-Base Breakdown Voltage} \\ I_{\text{E}} = 10 \ \mu\text{A}, I_{\text{C}} = 0 & 5.0 \\ V_{\text{CRICIONS}} & \text{Collector-Emitter Breakdown Voltage} \\ I_{\text{C}} = 10 \ \mu\text{A}, I_{\text{C}} = 0 & 5.0 \\ V_{\text{CRICIONS}} & \text{Collector Cutoff Current} \\ I_{\text{CES}} & \text{Collector Cutoff Current} \\ V_{\text{CE}} = 30 \ \text{V} & 25 \\ V_{\text{CE}} = 30 \ \text{V}, I_{\text{C}} = 30 \ \text{V} \\ V_{\text{CE}} = 30 \ \text{V}. I_{\text{C}} = 65 \ \text{°C} \\ 25 \\ \hline \\ \text{ON CHARACTERISTICS}^* \\ \text{DC Current Gain} & V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \mu\text{A} \\ V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \mu\text{A} \\ V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \mu\text{A} \\ V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \mu\text{A} \\ V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \text{mA} \\ V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \text{mA} \\ V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \text{mA} \\ V_{\text{CE}} = 1.0 \ \text{V}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 0.1 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{B}} = 1.0 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ I_{\text{C}} = 100 \ \text{mA}, I_{\text{C}} = 100 \ \text{mA} \\ $	Те	Parameter	eter Test Conditions	Min M	ах	Units
V _{BRICEO} Collector-Emitter Breakdown Voltage* I _C = 10 mA, I _B = 0 40 V _{BRICEO} Collector-Base Breakdown Voltage I _C = 10 μA, I _C = 0 40 V _{BRICEO} Emitter-Base Breakdown Voltage I _E = 10 μA, I _C = 0 5.0 V _{SRICES} Collector-Emitter Breakdown Voltage I _E = 10 μA, I _C = 0 5.0 I _B Base Cutoff Current V _{CE} = 30 V 25 I _{CES} Collector Cutoff Current V _{CE} = 30 V 25 I _{CES} Collector Cutoff Current V _{CE} = 30 V, I _C = 100 μA 100 μA V _{CE} 20 V, I _C = 1.0 V, I _C = 100 μA 100 μA 100 μA V _{CE} 2.0 V, I _C = 1.0 V, I _C = 100 μA 150 μA 300 μA V _{CE} = 1.0 V, I _C = 1.0 mA 150 μA 300 μA 300 μA V _{CE} = 1.0 V, I _C = 10 mA 150 μA 300 μA 300 μA V _{CE} = 1.0 V, I _C = 10 mA 150 μA 300 μA 300 μA V _{CE} = 1.0 V, I _C = 10 mA 150 μA 300 μA 300 μA V _{CE} = 1.0 V, I _C = 10 mA 1.0 μA 1.0 μA 1.0 μA V _{CE} = 2						
$ V_{\text{RRICBO}} $		RISTICS				
V _{(BR)(EBO)} Emitter-Base Breakdown Voltage I _E = 10 μA, I _C = 0 5.0 V _{(BR)(CES)} Collector-Emitter Breakdown Voltage I _C = 10 μA 40 I _B Base Cutoff Current V _{CE} = 30 V 25 U _{CE} Collector Cutoff Current V _{CE} = 30 V 25 ON CHARACTERISTICS* V _{CE} = 1.0 V, I _C = 100 μA 100 V _{CE} = 1.0 V, I _C = 1.0 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{CE} = 1.0 V, I _C = 10 mA 150 300 V _{ER} = 1.0 V, I _C = 10 mA 150 300 V _{ER} = 1.0 V, I _C = 1.0 mA 150 300 V _{ER} = 10 V, I _C = 10 mA 150	n Voltage* $I_C = 10 \text{ r}$	or-Emitter Breakdown Voltage	ıkdown Voltage* $I_C = 10 \text{ mA}, I_B = 0$	40		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Voltage $I_C = 10 \mu$	or-Base Breakdown Voltage	down Voltage $I_C = 10 \mu A, I_E = 0$	40		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oltage $I_E = 10 \mu$	-Base Breakdown Voltage	wn Voltage $I_E = 10 \mu A, I_C = 0$	5.0		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		or-Emitter Breakdown Voltage		40		nA
V _{CE} = 30 V, T _A = 65 °C 25		utoff Current		2	5	nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		or Cutoff Current	~ -			nA
$\begin{array}{c} h_{\text{FE}} & DC \text{Current Gain} & V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 100 \mu\text{A} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{mA}, l_{\text{B}} = 0.1 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 20 \text{V} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{V} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{V} \\ l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = $	$V_{CE} = 30$		$V_{CE} = 30 \text{ V}, I_A = 65 \text{ °C}$	2	5	μΑ
$\begin{array}{c} h_{\text{FE}} & DC \text{Current Gain} & V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 100 \mu\text{A} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{V}, l_{\text{C}} = 10 \text{mA} \\ V_{\text{CE}} = 1.0 \text{mA}, l_{\text{B}} = 0.1 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{B}} = 1.0 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 20 \text{V} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{V} \\ l_{\text{C}} = 10 \text{mA}, l_{\text{C}} = 10 \text{V} \\ l_{\text{C}} = 10 \text{mA} \\ l_{\text{C}} = $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RISTICS*				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		rrent Gain	1 CL 110 1, 10 100 pm 1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					20	
$ \begin{array}{c} V_{CE(sat)} & Collector-Emitter Saturation Voltage \\ V_{CE(sat)} & I_{c} = 1.0 \text{ mA}, I_{b} = 0.1 \text{ mA} \\ I_{c} = 10 \text{ mA}, I_{b} = 5.0 \text{ mA} \\ I_{c} = 50 \text{ mA}, I_{b} = 5.0 \text{ mA} \\ I_{c} = 50 \text{ mA}, I_{b} = 5.0 \text{ mA} \\ I_{c} = 5.0 \text{ mA}, I_{b} = 5.0 \text{ mA} \\ I_{c} = 5.0 \text{ mA}, I_{b} = 5.0 \text{ mA} \\ I_{c} = 1.0 \text{ mA}, I_{b} = 0.1 \text{ mA} \\ I_{c} = 10 \text{ mA}, I_{b} = 0.1 \text{ mA} \\ I_{c} = 10 \text{ mA}, I_{b} = 0.1 \text{ mA} \\ I_{c} = 50 \text{ mA}, I_{b} = 5.0 \text{ mA} \\ I_{c} = 50 \text{ mA}, I_{b} = 5.0 \text{ mA} \\ I_{c} = 10 \text{ mA}, I_{b} = 0.1 \text{ mA} \\ I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA} \\ I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA} \\ I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA}, I_{c} = 10 \text{ mA} \\ I_{c} = 10 \text{ mA}, $					50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Voltage $I_C = 1.0$	or-Emitter Saturation Voltage	rration Voltage $I_C = 1.0 \text{ mA}, I_B = 0.1 \text{ mA}$			V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		*			V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		mitter Saturation Voltage				V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tritter Cataration Voltage				V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.	10	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	.5	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{EB} = 0.	apacitance	V _{EB} = 0.5 V, f = 1.0 MHz	8	.0	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _C = 10 r	Signal Current Gain	Gain $I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V},$	4.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				150	F0	
hie Input Impedance I _C = 1.0 mA, V _{CE} = 10 V, 4.0 12 hre Voltage Feedback Ratio f = 1.0 kHz 4.0 hoe Output Admittance 8.0 40 rb'Cc Collector-Base Time Constant $V_{CE} = 20 \text{ V}$, $I_{C} = 10 \text{ mA}$, $I_{CE} = 100 \text{ mA}$, $I_{CE} =$				150 4	50	
Nome Output Admittance 8.0 40 rb'Cc Collector-Base Time Constant $V_{CE} = 20 \text{ V}, I_{C} = 10 \text{ mA}$ 50 NF Noise Figure $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA},$ $R_{S} = 100 \Omega, f = 100 \text{ MHz},$ NF Noise Figure $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA},$ $R_{S} = 1.0 \text{ MHz},$ NF Noise Figure $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA},$ $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA},$ NF Noise Figure $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA},$ $V_{CE} = 100 \text{ mA},$ NF Noise Figure $V_{CE} = 30 \text{ V}, I_{C} = 50 \text{ mA},$ $V_{CE} = 100 \text{ mA},$ NF Noise Figure $V_{CE} = 100 \text{ mA},$ $V_{CE} = 100 \text{ mA},$ NF NOISE Figure $V_{CE} = 100 \text{ mA},$ $V_{CE} = 100 \text{ mA},$ NF NOISE Figure $V_{CE} = 100 \text{ mA},$ $V_{CE} = 100 \text{ mA},$ NF NOISE Figure $V_{CE} = 100 \text{ mA},$ $V_{CE} = 100 \text{ mA},$ NF NOISE Figure $V_{CE} = 100 \text{ mA},$ $V_{CE} = 100 \text{ mA},$ NF NOISE Figure $V_{CE} = 100 \text{ mA},$ $V_{CE} = 100 \text{ mA},$		npedance		4.0 1	2	kΩ
Arbiton Collector-Base Time Constant $V_{CE} = 20 \text{ V}$, $I_{C} = 10 \text{ mA}$ f = 80 MHz 50 NF Noise Figure $V_{CE} = 5.0 \text{ V}$, $I_{C} = 1.0 \text{ mA}$, $R_{S} = 100 \Omega$, f = 100 MHz, $R_{S} = 100 \Omega$, f = 100 MHz, $R_{S} = 1.0 \text{ k}\Omega$, $R_{S} = 1.0 $	f = 1.0 k	Feedback Ratio	tio f = 1.0 kHz	4	.0	x10 ⁻⁴
		Admittance		8.0 4	0	μmho
NF Noise Figure $V_{CE} = 5.0 \text{ V}$, $I_{C} = 1.0 \text{ mA}$, $R_{S} = 100 \Omega$, $f = 100 \text{ MHz}$, $R_{S} = 15 \text{ MHz}$ 6.0 SWITCHING CHARACTERISTICS $V_{CE} = 5.0 \text{ V}$, $I_{C} = 100 \mu\text{A}$, $R_{S} = 1.0 \text{ k}\Omega$, $PB_{W} = 15.7 \text{ kHz}$ 4.0 SWITCHING CHARACTERISTICS $I_{CE} = 30 \text{ V}$, $I_{CE} = 50 \text{ mA}$		or-Base Time Constant	7= ' 7	5	0	ps
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-igure				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·9				
$ R_{S} = 1.0 \text{ k}\Omega, \text{ PB}_{W} = 15.7 \text{ kHz} $				6	.0	dB
SWITCHING CHARACTERISTICS t_{on} Turn-on Time $V_{CC} = 30 \text{ V}, I_C = 50 \text{ mA},$ 40 t_d Delay Time $I_{B1} = 5.0 \text{ mA}, V_{BE(off)} = 3.0 \text{ V}$ 15 t_r Rise Time 40 t_{off} Turn-off Time $V_{CC} = 30 \text{ V}, I_C = 50 \text{ mA}$ 150 t_{off} t_{off} t_{off} t_{off}				4	0	dB
t_{on} Turn-on Time $V_{CC} = 30 \text{ V}, I_C = 50 \text{ mA},$ 40 t_d Delay Time $I_{B1} = 5.0 \text{ mA}, V_{BE(off)} = 3.0 \text{ V}$ 15 t_r Rise Time 40 t_{off} Turn-off Time $V_{CC} = 30 \text{ V}, I_C = 50 \text{ mA}$ 150	K _S = 1.0		$R_S = 1.0 \text{ K}\Omega$, $PD_W = 15.7 \text{ K}\Pi$ Z	'	.0	ű.D
t_{on} Turn-on Time $V_{CC} = 30 \text{ V}, I_C = 50 \text{ mA},$ 40 t_d Delay Time $I_{B1} = 5.0 \text{ mA}, V_{BE(off)} = 3.0 \text{ V}$ 15 t_r Rise Time 40 t_{off} Turn-off Time $V_{CC} = 30 \text{ V}, I_C = 50 \text{ mA}$ 150	9	ARACTERISTICS	STICS			
td Delay Time $I_{B1} = 5.0 \text{ mA}, V_{BE (off)} = 3.0 \text{ V}$ 15 $t_r \qquad \text{Rise Time} \qquad \qquad 40$ $t_{off} \qquad \text{Turn-off Time} \qquad V_{CC} = 30 \text{ V}, I_C = 50 \text{ mA} \qquad 150$				4	0	ns
t _r Rise Time 40 t _{off} Turn-off Time V _{CC} = 30 V, I _C = 50 mA 150						ns
$V_{cc} = 30 \text{ V}, I_c = 50 \text{ mA}$			3.3 , FBE (OII) = 3.3 V			ns
Olivery Time	1/22 - 30		V _{co} = 30 V I _o = 50 mΔ			ns
r 1,300/808 1008 135.5 55.5 5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1			$I_{R1} = I_{R2} = 5.0 \text{ mA}$			ns
t_s Storage lime $t_{B1} = t_{B2} = 5.0 \text{ mA}$ 140 t_f Fall Time 40			181 – 182 – 0.0 HIM			ns

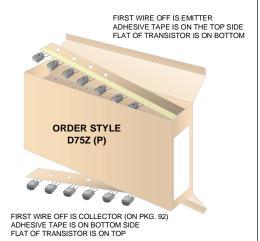

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

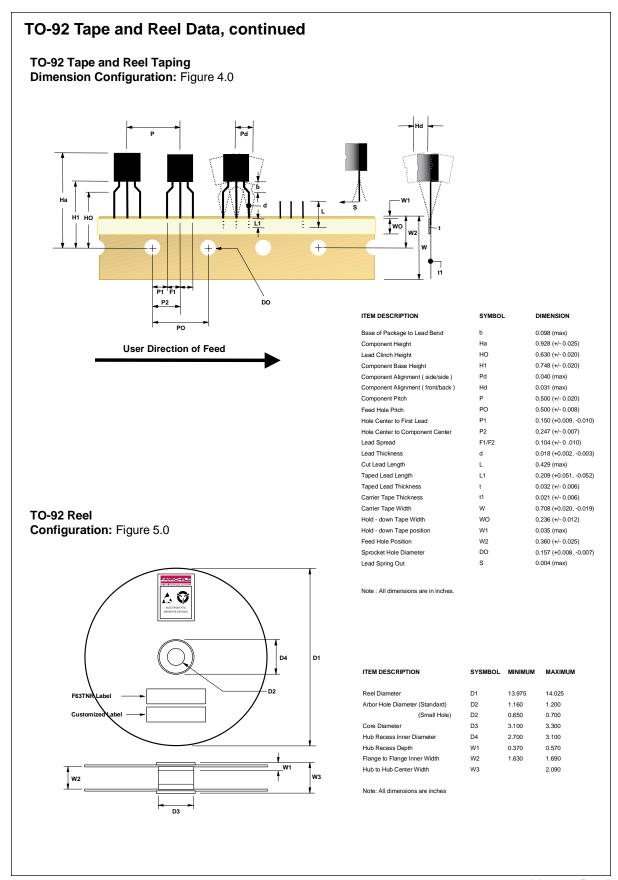
TO-92 Tape and Reel Data FAIRCHILD SEMICONDUCTOR TM **TO-92 Packaging** Configuration: Figure 1.0 **TAPE and REEL OPTION** FSCINT Label sample See Fig 2.0 for various Reeling Styles CBVK//418019 **FSCINT** Label 5 Reels per Intermediate Box Customized F63TNR Label sample Label F63TNR LOT: CBVK741B019 QTY: 2000 FSID: PN222N Customized QTY1: QTY2: Label 375mm x 267mm x 375mm Intermediate Box TO-92 TNR/AMMO PACKING INFROMATION **AMMO PACK OPTION** See Fig 3.0 for 2 Ammo Packing Style Quantity EOL code **Pack Options** 2,000 D26Z Е 2,000 D27Z Ammo М 2,000 D74Z D75Z 2,000 **FSCINT** Unit weight = 0.22 gm Reel weight with components = 1.04 kg Ammo weight with components = 1.02 kg Max quantity per intermediate box = 10,000 units Label 5 Ammo boxes per Intermediate Box 327mm x 158mm x 135mm Immediate Box Customized F63TNR Customized Label Label 333mm x 231mm x 183mm Intermediate Box (TO-92) BULK PACKING INFORMATION **BULK OPTION** See Bulk Packing DESCRIPTION QUANTITY Information table J18Z TO-18 OPTION STD 2.0 K / BOX Anti-static Bubble Sheets TO-5 OPTION STD NO LEAD CLIP 1.5 K / BOX J05Z **FSCINT Label** NO EOL TO-92 STANDARD STRAIGHT FOR: PKG 92, NO LEADCLIP 2.0 K / BOX 94 (NON PROELECTRON SERIES), 96 TO-92 STANDARD STRAIGHT FOR: PKG 94 (PROELECTRON SERIES BCXXX, BFXXX, BSRXXX), 97, 98 L34Z NO LEADCLIP 2.0 K / BOX 2000 units per 114mm x 102mm x 51mm EO70 box for std option Immediate Box 5 EO70 boxes per intermediate Box 530mm x 130mm x 83mm Customized Intermediate box Label FSCINT Label 10,000 units maximum per intermediate box for std option

TO-92 Tape and Reel Data, continued

TO-92 Reeling Style Configuration: Figure 2.0

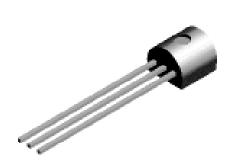
Machine Option "A" (H)


Style "A", D26Z, D70Z (s/h)

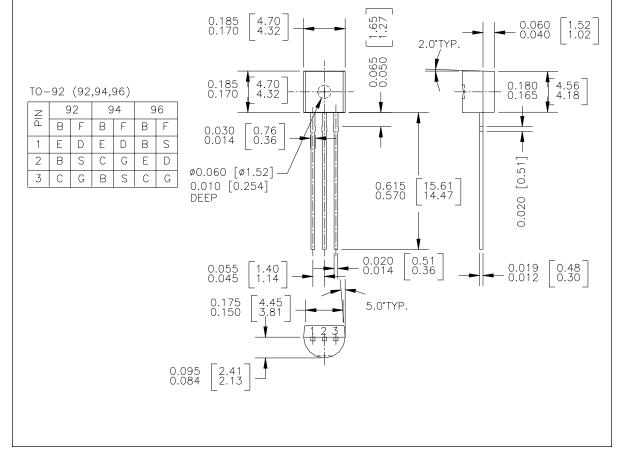

Machine Option "E" (J)

Style "E", D27Z, D71Z (s/h)

TO-92 Radial Ammo Packaging Configuration: Figure 3.0



TO-92 Package Dimensions


TO-92 (FS PKG Code 92, 94, 96)

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.1977

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.