

February 2008

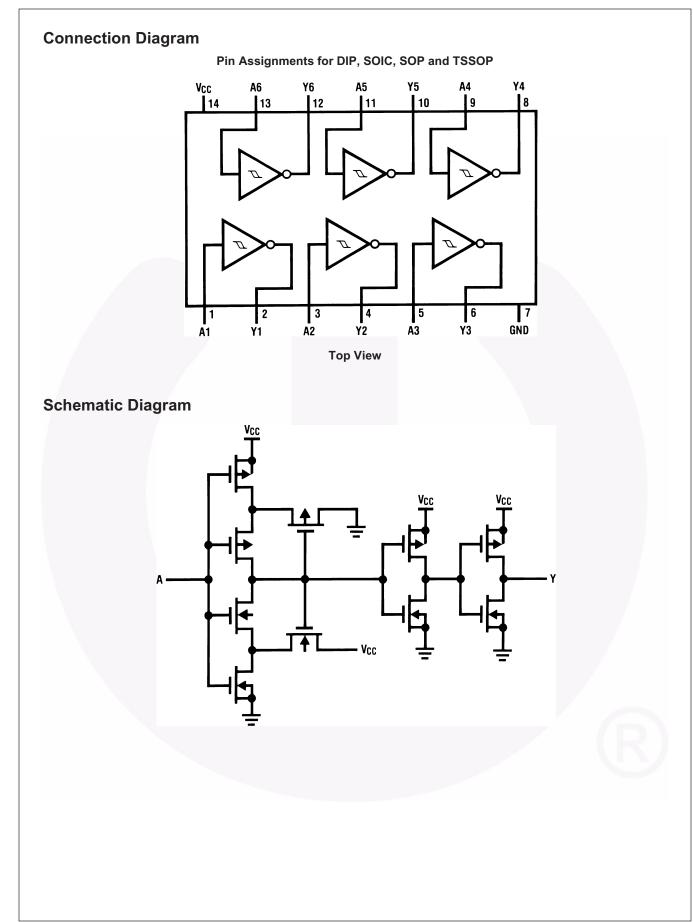
MM74HCT14 Hex Inverting Schmitt Trigger

Features

- Typical propagation delay: 13ns
- Wide power supply range: 2V–6V
- Low quiescent current: 10µA maximum
- Low input current: 1µA maximum
- Fanout of 10 LS-TTL loads
- Typical hysteresis voltage: 0.9V at V_{CC} = 4.5V
- TTL, LS pin-out and input threshold compatible

General Description

The MM74HCT14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability to drive 10 LS-TTL loads.


The 74HCT logic family is functionally and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Ordering Information

Order Number	Package Number	Package Description
MM74HCT14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCT14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT14N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5 to +7.0V
V _{IN}	DC Input Voltage	–1.5 to V _{CC} +1.5V
V _{OUT}	DC Output Voltage	–0.5 to V _{CC} +0.5V
I _{IK} , I _{OK}	Clamp Diode Current	±20mA
I _{OUT}	DC Output Current, per pin	±25mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50mA
T _{STG}	Storage Temperature Range	–65°C to +150°C
ΤL	Lead Temperature (Soldering 10 seconds)	260°C

Notes:

1. Unless otherwise specified all voltages are referenced to ground.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Max.	Units
V _{CC}	Supply Voltage	2	6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C

MM74HCT14 — Hex Inverting Schmitt Trigger

				TA	= 25°C	T _A = -40°C to 85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур	Typ Guaranteed Lim		Unit
V _{T+}	Positive Going	4.5	Minimum	1.5	1.2	1.2	V
	Threshold Voltage	5.5		1.7	1.4	1.4	-
		4.5	Maximum	1.5	1.9	1.9	
		5.5		1.7	2.1	2.1	
V _{T-}	Negative Going	4.5	Minimum	0.9	0.5	0.5	V
	Threshold Voltage	5.5		1.0	0.6	0.6	-
		4.5	Maximum	0.9	1.2	1.2	
		5.5		1.0	1.4	1.4	
V _H	Hysteresis Voltage	4.5	Minimum	0.6	0.4	0.4	V
		5.5		0.7	0.4	0.4	1
		4.5	Maximum	0.6	1.4	1.4	
		5.5		0.7	1.5	1.5	1
V _{OH}	Minimum HIGH Level Output Voltage		$V_{IN} = V_{IL}, I_{OUT} = 20 \mu A$	V _{CC}	V _{CC} – 0.1	V _{CC} – 0.1	V
			$V_{IN} = V_{IL}, I_{OUT} = 4.0 \text{mA},$ $V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	
			$V_{IN} = V_{IL}, I_{OUT} = 4.8 \text{mA},$ $V_{CC} = 5.5 \text{V}$	5.2	4.98	4.98	
V _{OL}	Maximum LOW Level		$V_{IN} = V_{IH}, I_{OUT} = 20 \mu A$	0	0.1	0.1	V
	Voltage		$\label{eq:VIN} \begin{split} V_{\text{IN}} = V_{\text{IH}}, \ I_{\text{OUT}} = 4.0 \text{mA}, \\ V_{\text{CC}} = 4.5 \text{V} \end{split}$	0.2	0.26	0.33	
			$V_{IN} = V_{IH}, I_{OUT} = 4.8 \text{mA}, \\ V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	
I _{IN}	Maximum Input Current		$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}		±0.1	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0\mu A$		1.0	10	μA
		5.5	$V_{IN} = 2.4 V \text{ or } 0.5 V^{(2)}$		2.4	2.4	mA

Note:

2. For a power supply of 5V ± 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V, T_A = 25^{\circ}C, C_L = 15pF, t_r = t_f = 6ns$

S	Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _F	_{PHL} , t _{PLH}	Maximum Propagation Delay		10	18	ns

AC Electrical Characteristics

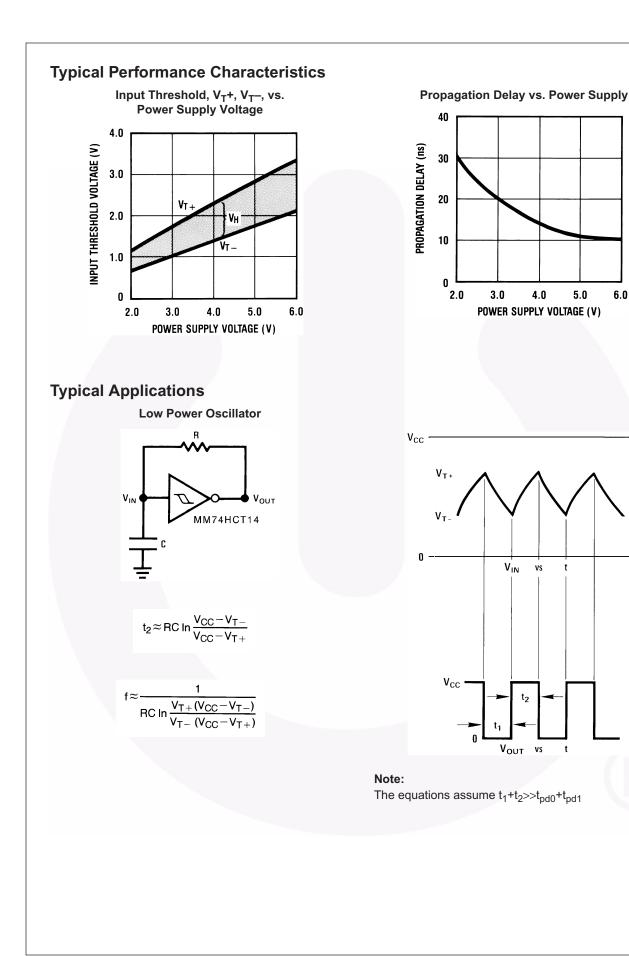
 V_{CC} = 5V ± 10%, C_L = 50pF, t_r = t_f = 6ns (unless otherwise specified)

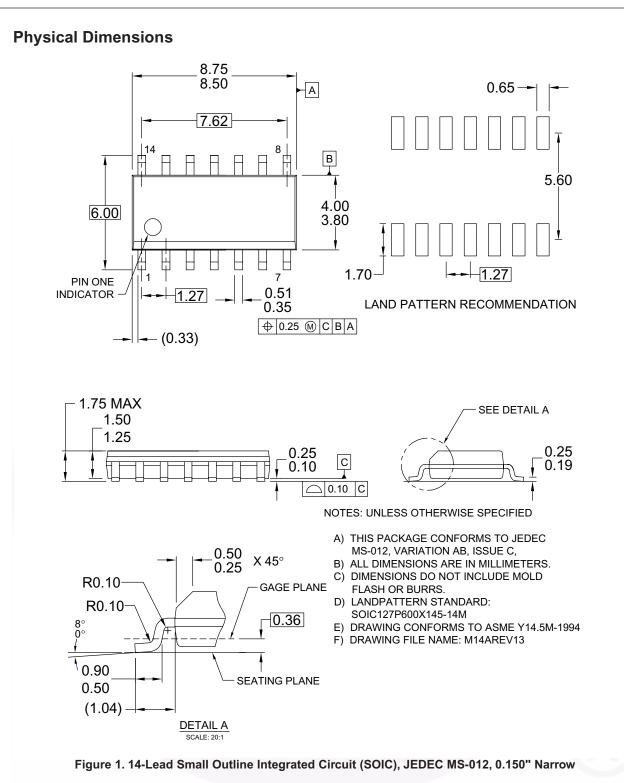
			T _A =	= 25°	T _A = −40°C to 85°C	
Symbol	Parameter	Conditions	Тур.	Guara	inteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay			20	25	ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		9	15	19	ns
C _{PD}	Power Dissipation Capacitance ⁽³⁾	(per gate)		25		pF
C _{IN}	Maximum Input Capacitance		5	10	10	pF

Note:

3. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

4.0

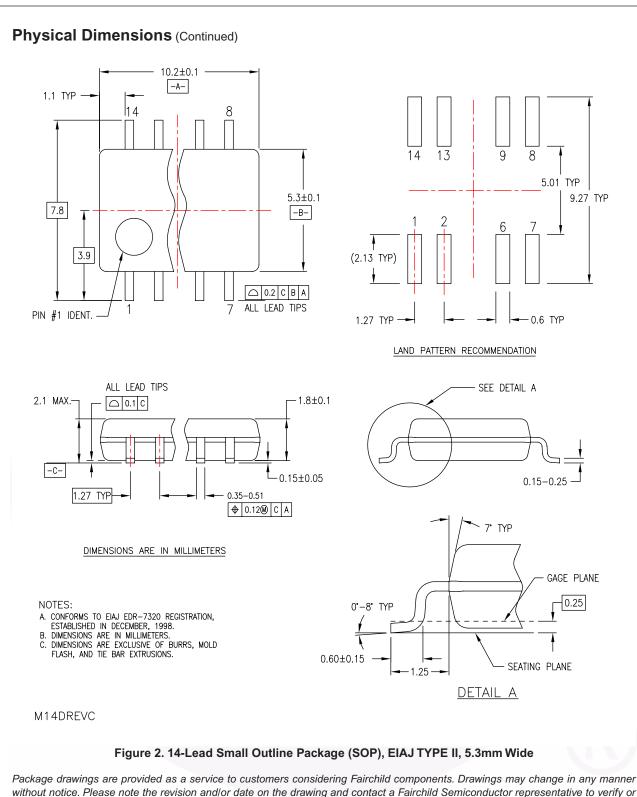

vs t


t,

vs

5.0

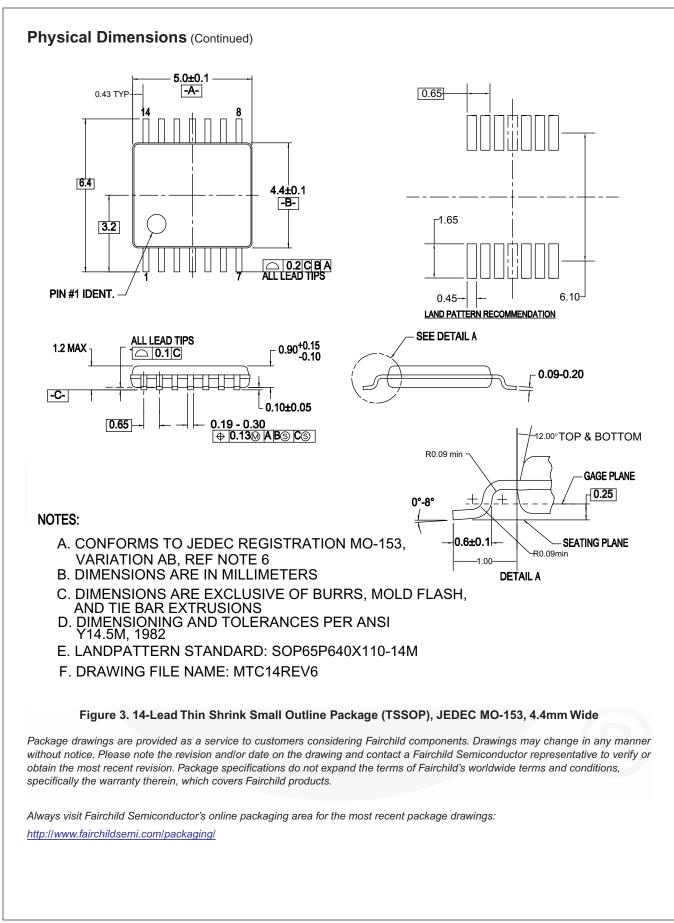
6.0

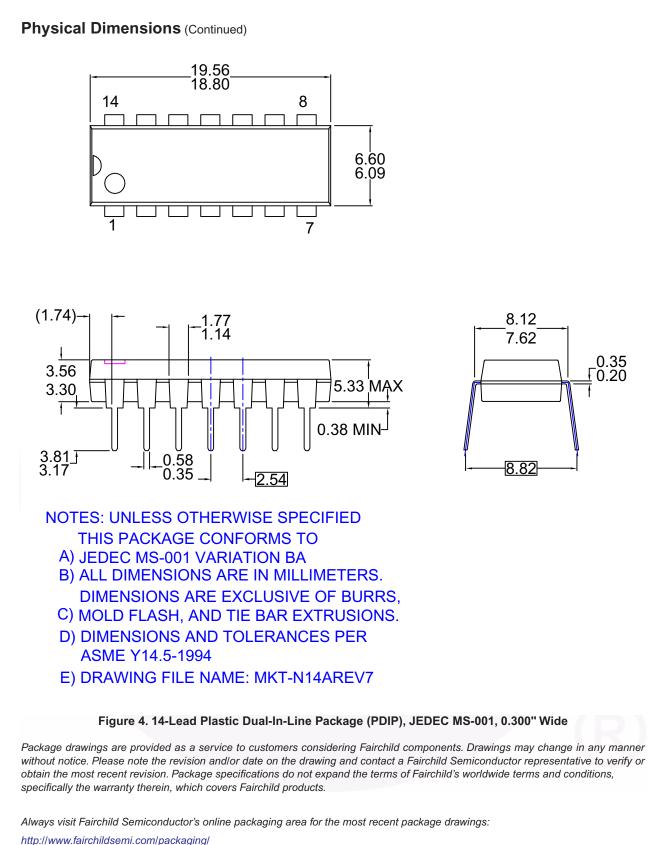


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/


MM74HCT14 — Hex Inverting Schmitt Trigger



Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] CROSSVOLT [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] EZSWITCH [™] * Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastvCore [™] FlashWriter [®]	FPS™ FRFET [®] Global Power Resource sM Green FPS™ e-Series™ GTO™ <i>i-Lo</i> ™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC [®] OPTOPLANAR®	PDP-SPM™ Power220® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperFET™ SuperSOT™43 SuperSOT™6 SuperSOT™48	SupreMOS [™] SyncFET [™] General The Power Franchise [®] Power [™] TinyBoost [™] TinyBoost [™] TinyBuck [™] TinyLogic [®] TINYOPTO [™] TinyPower [™] TinyPWM [™] TinyWM [™] TinyWire [™] µSerDes [™] UHC [®] Ultra FRFET [™] UniFET [™] VCX [™]
--	--	--	---

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS