March 2006

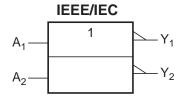
NC7WZU04 TinyLogic<sup>®</sup> UHS Dual Unbuffered Inverter



# NC7WZU04 TinyLogic<sup>®</sup> UHS Dual Unbuffered Inverter

### **General Description**

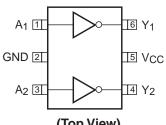
The NC7WZU04 is a dual unbuffered inverter from Fairchild's Ultra High Speed Series of TinyLogic<sup>®</sup> in the space saving SC70 6-lead package. The special purpose unbuffered circuit design is intended for crystal oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V<sub>CC</sub> operating range. The device is specified to operate over the 1.65V to 5.5V V<sub>CC</sub> range. The inputs are high impedance when V<sub>CC</sub> is 0V. Inputs tolerate voltages up to 7V independent of V<sub>CC</sub> operating voltage.


### Features

- Space saving SC70 6-lead package
- Ultra small MicroPak<sup>™</sup> leadless package
- Unbuffered for crystal oscillator and analog applications
- Balanced output drive: ±8mA at 4.5V V<sub>CC</sub>
- Broad V<sub>CC</sub> operating range: 1.65V to 5.5V
- Low quiescent power:  $I_{CC} < 1\mu A$  at 5V V<sub>CC</sub>,  $T_A = 25^{\circ}C$

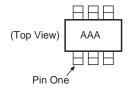
## **Ordering Information**

| Order<br>Number | Package<br>Number | Package Code<br>Top Mark | Package Description                    | Supplied As               |
|-----------------|-------------------|--------------------------|----------------------------------------|---------------------------|
| NC7WZU04P6X     | MAA06A            | ZU4                      | 6-Lead SC70, EIAJ SC88,<br>1.25mm Wide | 3k Units on Tape and Reel |
| NC7WZU04L6X     | MAC06A            | B5                       | 6-Lead MicroPak, 1.0mm Wide            | 5k Units on Tape and Reel |


# Logic Symbol

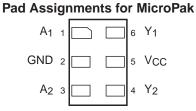


TinyLogic<sup>®</sup> is a registered trademark of Fairchild Semiconductor Corporation. MicroPak<sup>™</sup> is a trademark of Fairchild Semiconductor Corporation.


### **Connection Diagrams**








#### Pin One Orientation Diagram



AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).



### (Top Through View)

### **Pin Descriptions**

| Pin Name                        | Description |
|---------------------------------|-------------|
| A <sub>1</sub> , A <sub>2</sub> | Data Inputs |
| Y <sub>1</sub> , Y <sub>2</sub> | Outputs     |

## **Function Table**

| $Y = \overline{A}$ |        |  |  |  |  |
|--------------------|--------|--|--|--|--|
| Input              | Output |  |  |  |  |
| Α                  | Y      |  |  |  |  |
| L                  | Н      |  |  |  |  |
| Н                  | L      |  |  |  |  |

H = HIGH Logic Level L = LOW Logic Level

# **Absolute Maximum Ratings**

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

| Symbol                            | Parameter                                                                           | Rating          |
|-----------------------------------|-------------------------------------------------------------------------------------|-----------------|
| V <sub>CC</sub>                   | Supply Voltage                                                                      | -0.5V to +7V    |
| V <sub>IN</sub>                   | DC Input Voltage                                                                    | –0.5V to +7V    |
| V <sub>OUT</sub>                  | DC Output Voltage                                                                   | -0.5V to +7V    |
| I <sub>IK</sub>                   | DC Input Diode Current @ $V_{IN} \le -0.5V$                                         | –50mA           |
| I <sub>OK</sub>                   | DC Output Diode Current @<br>$V_{OUT} < -0.5V$<br>$V_{OUT} > 0.5V$ , $V_{CC} = GND$ | –50mA<br>+50mA  |
| I <sub>OUT</sub>                  | DC Output Current                                                                   | ±50mA           |
| I <sub>CC</sub> /I <sub>GND</sub> | DC V <sub>CC</sub> /GND Current                                                     | ±100mA          |
| T <sub>STG</sub>                  | Storage Temperature                                                                 | –65°C to +150°C |
| Tj                                | Junction Temperature under Bias                                                     | 150°C           |
| TL                                | Junction Lead Temperature (Soldering, 10 seconds)                                   | 260°C           |
| PD                                | Power Dissipation @ +85°C                                                           | 180mW           |

# Recommended Operating Conditions<sup>(1)</sup>

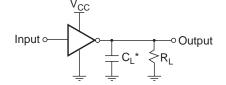
| Symbol           | Parameter                     | Rating                |
|------------------|-------------------------------|-----------------------|
| V <sub>CC</sub>  | Supply Voltage Operating      | 1.8V to 5.5V          |
| V <sub>CC</sub>  | Supply Voltage Data Retention | 1.5V to 5.5V          |
| V <sub>IN</sub>  | Input Voltage                 | 0V to 5.5V            |
| V <sub>OUT</sub> | Output Voltage                | 0V to V <sub>CC</sub> |
| T <sub>A</sub>   | Operating Temperature         | -40°C to +85°C        |
| $\theta_{JA}$    | Thermal Resistance            | 350°C/W               |

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

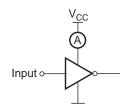
|                     |                             |                             |                          |                     | T <sub>A</sub> =     |       |                      |                      |                      |       |
|---------------------|-----------------------------|-----------------------------|--------------------------|---------------------|----------------------|-------|----------------------|----------------------|----------------------|-------|
|                     |                             |                             |                          |                     |                      | +25°C |                      |                      | o +85°C              |       |
| Symbol              | Parameter                   | Con                         | ditions                  | V <sub>CC</sub> (V) | Min                  | Тур   | Max                  | Min                  | Max                  | Units |
| VIH                 | HIGH Level                  |                             |                          | 1.8 to 2.7          | 0.85 V <sub>CC</sub> |       |                      | 0.85 V <sub>CC</sub> |                      | V     |
|                     | Input Voltage               |                             |                          | 3.0 to 5.5          | 0.8 V <sub>CC</sub>  |       |                      | 0.8 V <sub>CC</sub>  |                      |       |
| V <sub>IL</sub>     | LOW Level                   |                             |                          | 1.8 to 2.7          |                      |       | 0.15 V <sub>CC</sub> |                      | 0.15 V <sub>CC</sub> | V     |
|                     | Input Voltage               |                             |                          | 3.0 to 5.5          |                      |       | 0.2 V <sub>CC</sub>  |                      | 0.2 V <sub>CC</sub>  |       |
| V <sub>OH</sub>     | HIGH Level                  | $V_{IN} = V_{IL}$           | I <sub>OH</sub> = -100μA | 1.65                | 1.55                 | 1.65  |                      | 1.55                 |                      | V     |
|                     | Output Voltage              |                             |                          | 1.8                 | 1.6                  | 1.79  |                      | 1.6                  |                      |       |
|                     |                             |                             |                          | 2.3                 | 2.1                  | 2.29  |                      | 2.1                  |                      |       |
|                     |                             |                             |                          | 3.0                 | 2.7                  | 2.99  |                      | 2.7                  |                      |       |
|                     |                             |                             |                          | 4.5                 | 4.0                  | 4.48  |                      | 4.0                  |                      |       |
|                     |                             | $V_{IN} = GND$              | I <sub>OH</sub> = -2mA   | 1.65                | 1.29                 | 1.52  |                      | 1.29                 |                      | V     |
|                     |                             |                             | I <sub>OH</sub> = -2mA   | 2.3                 | 1.9                  | 2.19  |                      | 1.9                  |                      |       |
|                     |                             | I <sub>OH</sub> = -4mA      | 3.0                      | 2.4                 | 2.82                 |       | 2.4                  |                      |                      |       |
|                     |                             |                             | I <sub>OH</sub> = -6mA   | 3.0                 | 2.3                  | 2.73  |                      | 2.3                  |                      |       |
|                     |                             |                             | I <sub>OH</sub> = -8mA   | 4.5                 | 3.8                  | 4.24  |                      | 3.8                  |                      |       |
| VOL                 | LOW Level                   | $V_{IN} = V_{IH}$           | I <sub>OL</sub> = 100μA  | 1.65                |                      | 0.01  | 0.2                  |                      | 0.2                  | V     |
|                     | Output Voltage              |                             |                          | 1.8                 |                      | 0.01  | 0.2                  |                      | 0.2                  |       |
|                     |                             |                             |                          | 2.3                 |                      | 0.01  | 0.2                  |                      | 0.2                  |       |
|                     |                             |                             |                          | 3.0                 |                      | 0.01  | 0.3                  |                      | 0.3                  |       |
|                     |                             |                             |                          | 4.5                 |                      | 0.01  | 0.5                  |                      | 0.5                  |       |
|                     |                             | $V_{IN} = V_{CC}$           | I <sub>OL</sub> = 2mA    | 1.65                |                      | 0.10  | 0.24                 |                      | 0.24                 | V     |
|                     |                             |                             | I <sub>OL</sub> = 2mA    | 2.3                 |                      | 0.12  | 0.3                  |                      | 0.3                  |       |
|                     |                             |                             | I <sub>OL</sub> = 4mA    | 3.0                 |                      | 0.19  | 0.4                  |                      | 0.4                  |       |
|                     |                             |                             | I <sub>OL</sub> = 6mA    | 3.0                 |                      | 0.29  | 0.55                 |                      | 0.55                 |       |
|                     |                             |                             | I <sub>OL</sub> = 8mA    | 4.5                 |                      | 0.29  | 0.55                 |                      | 0.55                 |       |
| I <sub>IN</sub>     | Input Leakage<br>Current    | V <sub>IN</sub> = 5         | 5.5V, GND                | 0 to 5.5            |                      |       | ±0.1                 |                      | ±1.0                 | μA    |
| I <sub>CC</sub>     | Quiescent<br>Supply Current | V <sub>IN</sub> = 5.5V, GND |                          | 1.65 to 5.5         |                      |       | 1.0                  |                      | 10                   | μA    |
| I <sub>CCPEAK</sub> | Peak Supply                 | V <sub>OUT</sub>            | - = Open                 | 1.8                 |                      | 0.2   |                      |                      |                      | mA    |
|                     | Current in<br>Analog        | V <sub>IN</sub> = Ad        | just for Peak<br>Current | 2.5                 |                      | 2     |                      |                      |                      |       |
|                     | Operation                   | 'CC                         | Current                  | 3.3                 |                      | 5     |                      |                      |                      | 1     |
|                     |                             |                             |                          | 5.0                 |                      | 15    |                      |                      |                      | 1     |

### AC Electrical Characteristics


|                                     |                    |                        |                     |     |       | T <sub>A</sub> = | -       |         |       |          |
|-------------------------------------|--------------------|------------------------|---------------------|-----|-------|------------------|---------|---------|-------|----------|
|                                     |                    |                        |                     |     | +25°C |                  | –40°C t | o +85°C |       | Figure   |
| Symbol                              | Parameter          | Conditions             | V <sub>CC</sub> (V) | Min | Тур   | Max              | Min     | Max     | Units | Number   |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay  | C <sub>L</sub> = 15pF, | 1.65                | 1.5 | 5.5   | 9.8              | 1.5     | 11.0    | ns    | Figure 1 |
|                                     | $R_{L} = 1M\Omega$ | $R_L = 1M\Omega$       | 1.8                 | 1.5 | 4.6   | 8.1              | 1.5     | 8.9     | 1     | Figure 3 |
|                                     |                    |                        | 2.5 ± 0.2           | 1.2 | 3.3   | 5.7              | 1.2     | 6.3     |       |          |
|                                     |                    |                        | 3.3 ± 0.3           | 0.8 | 2.7   | 4.1              | 0.8     | 4.5     |       |          |
|                                     |                    |                        | 5.0 ± 0.5           | 0.5 | 2.2   | 3.3              | 0.5     | 3.6     | 1     |          |
|                                     |                    | $C_L = 50 pF$ ,        | 3.3 ± 0.3           | 1.2 | 4.0   | 6.4              | 1.2     | 7.0     | ns    | Figure 1 |
|                                     | R                  | $R_L = 500\Omega$ ,    | 5.0 ± 0.5           | 0.8 | 3.4   | 5.6              | 0.8     | 6.2     |       | Figure 3 |
| C <sub>IN</sub>                     | Input Capacitance  |                        | 0                   |     | 3     |                  |         |         | pF    |          |
| C <sub>PD</sub>                     | Power Dissipation  | Note 2                 | 3.3                 |     | 3.5   |                  |         |         | pF    | Figure 2 |
|                                     | Capacitance        |                        | 5.0                 |     | 5.5   |                  |         |         |       |          |

#### Note:

 C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I<sub>CCD</sub>) at no output loading and operating at 50% duty cycle. (See Figure 2.) C<sub>PD</sub> is related to I<sub>CCD</sub> dynamic operating current by the expression:


 $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).$ 

### AC Loading and Waveforms



 $^{*}C_{L}$  includes load and stray capacitance. Input PRR = 1.0MHz; t<sub>W</sub> = 500ns

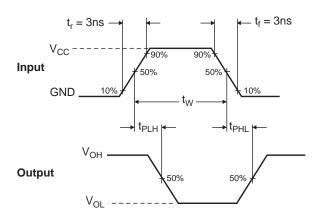
#### Figure 1. AC Test Circuit

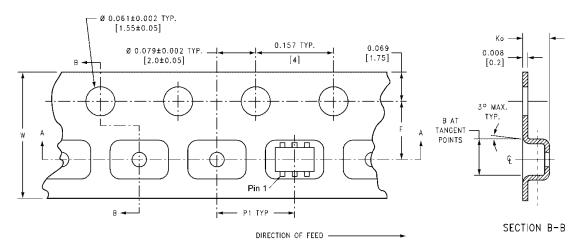


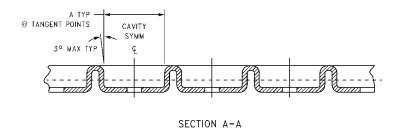
**Application Note:** When operating the NC7WZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the I<sub>CCPEAK</sub> specification on page 2.

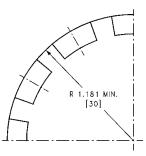
Input = AC Waveform;  $t_r$ ,  $t_f$  = 1.8ns; PRR = 10MHz; Duty Cycle = 50%

### Figure 2. I<sub>CCD</sub> Test Circuit





Figure 3. AC Waveforms


# **Tape and Reel Specification**


### Tape Format for SC70

| Package<br>Designator | Tape<br>Section    | Number<br>Cavities | Cavity<br>Status | Cover Tape<br>Status |
|-----------------------|--------------------|--------------------|------------------|----------------------|
| P6X                   | Leader (Start End) | 125 (typ)          | Empty            | Sealed               |
|                       | Carrier            | 3000               | Filled           | Sealed               |
|                       | Trailer (Hub End)  | 75 (typ)           | Empty            | Sealed               |

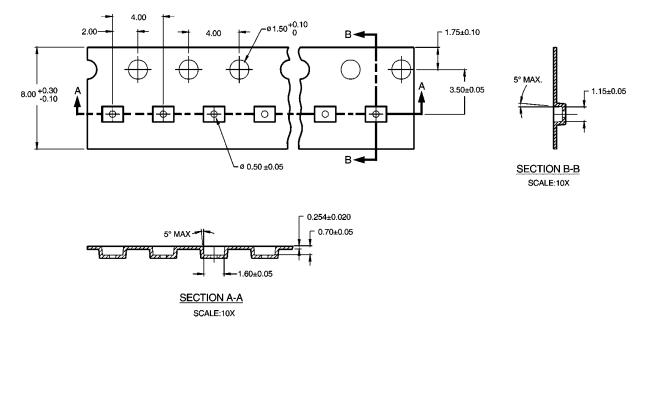
### Tape Dimension inches (millimeters)

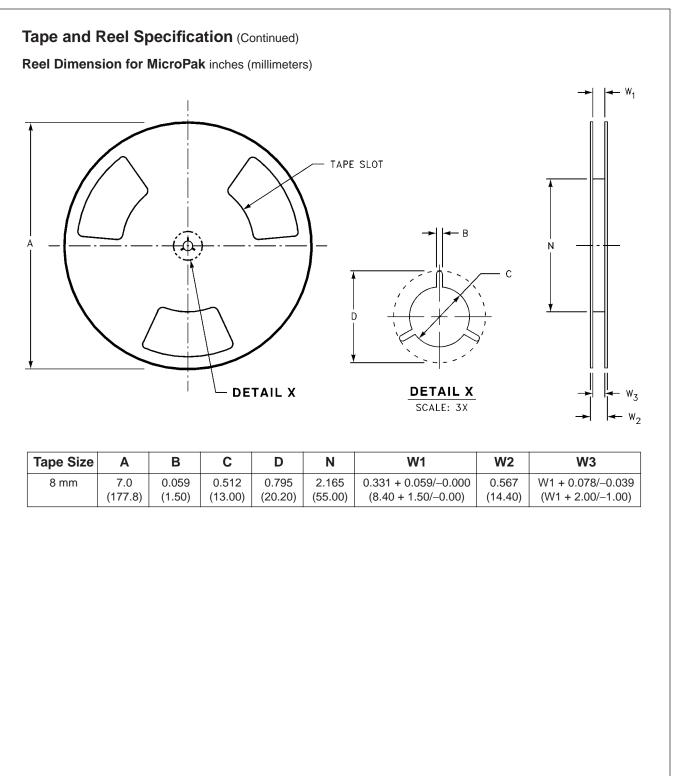


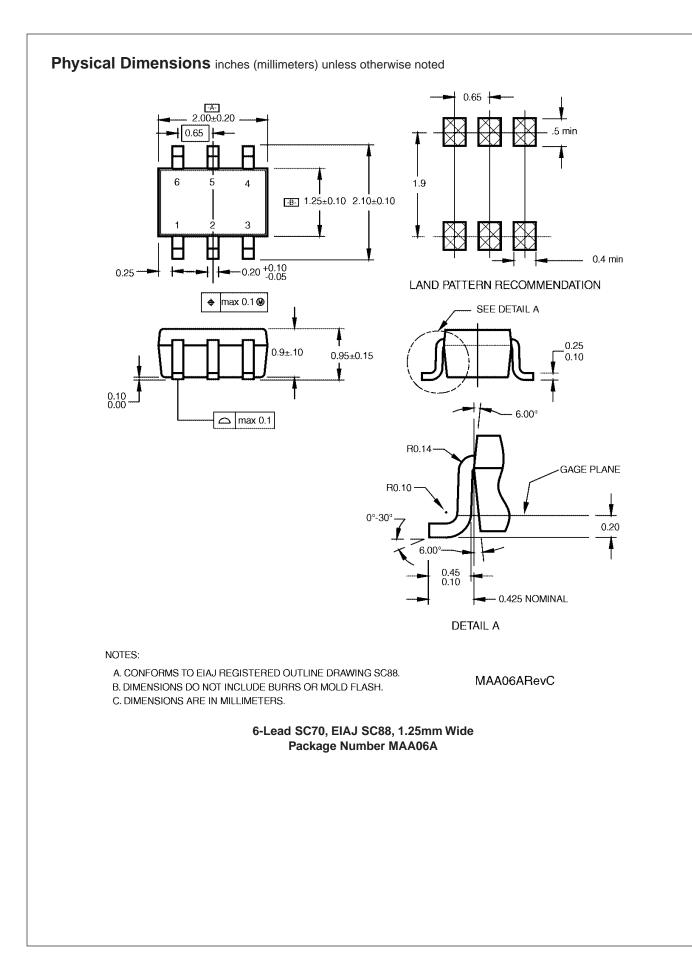


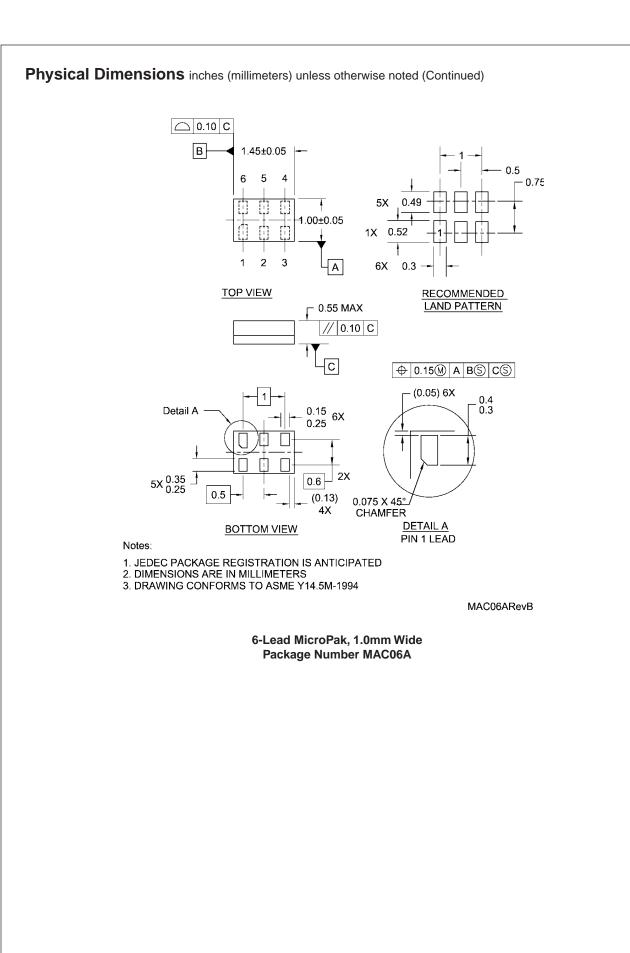


BEND RADIUS NOT TO SCALE


| Package | Tape Size | Dim A  | Dim B  | Dim F         | Dim K <sub>O</sub> | Dim P1 | Dim W         |
|---------|-----------|--------|--------|---------------|--------------------|--------|---------------|
| SC70-6  | 8mm       | 0.093  | 0.096  | 0.138 ± 0.004 | $0.053 \pm 0.004$  | 0.157  | 0.315 ± 0.004 |
|         |           | (2.35) | (2.45) | (3.5 ± 0.10)  | (1.35 ± 0.10)      | (4)    | (8 ± 0.1)     |


### Tape and Reel Specification (Continued)


### Tape Format for MicroPak


| Package<br>Designator | Tape<br>Section    | Number<br>Cavities | Cavity<br>Status | Cover Tape<br>Status |
|-----------------------|--------------------|--------------------|------------------|----------------------|
| L6X                   | Leader (Start End) | 125 (typ)          | Empty            | Sealed               |
|                       | Carrier            | 3000               | Filled           | Sealed               |
|                       | Trailer (Hub End)  | 75 (typ)           | Empty            | Sealed               |

### Tape Dimension inches (millimeters)









#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™<br>ActiveArray™                                          | FAST <sup>®</sup>              | ISOPLANAR™<br>LittleFET™ | PowerSaver™<br>PowerTrench <sup>®</sup> | SuperSOT™-6<br>SuperSOT™-8 |
|----------------------------------------------------------------|--------------------------------|--------------------------|-----------------------------------------|----------------------------|
| Bottomless <sup>™</sup>                                        | FASTr™<br>FPS™                 | MICROCOUPLER™            | QFET®                                   | SyncFET™                   |
| Build it Now™                                                  | FRFET™                         | MicroFET™                | QS™                                     | TCM™                       |
| CoolFET™                                                       | GlobalOptoisolator™            | MicroPak™                | QT Optoelectronics <sup>™</sup>         | TinyLogic®                 |
| CROSSVOLT™                                                     | GTO™                           | MICROWIRE™               | Quiet Series™                           | TINYOPTO™                  |
| DOME™                                                          | HiSeC™                         | MSX™                     | RapidConfigure™                         | TruTranslation™            |
| EcoSPARK™                                                      | I²C™                           | MSXPro™                  | RapidConnect™                           | UHC™                       |
| E <sup>2</sup> CMOS™                                           | i-Lo™                          | OCX™                     | µSerDes™                                | UltraFET <sup>®</sup>      |
| EnSigna™                                                       | ImpliedDisconnect <sup>™</sup> | OCXPro™                  | ScalarPump™                             | UniFET™                    |
| FACT™                                                          | IntelliMAX™                    | OPTOLOGIC <sup>®</sup>   | SILENT SWITCHER <sup>®</sup>            | VCX™                       |
| FACT Quiet Serie                                               |                                | OPTOPLANAR™              | SMART START™                            | Wire™                      |
|                                                                |                                | PACMAN™                  | SPM™                                    |                            |
|                                                                | d. Around the world.™          | POP™                     | Stealth™                                |                            |
| The Power Franchise <sup>®</sup><br>Programmable Active Droop™ |                                | Power247™                | SuperFET™                               |                            |
| Programmable A                                                 |                                | PowerEdge™               | SuperSOT™-3                             |                            |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **PRODUCT STATUS DEFINITIONS**

#### Definition of Terms

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or<br>In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                                |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |
|                          |                           | Rev. 118                                                                                                                                                                                                                          |