September 2006

87.4%

2W

9.36mA

LM4949 Boomer[®] Audio Power Amplifier Series Stereo Class D Audio Subsystem with OCL Headphone Amplifier

General Description

The LM4949 is a fully integrated audio subsystem designed for stereo cell phone applications. The LM4949 combines a 2.5W stereo Class D amplifier plus a separate 190mW stereo headphone amplifier, volume control, and input mixer into a single device. The filterless class D amplifiers deliver 1.19W/channel into an 8 Ω load with <1% THD+N from a 5V supply. The headphone amplifier features National's Output Capacitor-less (OCL) architecture that eliminates the output coupling capacitors required by traditional headphone amplifiers. Additionally, the headphone amplifiers can be configured with capacitively coupled (CC)loads, or used to drive an external headphone amplifier. When configured for an external amplifier, the V_{DD}/2 output (VOC) controls the external amplifier's shutdown input.

For improved noise immunity, the LM4949 features fully differential left, right and mono inputs. The three inputs can be mixed/multiplexed to either the speaker or headphone amplifiers. The left and right inputs can be used as separate single-ended inputs, mixing multiple stereo audio sources. The mixer, volume control, and device mode select are controlled through an l^2C compatible interface.

Output short circuit and thermal shutdown protection prevent the device from being damaged during fault conditions. Superior click and pop suppression eliminates audible transients on power-up/down and during shutdown.

Key Specifications

	Efficiency V	_{DD} = 3.6V,	400mW	into 89	Ω	86.5%
--	--------------	-----------------------	-------	---------	---	-------

- Efficiency $V_{DD} = 5V$, 1W into 8Ω
- Quiescent Power Supply Current @ 3.6V

Power Output at $V_{DD} = 5V$ Speaker: $R_L = 4\Omega$, THD+N $\leq 1\%$

$R_L = 8\Omega$, THD+N $\leq 1\%$	1.19W
R_L = 4 Ω , THD+N \leq 10%	2.5W
Headphone:	
R_L = 16 Ω , THD+N \leq 1%	153mW
$R_{L} = 32\Omega$, THD+N $\leq 1\%$	89mW
Shutdown Current	0.1µA

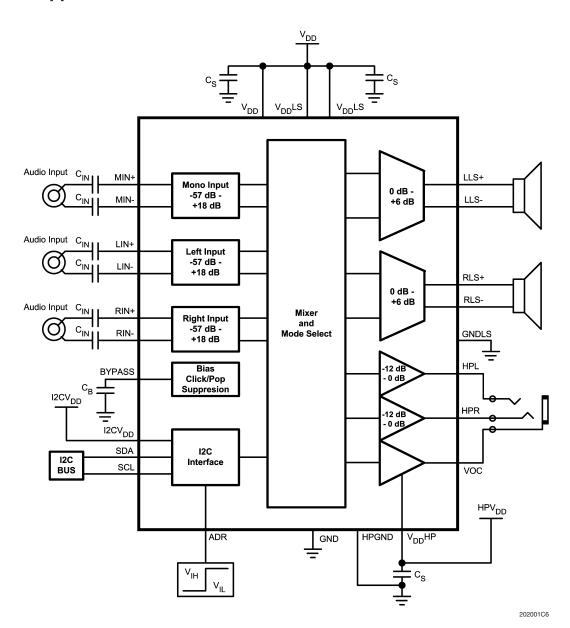
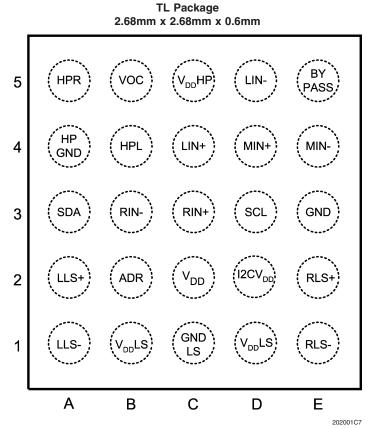
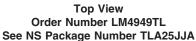
Features

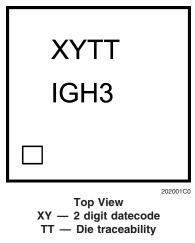
- Output Short Circuit Protection
- Thermal Shutdown
- Stereo filterless Class D operation
- Selectable OCL/CC Headphone Drivers
- RF Suppression
- I²C Control Interface
- 32-step digital volume control
- Independent Speaker and Headphone Gain Settings
- Minimum external components
- Click and Pop suppression
- Micro-power shutdown
- Available in space-saving 25 bump µSMD package

Applications

- Mobile phones
- PDAs
- Laptops

Typical Application


FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagrams

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (Note 1)	6.0V
Storage Temperature	–65°C to +150°C
Input Voltage	–0.3V to V _{DD} +0.3V
Power Dissipation (Note 3)	Internally Limited
ESD Susceptibility (Note 4)	2000V
ESD Susceptibility (Note 5)	200V
Junction Temperature	150°C

Thermal Resistance

 θ_{JA}

Operating Ratings

Temperature Range

$T_{MIN} \leq T_{A} \leq T_{MAX}$	$-40^{\circ}C \le T_A \le +85^{\circ}C$
Supply Voltage (V _{DD} , V _{DD} LS,	$2.7V \leq V_{DD} \leq 5.5V$
V _{DD} HP)	
I ² C Voltage (I ² CV _{DD})	$2.4V \leq I^2 CV_{DD} \leq 5.5V$

35.1°C/W

Electrical Characteristics V_{DD} = 3.0V (Notes 1, 2) The following specifications apply for A _V = 0dB,
$R_{L(SP)} = 15\mu H + 8\Omega + 15\mu H$, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

			LM	4949	Units
Symbol	Parameter	Conditions	Typical	Limit	
			(Note 6)	(Notes 7, 8)	(Limits)
		LS Mode			m (m a)
		Stereo	6	8.75	mA (max mA
		Mono	4.5		ШA
		OCL HP Mode			μα Δ (μα α).
		Stereo	5.0	6.5	mA (max
DD	Supply Current	Mono	4.3		mA
		CC HP Mode			
		Stereo	4.0	5.25	mA (max
		Mono	3.3		mA
		Stereo LS + HP Mode	8.6		mA
I _{SD}	Shutdown Supply Current		0.03	2	μA (max
	Output Offset Voltage	Speaker (mode 1)	8.9	48.9	mV (max
Vos		OCL HP (mode 1)	5.6	24.5	mV (max
		LS Mode, f = 1 kHz			
		$R_L = 4\Omega$, THD+N = 10%	820		mW
		$R_L = 4\Omega$, THD+N = 1%	662		mW
		$R_{L} = 8\Omega$, THD+N = 10%	515		mW
		$R_L = 8\Omega$, THD+N = 1%	415	340	mW (min
		OCP HP Mode, f = 1 kHz			
		$R_{L} = 16\Omega$, THD+N = 10%	62.5		mW
P _{OUT}	Output Power	$R_L = 16\Omega$, THD+N = 1%	50		mW
		$R_L = 32\Omega$, THD+N = 10%	37.5		mW
		$R_L = 32\Omega$, THD+N = 1%	30.3		mW
		CC HP Mode, f = 1 kHz			
		$R_{L} = 16\Omega$, THD+N = 10%	63		mW
		$R_L = 16\Omega$, THD+N = 1%	50		mW
		$R_{L} = 32\Omega$, THD+N = 10%	38		mW
		$R_{L} = 32\Omega$, THD+N = 1%	30		mW (min

Electrical Characteristics V_{DD} = 3.0V (Notes 1, 2) The following specifications apply for A _v = 0dB,
$R_{L(SP)} = 15\mu H + 8\Omega + 15\mu H$, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$. (Continued)

Symbol	Parameter			4949	Units	
		Conditions	Typical	Limit	(Limits)	
			(Note 6)	(Notes 7, 8)		
		Differential Mode, f = 1kHz				
		HP Mode, $R_L = 16\Omega$, $P_{OUT} = 35mW$				
		OCL	0.015		%	
		CC	0.012		%	
THD+N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 32\Omega$, $P_{OUT} = 20mW$				
THETN		OCL	0.017		%	
		CC	0.018		%	
		LS Mode				
		$R_L = 4\Omega, P_{OUT} = 300 mW$	0.023		%	
		$R_L = 8\Omega, P_{OUT} = 150mW$	0.02		%	
		Single-Ended Input Mode, f = 1kHz				
		HP Mode, $R_L = 16\Omega$, $P_{OUT} = 35mW$				
		OCL	0.023		%	
		СС	0.017		%	
		HP Mode, $R_L = 32\Omega$, $P_{OUT} = 20mW$		1 1		
THD+N	Total Harmonic Distortion + Noise	OCL	0.019		%	
		CC	0.013		%	
		LS Mode				
		$R_L = 4\Omega$, $P_{OUT} = 300$ mW	0.05		%	
		$R_L = 8\Omega, P_{OUT} = 150 \text{mW}$	0.03		%	
		Differential Input, A-weighted, Input Referred				
		Mono Input				
		OCL	16.4		μV	
		CC	15.5		μv μV	
		LS	43		μv μV	
		All Inputs ON	10		μ.	
		OCL	29.8		μV	
		CC	29.2		μv μV	
		LS	46.6		μV μV	
e _N	Noise	Single-Ended Input, A-weighted, Input			μv	
			Releffed			
		Stereo Input	10			
		OCL	12		μV	
		CC LA	11 45		μV μV	
			40	++	μv	
		All Inputs ON	00.7			
		OCL	23.7		μV	
		CC LS	22.9 52		μV	
~	Efficiency			++	μV	
η	Efficiency	LS Mode, $P_{OUT} = 400$ mW, $R_L = 8\Omega$	85.3		%	
		LS Mode, $f = 1 \text{ kHz}$, $R_L = 8\Omega$, $V_{IN} = 1$		1 1		
Xtalk	Crosstalk	Differential Input Mode	84.7		dB	
		OCL HP Mode, f = 1kHz, $R_L = 32\Omega$, V		· ·		
		Differential Input Mode	68		dB	
		CC Mode	68		ms	
T _{ON}	Turn on Time	OCL Mode	14		ms	
		LS Mode	29		ms	
T _{OFF}	Turn off Time	From any mode	683		ms	

Electrical Characteristics V_{DD} **= 3.0V** (Notes 1, 2) The following specifications apply for $A_V = 0$ dB, $R_{L(SP)} = 15\mu$ H + 8Ω + 15μ H, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25$ °C. (Continued)

			LM	4949	11-14-		
Symbol	Parameter	Conditions	Typical Limit		Units		
			(Note 6)	(Notes 7, 8)	(Limits)		
_		Maximum Gain	24.8		kΩ		
Z _{IN}	Input Impedance	Minimum Gain	222.7		kΩ		
		Volume Control					
		Minimum Gain	-57		dB		
		Maximum Gain	18		dB		
		LS Second Gain Stage	1	1			
		Step 0					
		Differential Input	6		dB		
		Single-Ended Input	12		dB		
		Step 1					
		Differential Input	4		dB		
		Single-Ended Input	10		dB		
A _V	Gain	Step 2		+ +			
		Differential Input	2		dB		
		Single-Ended Input	8		dB		
		Step 3			0.2		
		Differential Input	0		dB		
		Single-Ended Input	6		dB		
		HP Second Gain Stage					
		Step 0	0	1	dB		
		Step 0	-6		dB		
		Step 1 Step 2	-12		dB		
Mute	Mute Attenuation	Speaker Mode	-103		dB		
		Headphone Mode	-123		dB		
		Speaker Mode, $f = 1 \text{ kHz}$,	66.1		dB		
CMRR	Common Mode Rejection Ratio	$V_{IN} = 200 \text{mV}_{P-P}$					
		OCL Headphone Mode, f = 1kHz,	70		dB		
		$V_{IN} = 200 \text{mV}_{P-P}$					
		Differential Input Mode, V _{RIPPLE} = 20	0mV _{P-P}	· · · ·			
		OCL HP Mode, f = 217Hz	78.1		dB		
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	75.4		dB		
		LS Mode, f = 217Hz	74		dB		
		LS Mode, f = 1kHz	72.9		dB		
		Single-Ended Input Mode, V _{RIPPLE} =	200mV _{P-P}				
		OCL HP Mode, f = 217Hz	77.5		dB		
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	81		dB		
		LS Mode, f = 217Hz	69		dB		
		LS Mode, f = 70.31kHz72.8	81		dB		
		All Inputs ON, Single-Ended Input Mo	ode, V _{RIPPLE} =	200mV _{P-P}			
		OCL HP Mode, f = 217Hz	66.1		dB		
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	70.5		dB		
		LS Mode, f = 217Hz	65.4		dB		
		LS Mode, f = 1kHz	72.2		dB		

Ibo Supply Current Stereo Mono 6.8 4.9 7.3 5.3 mA (max) mA (max) Supply Current Stereo Stereo 5.8 6.6 5.8 6.5 6.5 mA (max) mA (max) Loo Shutdown Supply Current CC HP Mode Stereo 15 + HP Mode 9.36 mA (max) mA (max) Vos Output Offset Voltage Headphone Speaker 6.7 8.9 20 mV (max) Vos Output Offset Voltage Headphone Speaker 6.7 1.24 20 mV (max) mV (max) Pour Output Offset Voltage Us Mode, I = 1 MHz Speaker 1.24 NG = 40, THO-N = 10% 0.765 0.015 WW NR R, e 40, THO-N = 10% 0.765 0.015 WW NR R, e 320, THO-N = 10% 0.615 WW NR R, e 320, THO-N = 10% MW NW R, e 320, T			L3 MOUE				
Ibo Supply Current OCL HP Mode Stereo 5.8 5.8 Mono 6.5 4.9 4.9 4.1 mA (max) 4.9 5.5 Igo Shutdown Supply Current 0.03 1 yA (max) mA (max) Igo Shutdown Supply Current 0.03 1 yA (max) mA (max) Vos Output Offset Voltage Headphone Speaker 6.7 20 mV (max) mV (max) Vos Output Offset Voltage Issociation (F = 1 kHz) R ₁ = 40, THD+N = 10% R ₁ = 60, THD+N = 10% R ₁ = 80, THD+N = 10% R ₁ = 320, THD-N = 10% R ₁ = 320,			Stereo	6.8	7.3	mA (max)	
$\begin{tabular}{ c c c c c c } \hline $Cl. HP Mode & 5.8 & 6.5 & mA (max) \\ Mono & 4.9 & 5.5 & mA (max) \\ Mono & 4.9 & 5.5 & mA (max) \\ \hline $C \mbox{ HP Mode } & 5.8 & 6.5 & mA (max) \\ \hline $C \mbox{ HP Mode } & 4.1 & 4.6 & mA (max) \\ \hline $Stereo & 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ Mono } & 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ Stereo \mbox{ HP Mode } & 9.36 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.6 & mA (max) \\ \hline $Stereo \mbox{ In } 4.1 & 4.8 & mV (max) \\ \hline $Stereo \mbox{ In } 4.2 & mV (max) \\ \hline $Stereo \mbox{ In } 4.2 & mW \\ \hline $R_1 = 40, THO+N = 10\% & 0.765 & W \\ $R_1 = 80, THO+N = 10\% & 0.615 & W \\ \hline $C \mbox{ In } 10.4 & 10\% & 0.55 & mW \\ \hline $R_1 = 320, THO+N = 10\% & 55 & mW \\ \hline $R_1 = 320, THO+N = 10\% & 55 & mW \\ \hline $R_1 = 320, THO+N = 10\% & 56 & mW \\ \hline $R_1 = 320, THO+N = 1\% & 45 & mW \\ \hline $C \mbox{ OCL } & 0.021 & 0.021 & \% \\ \hline $C \mbox{ In } 10.4 & 10\% & 56 & mW \\ \hline $R_1 = 320, THO+N = 1\% & 45 & mW \\ \hline $CL \mbox{ OCL } & 0.021 & 0.021 & \% \\ \hline $CL \mbox{ In } 10.4 & 10\% & 0.02 & \% \\ \hline $THD+N $ Total Harmonic Distortion + Noise $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$			Mono	4.9	5.3	mA (max)	
Ibo Supply Current Stereo 5.8 6.5 mA (max) mA (max) Ico Stereo 4.7 5.2 mA (max) Stereo 4.7 5.2 mA (max) Mono 4.1 4.6 mA (max) Stereo LS + HP Mode 9.36 mA (max) Vos Output Offset Voitage Bpaaker 6.7 2.0 mV (max) Spaaker 8.9 4.0 mV (max) mV (max) mV (max) Spaaker 8.9 4.0 mV (max) mV (max) mV (max) Spaaker 8.9 4.0 mV (max) mV (max) mV (max) Spaaker 8.9 0.615 W W W W W R_1 = 40, TH0+N = 10% 0.765 W			OCL HP Mode				
Ibp Supply Current Mono 4.9 5.5 mA (max) CC HP Mode				5.8	6.5	mA (max)	
$\begin{tabular}{ c c c c c c } \hline CC HP Mode & 4.7 & 5.2 & mA (max) \\ \hline Stereo LS + HP Mode & 9.36 & mA \\ \hline Mono & 4.1 & 4.6 & mA (max) \\ \hline Mono & 0.03 & 1 & \muA (max) \\ \hline Mono & 0.03 & 1 & \muA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 9.36 & 0.01 & MA (max) \\ \hline Mode & 1 & 1kHz & 0.03 & 1.24 & W \\ \hline R_{L} = 40, THD+N = 10\% & 1.24 & W \\ \hline R_{L} = 40, THD+N = 10\% & 1.24 & W \\ \hline R_{L} = 40, THD+N = 10\% & 0.615 & W \\ \hline OCL HP Mode, f = 1 kHz & MW \\ \hline R_{L} = 80, THD+N = 10\% & 0.615 & W \\ \hline OCL HP Mode, f = 1 kHz & MW \\ \hline R_{L} = 160, THD+N = 10\% & 55 & mW \\ \hline R_{L} = 322, THD+N = 10\% & 55 & mW \\ \hline R_{L} = 322, THD+N = 10\% & 55 & mW \\ \hline R_{L} = 322, THD+N = 10\% & 55 & mW \\ \hline R_{L} = 160, THD+N = 1\% & 45 & MW \\ \hline C C HP Mode, f = 1 kHz & MW \\ \hline HP Mode, f = 1 kHz & MW \\ \hline MW & R_{L} = 322, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 322, THD+N = 10\% & 56 & mW \\ \hline MW & R_{L} = 322, THD+N = 10\% & 56 & mW \\ \hline MW & R_{L} = 322, THD+N = 10\% & 56 & mW \\ \hline Differential Mode, f = 1 kHz & MW \\ \hline D & OCL & 0.021 & \% \\ \hline MP Mode, R_{L} = 160, Pour = 50mW & OCL & 0.021 & \% \\ \hline MP Mode, R_{L} = 322, Pour = 30mW & OCL & 0.01 & \% \\ \hline THD+N & Total Harmonic Distortion + Noise & \hline MP Mode, R_{L} = 320, Pour = 300mW & 0.02 & \% \\ \hline THD+N & Total Harmonic Distortion + Noise & \hline MP Mode, R_{L} = 320, Pour = 50mW & 0.021 & \% \\ \hline THD+N & Total Harmonic Distortion + Noise & \hline MP Mode, R_{L} = 320, Pour = 400mW & 0.023 & \% \\ \hline THD+N & Total Harmonic Distortion + Noise & \hline MP Mode, R_{L} = 320, Pour = 30mW & 0.02 & \% \\ \hline MP Mode, R_{L} = 320, Pour = 400mW & 0.02 & \% \\ \hline MP Mode, R_{L} = 320, Pour = 30mW & 0.02 & \% \\ \hline MP Mode, R_{L} = 320, Pour = 30mW & 0.02 & \% \\ \hline MP Mode, R_{L} = 320, Pour = 30mW & 0.02 & \% \\ \hline MP Mode, R_{L} = 320, Pour = 30mW & 0.02 & \% \\ \hline MP Mode, R_{L} = 320, Pour = 30mW & 0.02 & \% \\ \hline MP Mode, R_{L} = 320, Pour = 30mW $	I _{DD}	Supply Current					
$\begin{tabular}{ c c c c c } \hline Stereo & 4.7 & 5.2 & mA (max) \\ \hline Mono & 4.1 & 4.6 & mA (max) \\ \hline Mono & 4.1 & 4.6 & mA (max) \\ \hline Mono & 4.1 & 4.6 & mA (max) \\ \hline Stereo LS + HP Mode & 9.36 & mA \\ \hline \end{tabular} \hline \hline \end{tabular} \hline \end{tabular} \hline \hline \$				4.5	5.5		
$\begin{tabular}{ c c c c } \hline c c c c c c c c c c c c c c c c c c $				47	5.0		
$\begin{tabular}{ c c c c } \hline term (lic) & $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					4.6		
$ \begin{array}{c c c c c c c } \hline V_{OS} & Output Offset Voltage & Headphone & 6.7 & 20 & mV (max) \\ \hline Speaker & 8.9 & 49 & mV (max) \\ \hline Speaker & 8.9 & 49 & mV (max) \\ \hline Speaker & 8.9 & 49 & mV (max) \\ \hline Speaker & 8.9 & 49 & mV (max) \\ \hline Speaker & 8.9 & 49 & mV (max) \\ \hline Speaker & 8.9 & 49 & mV (max) \\ \hline Speaker & 8.9 & 49 & mV (max) \\ \hline R_{L} = 4\Omega, THD+N = 10\% & 1.24 & W \\ \hline R_{L} = 4\Omega, THD+N = 11\% & 0.765 & W \\ \hline R_{L} = 8\Omega, THD+N = 10\% & 0.765 & W \\ \hline OCL HP Mode, f = 1 kHz & mW \\ \hline R_{L} = 16\Omega, THD+N = 10\% & 94 & mW \\ \hline R_{L} = 16\Omega, THD+N = 10\% & 55 & mW \\ \hline CC HP Mode, f = 1 kHz & mW \\ \hline CC HP Mode, f = 1 kHz & mW \\ \hline R_{L} = 16\Omega, THD+N = 10\% & 93 & mW \\ \hline R_{L} = 16\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 56 & mW \\ \hline R_{L} = 32\Omega, THD+N = 10\% & 45 & mW \\ \hline THD+N \\ \hline THD+N \\ \hline Total Harmonic Distortion + Noise & \hline HP Mode, R_{L} = 16\Omega, P_{OUT} = 50mW \\ \hline OCL & 0.021 & \% \\ \hline CC & 0.01 & \% \\ \hline HP Mode, R_{L} = 32\Omega, P_{OUT} = 400mW & 0.023 & \% \\ \hline R_{L} = 4\Omega, P_{OUT} = 30mW & 0.02 & \% \\ \hline THD+N \\ \hline THD+N \\ \hline ThD+N \\ \hline Total Harmonic Distortion + Noise & \hline HP Mode, R_{L} = 16\Omega, P_{OUT} = 30mW \\ \hline OCL & 0.01 & \% \\ \hline CC & 0.01 & \% \\ \hline CC & 0.01 & \% \\ \hline HP Mode, R_{L} = 32\Omega, P_{OUT} = 30mW & 0.02 & \% \\ \hline HP Mode, R_{L} = 32\Omega, P_{OUT} = 30mW & 0.02 & \% \\ \hline Single-Ended Input Mode, f = 1 kHz \\ \hline HP Mode, R_{L} = 32\Omega, P_{OUT} = 30mW \\ OCL & 0.01 & \% \\ \hline CC & 0.01 & \% \\ \hline CC & 0.01 & \% \\ \hline HP Mode, R_{L} = 32\Omega, P_{OUT} = 30mW & 0.02 & \% \\ \hline Single-Ended Input Mode, f = 16\Omega, P_{OUT} = 30mW \\ OCL & 0.01 & \% \\ \hline HP Mode, R_{L} = 4\Omega, P_{OUT} = 30mW \\ OCL & 0.01 & \% \\ \hline Single-Ended Input Mode, f = 16\Omega, P_{OUT} = 30mW \\ OCL & 0.01 & \% \\ \hline HP Mode, R_{L} = 32\Omega, P_{OUT} = 30mW \\ OCL & 0.01 & \% \\ \hline HP Mode, R_{L} = 4\Omega, P_{OUT} = 400mW \\ \hline HP Mode, R_{L}$			Stereo LS + HP Mode				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{SD}	Shutdown Supply Current		0.03	1	μA (max)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V	Output Offset Voltage	Headphone	6.7	20	mV (max)	
$\begin{tabular}{ c c c c c } \hline F_{L_{1}} = 4\Omega, THD+N = 10\% & 1.24 & W \\ F_{L_{1}} = 4\Omega, THD+N = 17\% & 1 & W \\ F_{L_{1}} = 4\Omega, THD+N = 17\% & 0.615 & W \\ \hline F_{L_{1}} = 8\Omega, THD+N = 1\% & 0.615 & W \\ \hline OCL HP Mode, f = 1 kHz & & & & & & & & & & & & & & & & & & &$	VOS	Ouput Onset Voltage	Speaker	8.9	49	mV (max)	
$\begin{tabular}{ c c c c c c } \hline F_{L} = 4\Omega, THD+N = 1\% & 1 & W \\ R_{L} = 8\Omega, THD+N = 10\% & 0.765 & W \\ \hline R_{L} = 8\Omega, THD+N = 10\% & 0.615 & W \\ \hline OCL HP Mode, f = 1 kHz & & & & & & & & & & & & & & & & & & &$			LS Mode, f = 1 kHz				
$\begin{tabular}{ c c c c c } \hline $R_L = 8\Omega, THD+N = 10\% & 0.765 & W \\ \hline $R_L = 8\Omega, THD+N = 1\% & 0.615 & W \\ \hline $R_L = 8\Omega, THD+N = 1\% & 0.615 & W \\ \hline $QCL HP Mode, f = 1 kHz & & & & & & & & & & & & & & & & & & &$			$R_{L} = 4\Omega$, THD+N = 10%	1.24		W	
$\begin{tabular}{ c c c c c c } \hline $R_L = 8\Omega, THD+N = 1\% & 0.615 & W \\ \hline CCL HP$ Mode, $f = 1$ HHz$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			$R_{L} = 4\Omega$, THD+N = 1%	1		W	
$\begin{tabular}{ c c c c c c } \hline $R_L = 8\Omega, THD+N = 1\% & 0.615 & W \\ \hline CCL HP$ Mode, $f = 1$ HHz$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			$R_{L} = 8\Omega$, THD+N = 10%	0.765		W	
$\begin{tabular}{ c c c c c c } \hline \mbox{Ocl. HP Mode, f = 1 kHz} & & & & & & & & & & & & & & & & & & &$				0.615		W	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				94		mW	
$\begin{tabular}{ c c c c c c } \hline $F_L = 32\Omega, THD+N = 10\% & 55 & mW & mW & mW & mW & mW & mW & mW$	Pour	Output Power					
$\begin{tabular}{ c c c c c c } \hline $R_L = 32\Omega, THD+N = 1\% & 45 & mW \\ \hline $R_L = 16\Omega, THD+N = 10\% & 93 & mW \\ $R_L = 16\Omega, THD+N = 10\% & 75 & mW \\ $R_L = 32\Omega, THD+N = 1\% & 75 & mW \\ $R_L = 32\Omega, THD+N = 1\% & 45 & mW \\ $R_L = 32\Omega, THD+N = 1\% & 45 & mW \\ \hline $MW \\ $CC & 0.021 & 0.02 & 0.021 & 0.021 & 0.021 & 0.021 & 0.02 & 0.021 & 0.021 & 0.021 & 0.021 & 0.021 & 0.021 & 0.021 & 0.02 & 0.021 & 0.$	1.001						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{tabular}{ c c c c c c } \hline $R_{L} = 16\Omega, THD+N = 10\% & 93 & mW & mW & R_{L} = 16\Omega, THD+N = 1\% & 75 & mW & mW & R_{L} = 32\Omega, THD+N = 10\% & 56 & mW & mW & R_{L} = 32\Omega, THD+N = 10\% & 45 & mW & m$				10			
$\begin{tabular}{ c c c c c c } \hline $R_L = 16\Omega, THD+N = 1\% & 75 & mW & mW & R_L = 32\Omega, THD+N = 10\% & 56 & mW & mW & R_L = 32\Omega, THD+N = 1\% & 45 & mW & m$				02		m\\/	
$\begin{tabular}{ c c c c c c c } \hline $R_L = 32\Omega, THD+N = 10\% & 56 & mW & m$							
$\begin{tabular}{ c c c c c } \hline $R_L = 32\Omega, THD+N = 1\% $ 45 $ mW$ \\ \hline $R_L = 32\Omega, THD+N = 1\% $ 45 $ mW$ \\ \hline MW \\ \hline M							
$\begin{tabular}{ c c c c c } \hline THD+N & Total Harmonic Distortion + Noise & \hline Differential Mode, f = 1kHz & & & & \\ \hline Differential Mode, R_L = 16\Omega, P_{OUT} = 50mW & & 0.021 & & \% & \\ \hline OCL & & 0.021 & & \% & & \\ \hline HP Mode, R_L = 32\Omega, & & & & & \\ P_{OUT} = 30mW & & & & & \\ OCL & & 0.01 & & \% & & \\ \hline OCL & & 0.01 & & \% & & \\ \hline CC & & 0.01 & & \% & & \\ \hline LS Mode & & & & \\ R_L = 4\Omega, P_{OUT} = 400mW & & 0.023 & & \% & \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & & 0.02 & & \% & \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & & 0.02 & & \% & \\ \hline \\ \hline THD+N & Total Harmonic Distortion + Noise & \hline \begin{array}{c} Differential Mode, f = 1kHz & & \\ \hline HP Mode, R_L = 16\Omega, P_{OUT} = 50mW & & & \\ OCL & & 0.017 & & \% & \\ \hline CC & & 0.017 & & \% & \\ \hline HP Mode, R_L = 32\Omega, P_{OUT} = 30mW & & & \\ \hline OCL & & & 0.02 & & \% & \\ \hline CC & & & 0.015 & & \% & \\ \hline LS Mode & & & & \\ \hline R_L = 4\Omega, P_{OUT} = 400mW & & 0.05 & & \% & \\ \hline \end{array}$							
$\begin{tabular}{ c c c c c } \hline HP \ Mode, \ R_L = 16\Omega, \ P_{OUT} = 50mW & 0.021 & 0.021 & \% \\ \hline OCL & 0.021 & 0.021 & \% \\ \hline OCL & 0.021 & 0.021 & \% \\ \hline OCL & 0.01 & 0.021 & 0.01 & \% \\ \hline P_{OUT} = 30mW & 0.021 & 0.01 & \% \\ \hline OCL & 0.01 & 0.01 & \% \\ \hline OCL & 0.01 & 0.01 & \% \\ \hline CC & 0.01 & 0.023 & \% \\ \hline R_L = 4\Omega, \ P_{OUT} = 300mW & 0.023 & \% \\ \hline R_L = 8\Omega, \ P_{OUT} = 300mW & 0.023 & \% \\ \hline R_L = 8\Omega, \ P_{OUT} = 300mW & 0.02 & 0.02 & \% \\ \hline Single-Ended \ Input \ Mode, \ f = 1kHz & & & & & & \\ \hline HP \ Mode, \ R_L = 16\Omega, \ P_{OUT} = 50mW & 0.021 & & & & & & \\ \hline OCL & 0.017 & & & & & & & \\ \hline HP \ Mode, \ R_L = 32\Omega, \ P_{OUT} = 30mW & 0.02 & & & & & & & \\ \hline OCL & 0.017 & & & & & & & \\ \hline HP \ Mode, \ R_L = 32\Omega, \ P_{OUT} = 30mW & 0.02 & & & & & & & \\ \hline IS \ Mode & R_L = 32\Omega, \ P_{OUT} = 30mW & 0.02 & & & & & & & \\ \hline IS \ Mode & R_L = 4\Omega, \ P_{OUT} = 400mW & 0.05 & & & & & & & & \\ \hline \end{array}$				40		IIIVV	
$\begin{tabular}{ c c c c } \hline THD+N & $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $					1	1	
$\begin{tabular}{ c c c c } \hline THD+N & Total Harmonic Distortion + Noise & \hline CC & 0.021 & \% \\ \hline HP Mode, R_L = 32\Omega, \\ P_{OUT} = 30mW & 0.01 & \% \\ \hline OCL & 0.01 & \% \\ \hline CC & 0.01 & \% \\ \hline LS Mode & & & & & \\ R_L = 4\Omega, P_{OUT} = 400mW & 0.023 & \% \\ R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline Single-Ended Input Mode, f = 1kHz & & & \\ \hline HP Mode, R_L = 16\Omega, P_{OUT} = 50mW & 0.021 & \% \\ \hline CC & 0.017 & \% \\ \hline HP Mode, R_L = 32\Omega, P_{OUT} = 30mW & 0.02 & \% \\ \hline HP Mode, R_L = 32\Omega, P_{OUT} = 30mW & 0.02 & \% \\ \hline LS Mode & & & & \\ \hline HP Mode, R_L = 32\Omega, P_{OUT} = 30mW & 0.02 & \% \\ \hline LS Mode & & & & \\ \hline R_L = 4\Omega, P_{OUT} = 400mW & 0.05 & \% \\ \hline \end{tabular}$							
$\begin{tabular}{ c c c c c } \hline THD+N & Total Harmonic Distortion + Noise & HP Mode, R_L = 32\Omega, \\ P_{OUT} = 30mW & 0.01 & 0.01 & \% \\ OCL & 0.01 & 0.01 & \% \\ CC & 0.01 & 0.023 & \% \\ R_L = 4\Omega, P_{OUT} = 400mW & 0.023 & \% \\ R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 300mW & 0.02 & \% \\ \hline R_L = 8\Omega, P_{OUT} = 400mW & 0.05 & \% \\ \hline R_L = 4\Omega, P_{OUT} = $							
$\begin{tabular}{ c c c c c } \hline THD+N & Total Harmonic Distortion + Noise & P_{OUT} = 30mW & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 & 0.017 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.015 & 0.02 & 0.02 & 0.02 & 0.015 & 0.02 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.02 & 0.015 & 0.02 & 0.02 & 0.015 & 0.02 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.015 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.0				0.021		%	
$\begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{tabular}{ c c c c c c } \hline CC & 0.01 & 0.01 & \% \\ \hline LS \ Mode & & & & & & & \\ R_L = 4\Omega, \ P_{OUT} = 400 mW & 0.023 & \% \\ R_L = 8\Omega, \ P_{OUT} = 300 mW & 0.02 & \% \\ \hline R_L = 8\Omega, \ P_{OUT} = 300 mW & 0.02 & \% \\ \hline Single-Ended \ Input \ Mode, \ f = 1 \ HHz & & & & \\ \hline HP \ Mode, \ R_L = 16\Omega, \ P_{OUT} = 50 mW & & & & \\ OCL & 0.021 & \% \\ OCL & 0.017 & \% \\ \hline HP \ Mode, \ R_L = 32\Omega, \ P_{OUT} = 30 mW & & & \\ OCL & 0.017 & \% \\ \hline HP \ Mode, \ R_L = 32\Omega, \ P_{OUT} = 30 mW & & & \\ \hline Single \ Ended \ B_L = 4\Omega, \ P_{OUT} = 400 mW & 0.05 & & & \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	THD+N	Total Harmonic Distortion + Noise					
$\begin{tabular}{ c c c c c c c } \hline LS & Mode & & & & & & & & & & & \\ R_L = 4\Omega, \ P_{OUT} = 400mW & 0.023 & & & \% & & & & & \\ R_L = 8\Omega, \ P_{OUT} = 300mW & 0.02 & & \% & & & & & & & & & \\ \hline R_L = 8\Omega, \ P_{OUT} = 300mW & 0.02 & & & \% & & & & & & & & \\ \hline Single-Ended Input Mode, \ f = 1kHz & & & & & & & & & & & & \\ \hline HP & Mode, \ R_L = 16\Omega, \ P_{OUT} = 50mW & & & & & & & & & & & & \\ OCL & & 0.021 & & & \% & & & & & & & & & \\ CC & & 0.017 & & & & & & & & & & & \\ \hline HP & Mode, \ R_L = 32\Omega, \ P_{OUT} = 30mW & & & & & & & & & & & \\ OCL & & 0.02 & & & & & & & & & & & \\ OCL & & 0.015 & & & & & & & & & & & \\ CC & & 0.015 & & & & & & & & & & & & \\ \hline LS & Mode & & & & & & & & & & & & & & & & & & &$							
$\begin{tabular}{ c c c c c c c } \hline $R_L = 4\Omega, $P_{OUT} = 400 mW$ & 0.023 & 0.02 & \% \\ \hline $R_L = 8\Omega, $P_{OUT} = 300 mW$ & 0.02 & \% \\ \hline $R_L = 8\Omega, $P_{OUT} = 300 mW$ & 0.02 & \% \\ \hline $Single-Ended Input Mode, $f = 1kHz$ & & & & & & & \\ \hline $HP Mode, $R_L = 16\Omega, $P_{OUT} = 50 mW$ & 0.021 & \% \\ OCL & 0.017$ & 0.021 & \% \\ \hline OCL & 0.017 & 0.02 & 0.017 & $\%$ \\ \hline $HP Mode, $R_L = 32\Omega, $P_{OUT} = 30 mW$ & 0.02 & $\%$ \\ \hline OCL & 0.015 & $\%$ & & & & & \\ \hline $HP Mode, $R_L = 32\Omega, $P_{OUT} = 30 mW$ & 0.02 & $\%$ \\ \hline $LS Mode$ & $R_L = 4\Omega, $P_{OUT} = 400 mW$ & 0.05 & $\%$ & & & & & \\ \hline $HP MODE = 4\Omega, $P_{OUT} = 400 mW$ & 0.05 & $\%$ & & & & & & \\ \hline $HP MODE = 4\Omega, $P_{OUT} = 400 mW$ & 0.05 & $\%$ & & & & & & & & \\ \hline $HP MODE = 4\Omega, $P_{OUT} = 400 mW$ & 0.05 & $\%$ & & & & & & & & \\ \hline $HP MODE = 4\Omega, $P_{OUT} = 400 mW$ & 0.05 & $\%$ & & & & & & & & & \\ \hline $HP MODE = 4\Omega, $P_{OUT} = 400 mW$ & 0.05 & $\%$ & & & & & & & & & \\ \hline $HP MODE = 4\Omega, $P_{OUT} = 400 mW$ & 0.05 & $\%$ & & & & & & & & & & & & & & & & $			CC	0.01		%	
$\begin{tabular}{ c c c c c c } \hline $R_L = 8\Omega, $P_{OUT} = 300 mW$ & 0.02$ & % \\ \hline $Single-Ended Input Mode, $f = 1 kHz$ & \\ \hline HP Mode, $R_L = 16\Omega, $P_{OUT} = 50 mW$ & 0.021$ & % & \\ OCL & 0.017$ & % & \\ OCL & 0.017$ & % & \\ \hline CC & 0.017$ & % & \\ \hline HP Mode, $R_L = 32\Omega, $P_{OUT} = 30 mW$ & \\ OCL & 0.02$ & % & \\ OCL & 0.015$ & % & \\ \hline CC & 0.015$ & % & \\ \hline LS Mode$ & \\ $R_L = 4\Omega, $P_{OUT} = 400 mW$ & 0.05$ & % & \\ \hline \end{tabular}$			LS Mode				
$THD+N Total \ Harmonic \ Distortion \ + \ Noise \begin{array}{ c c c c } & Single-Ended \ Input \ Mode, \ f = 1 \ \mathsf{kHz} \\ \hline HP \ Mode, \ R_L = 16\Omega, \ P_{OUT = 50 \ mW} \\ & OCL \\ & OC \\ & OC \\ & O.017 \\ \end{array} \begin{array}{ c c c } & Noise \\ & HP \ Mode, \ R_L = 32\Omega, \ P_{OUT = 30 \ mW} \\ & OCL \\ & O.02 \\ & O.02 \\ & O.02 \\ & O.015 \\ \end{array} \begin{array}{ c c } & Noise \\ & Noise \\ & ILS \ Mode \\ & R_L = 4\Omega, \ P_{OUT = 400 \ mW} \\ \hline \end{array} \begin{array}{ c } & O.021 \\ & O.02 \\ & O.02 \\ & O.015 \\ \end{array} \begin{array}{ c } & Noise \\ & Noise \\ & R_L = 4\Omega, \ P_{OUT = 400 \ mW} \\ \hline \end{array} \begin{array}{ c } & O.021 \\ & O.021 \\ & O.020 \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ & Noise \\ \hline \end{array} \begin{array}{ c } & Noise \\ \hline \end{array} \begin{array}{$			$R_L = 4\Omega, P_{OUT} = 400 mW$	0.023		%	
$THD+N Total Harmonic Distortion + Noise HP Mode, R_L = 16\Omega, P_{OUT} = 50mW \\ OCL & 0.021 & \% \\ CC & 0.017 & \% \\ HP Mode, R_L = 32\Omega, P_{OUT} = 30mW \\ OCL & 0.02 & \% \\ CC & 0.015 & \% \\ LS Mode \\ R_L = 4\Omega, P_{OUT} = 400mW & 0.05 & \% \\ \end{array}$			$R_L = 8\Omega, P_{OUT} = 300 mW$	0.02		%	
eq:thm:thm:thm:thm:thm:thm:thm:thm:thm:thm			Single-Ended Input Mode, f = 1kHz				
eq:thm:thm:thm:thm:thm:thm:thm:thm:thm:thm			HP Mode, $R_L = 16\Omega$, $P_{OUT} = 50$ mW				
THD+NTotal Harmonic Distortion + NoiseHP Mode, $R_L = 32\Omega$, $P_{OUT} = 30mW$ 0.02%OCL0.015%CC0.015%LS Mode $R_L = 4\Omega$, $P_{OUT} = 400mW$ 0.05%				0.021		%	
THD+NTotal Harmonic Distortion + NoiseHP Mode, $R_L = 32\Omega$, $P_{OUT} = 30mW$ 0.02%OCL0.015%CC0.015%LS Mode $R_L = 4\Omega$, $P_{OUT} = 400mW$ 0.05%			СС	0.017		%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	THD+N	Total Harmonic Distortion + Noise		0.02		%	
LS Mode $R_L = 4Ω, P_{OUT} = 400mW$ 0.05 %							
$R_{L} = 4\Omega, P_{OUT} = 400 \text{mW}$ 0.05 %				0.010		,,,	
				0.05		0/_	
		I	11 022, 1 _{OUT} - 0001111	0.004		/0	

Electrical Characteristics V_{DD} **= 3.6V** (Notes 1, 2) The following specifications apply for $A_V = 0$ dB, $R_{L(SP)} = 15\mu$ H + $8\Omega + 15\mu$ H, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}$ C.

LS Mode Stereo

Conditions

Symbol

Parameter

LM4949

Units

(Limits)

LM4949

Limit

(Notes 7, 8)

Typical

(Note 6)

Electrical Characteristics V_{DD} = **3.6V** (Notes 1, 2) The following specifications apply for A_V = 0dB, R_{L(SP)} = 15µH + 8 Ω + 15µH, R_{L(HP)} = 32 Ω , f = 1kHz unless otherwise specified. Limits apply for T_A = 25°C. (Continued)

	Parameter		LM	4949	Units (Limits)	
Symbol		Conditions	Typical	Limit		
			(Note 6)	(Notes 7, 8)	(Linns)	
		Differential Mode, A-weighted, Input R	eferred			
		Mono Input				
		OCL	16.4		μV	
		CC	15.5		μV	
		LS	43		μV	
		All Inputs ON				
		OCL	29.8		μV	
		CC	29.2		μV	
~	Noise	LS	46.6		μV	
e _N	Noise	Single-Ended Input, A-weighted, Input	Referred			
		Stereo Input				
		OCL	12		μV	
		CC	11		μV	
		LS	45		μV	
		All Inputs ON				
		OCL	23.7		μV	
		CC	22.9		μV	
		LS	52		μV	
η	Efficiency	LS Mode, $P_{OUT} = 400 \text{mW}$, $R_L = 8\Omega$	86.5		%	
		LS Mode, f = 1kHz, $R_L = 8\Omega$, $V_{IN} = 1$	/ _{P-P}			
XI II		Differential Input Mode	86		dB	
Xtalk	Crosstalk	OCL HP Mode, f = 1kHz, $R_L = 32\Omega$, $V_{IN} = 1V_{P-P}$				
		Differential Input Mode	68		dB	
		CC Mode	75			
T _{ON}	Turn on Time	OCL Mode	14		ms	
		LS Mode	31		ms	
T _{OFF}	Turn off Time	From any mode	692		ms	
		Maximum Gain	24.8		kΩ	
Z _{IN}	Input Impedance	Minimum Gain	222.7		kΩ	

			LM4949		
Symbol	Parameter	Conditions	Typical	Limit	Units
-			(Note 6)	(Notes 7, 8)	(Limits)
		Volume Control	E7		dD
		Minimum Gain	_57 18		dB dB
		Maximum Gain	10		uВ
		LS Second Gain Stage			
		Step 0			
		Differential Input	6		dB
		Single-Ended Input	12		dB
		Step 2			
		Differential Input	4		dB
		Single-Ended Input	10		dB
A _V	Gain	Step 2			
		Differential Input	2		dB
		Single-Ended Input	8		dB
		Step 3			
		Differential Input	0		dB
		Single-Ended Input	6		dB
		HP Second Gain Stage	1		
		Step 0	0		
		Step 1	-6		dB
		Step 2	-12		dB
		Speaker Mode	-84		dB
/lute	Mute Attenuation	Headphone Mode	-95		dB
		Speaker Mode, f = 1kHz,			
		$V_{IN} = 200 \text{mV}_{P-P}$	66		dB
CMRR	Common Mode Rejection Ratio	OCL Headphone Mode, f = 1kHz,			
		$V_{IN} = 200 \text{mV}_{P-P}$	68.6		dB
		Differential Input Mode, V _{RIPPLE} = 20	0mV _{P-P}	1	
		OCL HP Mode, f = 217Hz	75		dB
SRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	75		dB
		LS Mode, f = 217Hz	73		dB
		LS Mode, f = 1kHz	73		dB
		Single-Ended Input Mode, V _{RIPPLE} =	200mV _{P-P}	1 1	
		OCL HP Mode, f = 217Hz	75		dB
SRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	75		dB
		LS Mode, f = 217Hz	67		dB
		LS Mode, f = 1kHz	71		dB
		All Inputs ON, Single-Ended Input Mo	ode, V _{BIPPLE} =	200mV _{P-P}	
		OCL HP Mode, f = 217Hz	72		dB
SRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	70		dB
		LS Mode, f = 217Hz	60		dB
		LS Mode, f = 1kHz	65		dB

Electrical Characteristics $V_{DD} = 5.0V$ (Notes 1, 2) The following specifications apply for $A_V = 0$ dB, $R_{L(SP)} = 15\mu$ H + 8Ω + 15μ H, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}$ C.

			LM	4949	Unite
Symbol	Parameter	Conditions	Typical	Limit	Units (Limite)
			(Note 6)	(Notes 7, 8)	(Limits)
		LS Mode			
		Stereo	9.9	10.9	mA (max
		Mono	6.6	7.2	mA (max
		OCL HP Mode			
		Stereo	6.6	7.3	mA (max
I _{DD}	Supply Current	Mono	5.5	6.2	mA (max
		CC HP Mode			
		Stereo	5.4	5.9	mA (max
		Mono	4.3	4.8	mA (max
		Stereo LS + HP Mode	13		mA
I _{SD}	Shutdown Supply Current		0.1	1	µA (max)
		Headphone	10	52	mV (max
V _{os}	Output Offset Voltage	Speaker	9.6	50	mV (max
		LS Mode, f = 1 kHz	-	-	,
		$R_{L} = 4\Omega$, THD+N = 10%	2.5		W
		$R_{L} = 4\Omega$, THD+N = 1%	2.01		W
		$R_{L} = 8\Omega$, THD+N = 10%	1.48		W
		$R_{L} = 8\Omega$, THD+N = 1%	1.19		W
		OCL HP Mode, f = 1 kHz			
		$R_{L} = 16\Omega$, THD+N = 10%	190		mW
Pout	Output Power	$R_{L} = 16\Omega$, THD+N = 1%	154		mW
001		$R_{L} = 32\Omega$, THD+N = 10%	109		mW
		$R_{L} = 32\Omega$, THD+N = 1%	89		mW
		CC HP Mode, f = 1 kHz			
		$R_{L} = 16\Omega$, THD+N = 10%	188		mW
		$R_{L} = 16\Omega$, THD+N = 1%	153		mW
		$R_{L} = 32\Omega$, THD+N = 10%	105		mW
		R _L = 32Ω, THD+N = 1%	88		mW
		Differential Input Mode, f = 1kHz		11	
		HP Mode, $R_L = 16\Omega$, $P_{OUT} =$			
		100mW			
		OCL	0.02		%
		СС	0.027		%
THD + N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 32\Omega$, $P_{OUT} = 50mW$			
		OCL	0.02		%
		CC	0.022		%
		LS Mode			
		$R_L = 4\Omega, P_{OUT} = 1W$	0.022		%
		$R_L = 8\Omega, P_{OUT} = 600 \text{mW}$	0.02		%

Electrical Characteristics $V_{DD} = 5.0V$ (Notes 1, 2) The following specifications apply for $A_v = 0 dB$,
$R_{L(SP)} = 15\mu H + 8\Omega + 15\mu H$, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$. (Continued)

			LM	4949	Unito		
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)		
			(Note 6)	(Notes 7, 8)	(Linits)		
		Single-Ended Input Mode, f = 1kHz					
		HP Mode, $R_L = 16\Omega$, $P_{OUT} =$					
		100mW					
		OCL	0.021		%		
		CC	0.02		%		
THD + N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 32\Omega$, $P_{OUT} = 50mW$					
		OCL	0.02		%		
		CC	0.017		%		
		LS Mode					
		$R_L = 4\Omega, P_{OUT} = 1W$	0.05		%		
		$R_L = 8\Omega, P_{OUT} = 600 mW$	0.033		%		
		Differential Input, A-weighted, Input R		<u> </u>			
		Mono Input					
		OCL	16.4		μV		
		CC	15.5		μV		
		LS	43		μV		
		All Inputs ON			r		
		OCL	29.8		μV		
		CC	29.2		μV		
		LS	46.6		μV		
e _N	Noise	Single-Ended Input, A-weighted, Input Rrferred					
		Stereo Input					
		OCL	12		μV		
		CC	11		μV		
		LS	45		μV		
		All Inputs ON			r		
		OCL	23.7		μV		
		CC	22.9		μV		
		LS	52		μV		
η	Efficiency	LS Mode, $P_{OUT} = 1W$, $R_L = 8\Omega$	87.4		%		
		LS Mode, $f = 1 \text{ kHz}$, $R_L = 8\Omega$, $V_{IN} = 1$					
		Differential Input Mode	105.8		dB		
Xtalk	Crosstalk				40		
		OCL HP Mode, $f = 1 \text{ kHz}$, $R_L = 32\Omega$, $V_{IN} = 1 V_{P-P}$					
т		Differential Input Mode	69.6	+ +	dB		
T _{ON}		CC Mode	89		ms		
	Turn on Time	OCL Mode	14		ms		
.		LS Mode	35	+	ms		
T _{OFF}	Turn off Time	From any mode	716		ms		
Z _{IN}	Input Impedance	Maximum Gain	24.8		kΩ		
113		Minimum Gain	222.7		kΩ		

Electrical Characteristics $V_{DD} = 5.0V$ (Notes 1, 2) The following specifications apply for $A_V = 0$ dB, $R_{L(SP)} = 15\mu$ H + 8Ω + 15μ H, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25$ °C. (Continued)

			LM	14949	Units
Symbol	Parameter	Conditions	Typical Limit		(Limits
			(Note 6)	(Notes 7, 8)	
		Volume Control	57		dD
		Minimum Gain	-57 18		dB dB
		Maximum Gain	10		UD
		LS Second Gain Stage			
		Step 0			
		Differential Input	6		dB
		Single-Ended Input	12		dB
		Step 1			
		Differential Input	4		dB
٨	Coin	Single-Ended Input	10		dB
A _V	Gain	Step 2			
		Differential Input	8		dB
		Single-Ended Input	2		dB
		Step 3			
		Differential Input	0		dB
		Single-Ended Input	6		dB
		HP Second Gain Stage			
		Step 0	0		dB
		Step 1	-6		dB
		Step 2	-12		dB
Mute	Mute Attenuation	Speaker Mode	-102.7		dB
Mule Allendation		Headphone Mode	-123		dB
		Speaker Mode, f = 1kHz,	64.4		dB
CMRR	Common Mode Rejection Batio	$V_{IN} = 200 m V_{P-P}$	04.4		UD
Civinn	Common Mode Rejection Ratio	OCL Headphone Mode, f = 1kHz,	74.3		dB
		$V_{IN} = 200 m V_{P-P}$			
		Differential Input Mode, V _{RIPPLE} = 20	00mV _{P-P}		
		OCL HP Mode, f = 217Hz	68.3		dB
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	67.9		dB
		LS Mode, f = 217Hz	73.8		dB
		LS Mode, f = 1kHz	72		dB
		Single-Ended Input Mode, VRIPPLE =	200mV _{P-P}	-	1
		OCL HP Mode, f = 217Hz	70.55		dB
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	63.05		dB
		LS Mode, f = 217Hz	64.6		dB
		LS Mode, f = 1kHz	70.3	1	dB
		All Inputs ON, Single-Ended Input M		200mV	
		OCL HP Mode, $f = 217Hz$	63.1	p	dB
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	66.4	+	dB
		LS Mode, f = 217Hz	59.1	+	dB
		LS Mode, f = 1kHz	69.3		dB

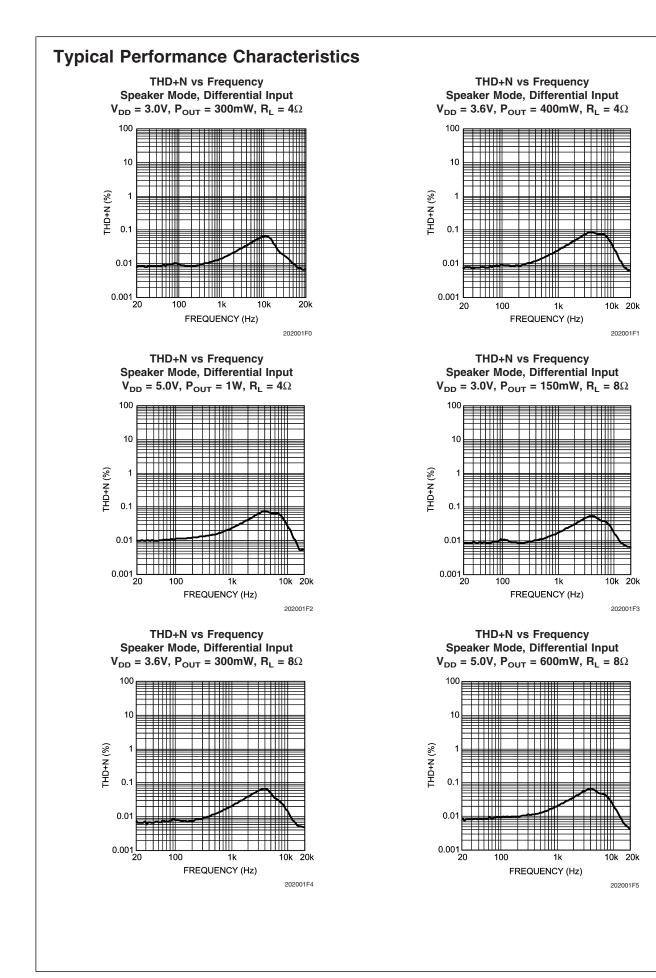
Electrical Characteristics V_{DD} **= 5.0V** (Notes 1, 2) The following specifications apply for $A_V = 0$ dB, $R_{L(SP)} = 15\mu$ H + 8 Ω + 15 μ H, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25$ °C. (Continued)

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

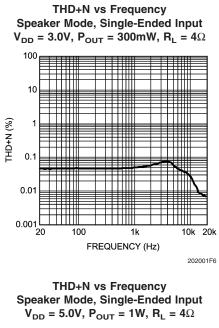
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. *Electrical Characteristics* state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

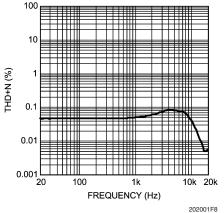
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4949, see power derating currents for additional information.

Note 4: Human body model, 100pF discharged through a $1.5 k \Omega$ resistor.

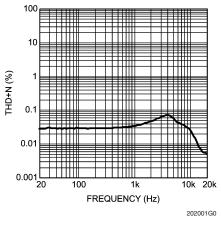

Note 5: Machine Model, 220pF - 240pF discharged through all pins.

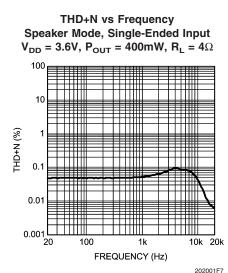
Note 6: Typicals are measured at 25°C and represent the parametric norm.

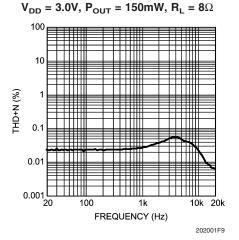

Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

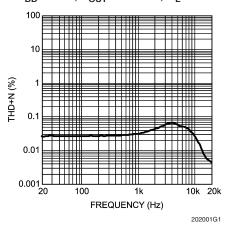

Note 8: Datasheet min/max specification limits are guaranteed by design, test or statistical analysis.

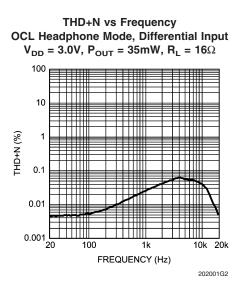

BUMP	NAME	DESCRIPTION
A1	LLS-	Left Channel Loudspeaker Inverting Output
A2	LLS+	Left Channel Loudspeaker Non-inverting Output
A3	SDA	Serial Data Input
A4	HPGND	Headphone Ground
A5	HPR	Right Channel Headphone Output
B1	VDDLS	Speaker Power Supply
B2	ADR	Address Select Bit
B3	RIN-	Right Channel Inverting Input
B4	HPL	Left Channel Headphone Output
B5	VOC	Headphone Return Bias Output
C1	GNDLS	Speaker Ground
C2	VDD	Power Supply
C3	RIN+	Right Channel Non-Inverting Input
C4	LIN+	Left Channel Non-inverting Input
C5	VDDHP	Headphone Power Supply
D1	VDDLS	Speaker Power Supply
D2	I ² CVDD	I2C Power Supply
D3	SCL	Serial Clock Input
D4	MIN+	Mono Channel Non-inverting Input
D5	LIN-	Left Channel Inverting Input
E1	RLS-	Right Channel Loudspeaker Inverting Output
E2	RLS+	Right Channel Loudspeaker Non-inverting Output
E3	GND	Ground
E4	MIN-	Mono Channel Inverting Input

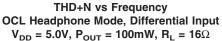


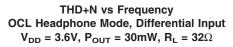


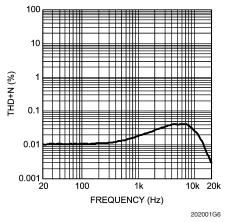


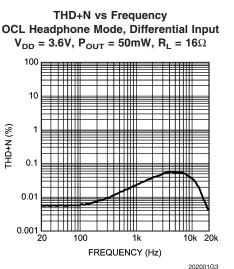


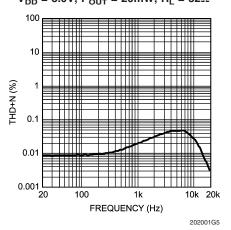


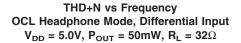

THD+N vs Frequency Speaker Mode, Single-Ended Input

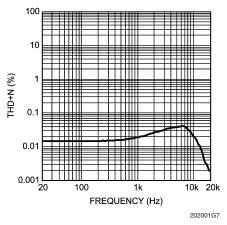

THD+N vs Frequency Speaker Mode, Single-Ended Input V_{DD} = 5.0V, P_{OUT} = 600mW, R_L = 8 Ω

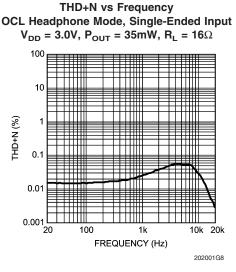


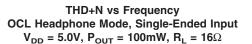


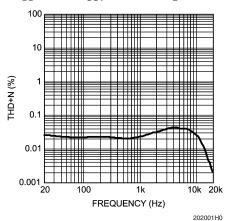


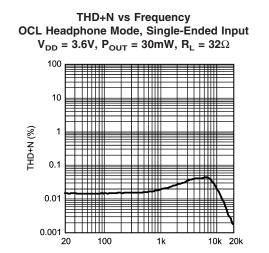


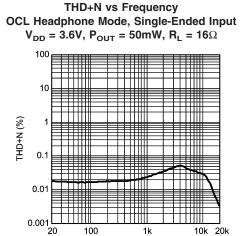




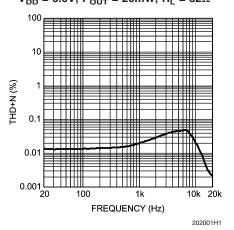

 $\begin{array}{l} \text{THD+N vs Frequency} \\ \text{OCL Headphone Mode, Differential Input} \\ \text{V}_{\text{DD}} = 3.0\text{V}, \, \text{P}_{\text{OUT}} = 20\text{mW}, \, \text{R}_{\text{L}} = 32\Omega \end{array}$

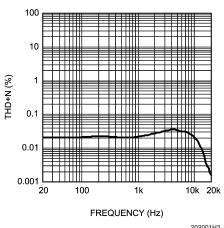






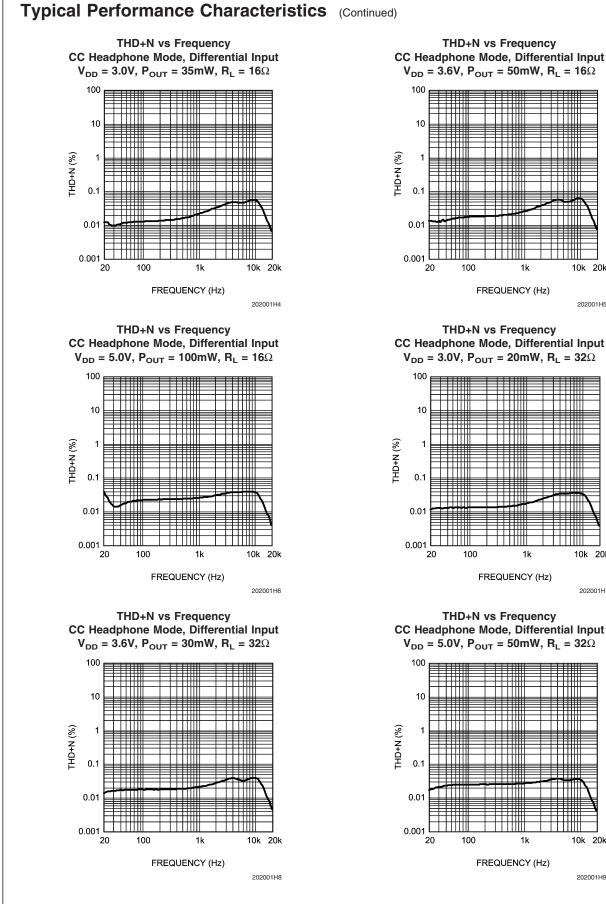
FREQUENCY (Hz)

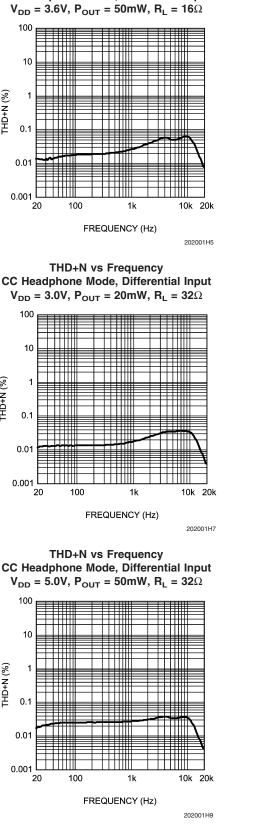

202001H2


THD+N vs Frequency OCL Headphone Mode, Single-Ended Input V_{DD} = 3.0V, P_{OUT} = 20mW, R_L = 32 Ω

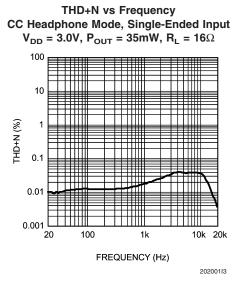
FREQUENCY (Hz)

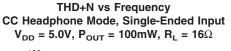
202001G9

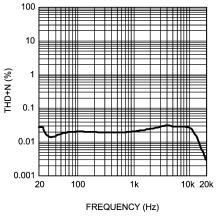


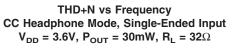

THD+N vs Frequency OCL Headphone Mode, Single-Ended Input V_{DD} = 5.0V, P_{OUT} = 50mW, R_L = 32 Ω

202001H3

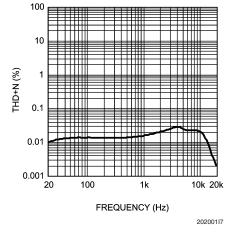


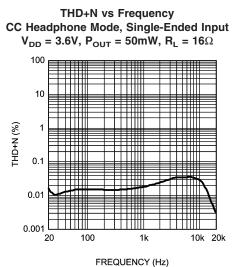


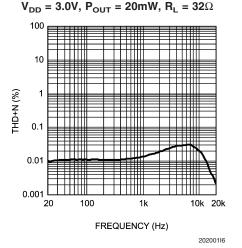


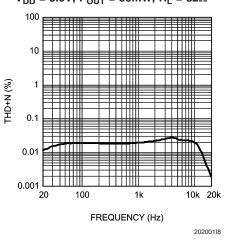

THD+N vs Frequency

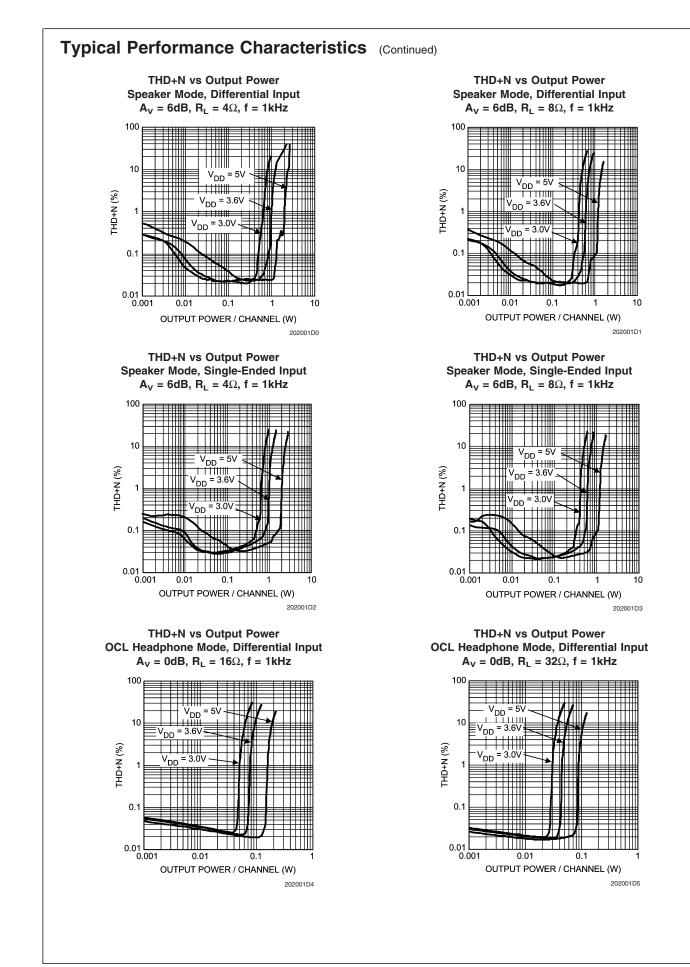
LM4949



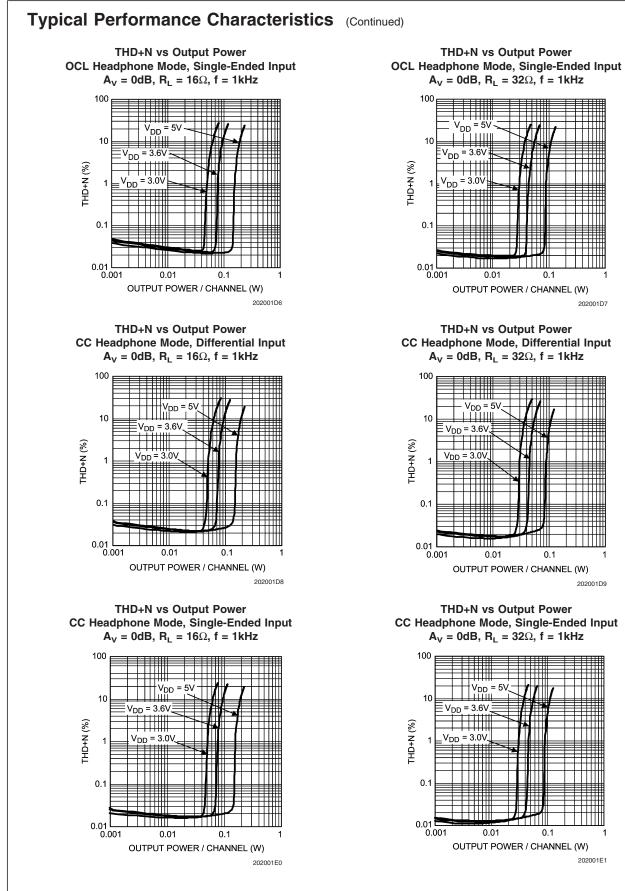


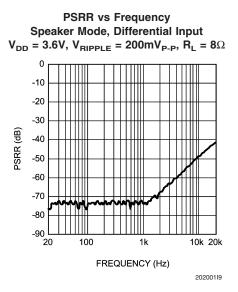

20200115

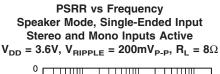


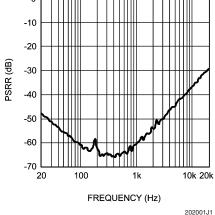

20200114

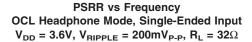
THD+N vs Frequency CC Headphone Mode, Single-Ended Input

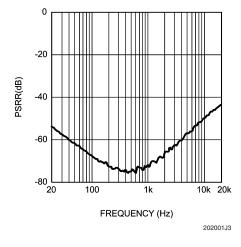


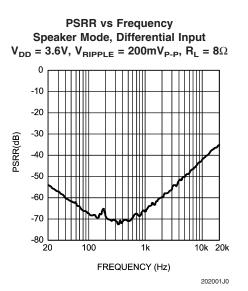

THD+N vs Frequency CC Headphone Mode, Single-Ended Input V_{DD} = 5.0V, P_{OUT} = 50mW, R_L = 32 Ω

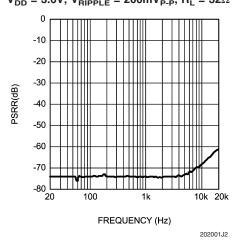


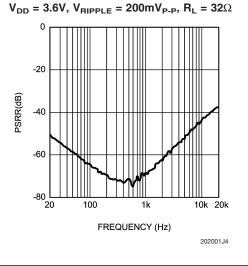


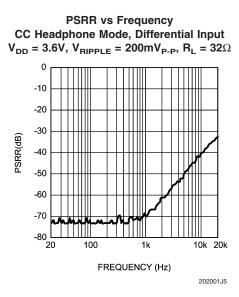

www.national.com

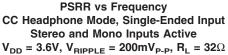


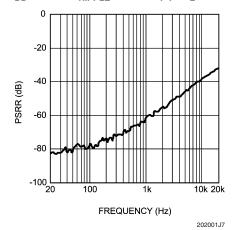


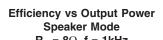


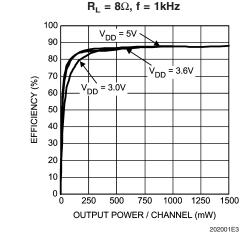


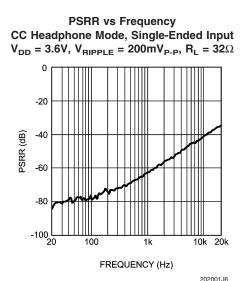


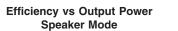

 $\begin{array}{l} PSRR \ vs \ Frequency \\ OCL \ Headphone \ Mode, \ Differential \ Input \\ V_{DD} = 3.6V, \ V_{RIPPLE} = 200mV_{P-P}, \ R_L = 32\Omega \end{array}$

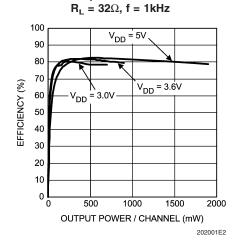


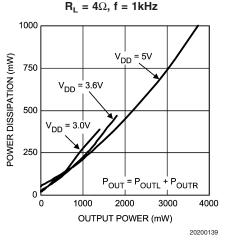

PSRR vs Frequency OCL Headphone Mode, Single-Ended Input Stereo and Mono Inputs Active

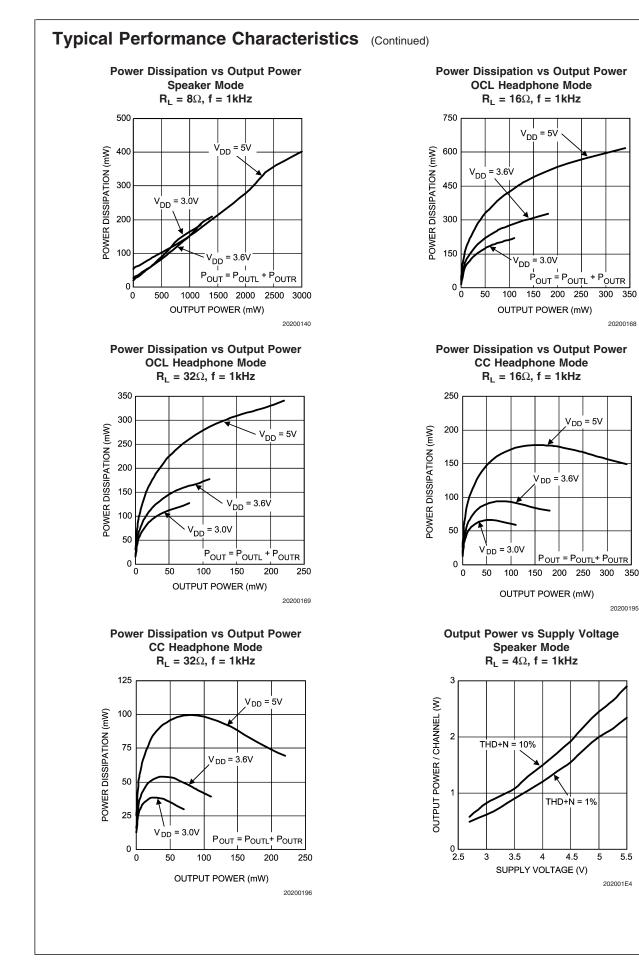




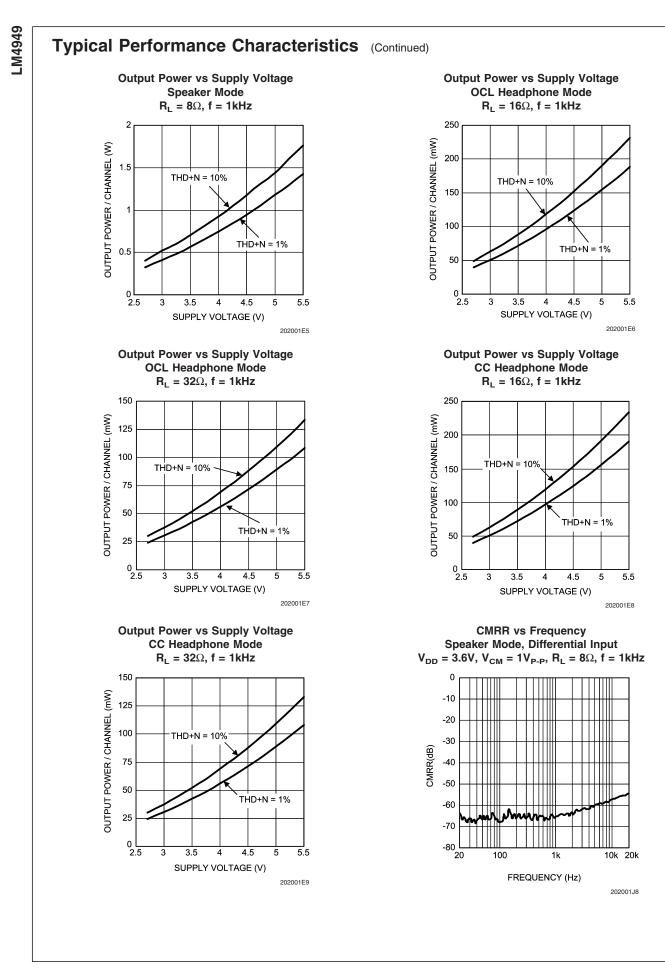


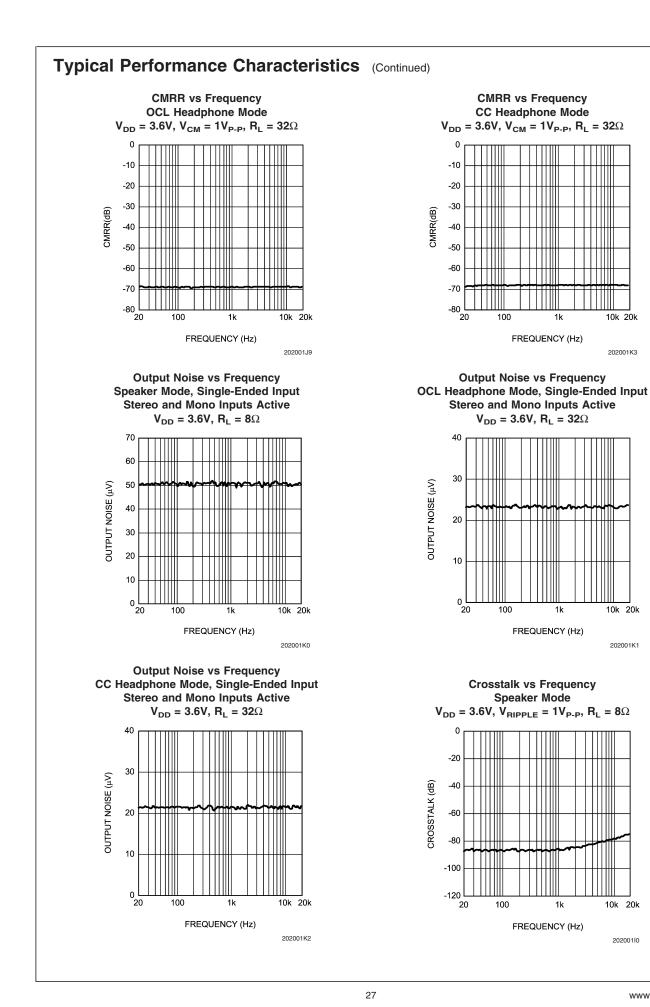






Power Dissipation vs Output Power Speaker Mode





350

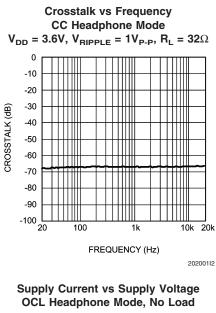
350

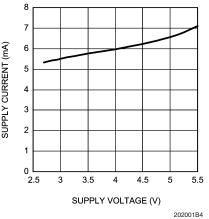
5.5

10k 20k

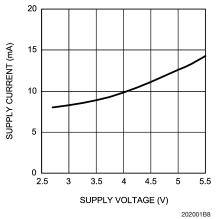
202001K3

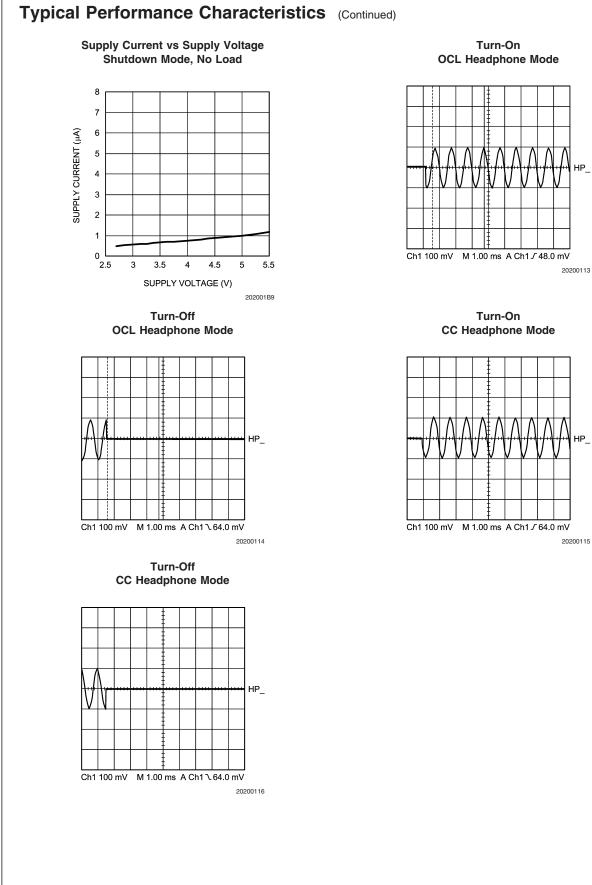
10k 20k


202001K1


10k 20k

20200110




Typical Performance Characteristics (Continued) **Crosstalk vs Frequency OCL Headphone Mode** V_{DD} = 3.6V, V_{RIPPLE} = 1 V_{P-P} , R_L = 32 Ω 0 -10 -20 -30 CROSSTALK (dB) CROSSTALK (dB) -40 -50 -60 -70 -80 -90 -100 L 20 100 1k 10k 20k FREQUENCY (Hz) 20200111 Supply Current vs Supply Voltage Speaker Mode, No Load 15 12 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 9 6 3 0 2.5 3 3.5 4 4.5 5 5.5 SUPPLY VOLTAGE (V) 202001B1 Supply Current vs Supply Voltage CC Headphone Mode, No Load 8 7 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 6 5 4 3 2 1 0 2.5 3 3.5 4 4.5 5 5.5 SUPPLY VOLTAGE (V) 202001B7

Supply Current vs Supply Voltage Speaker and OCL Headphone Mode, No Load

Application Information

I2C COMPATIBLE INTERFACE

The LM4949 is controlled through an I²C compatible serial interface that consists of two wires; clock (SCL) and data (SDA). The clock line is uni-directional. The data line is bi-directional (open-collector) although the LM4949 does not

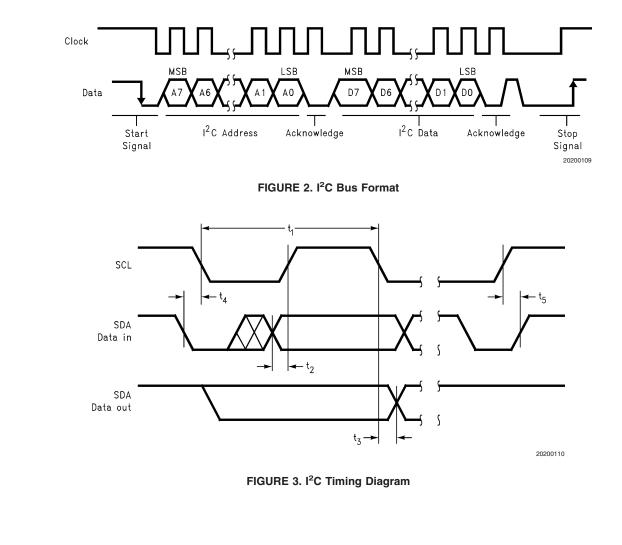
write to the I²C bus. The maximum clock frequency specified by the I²C standard is 400kHz.

To avoid an address conflict with another device on the I^2C bus, the LM4949 address is determined by the ADR pin, the state of ADR determines address bit A1 (Table 2). When ADR = 0, the address is 1111 1000. When ADR = 1 the device address is 1111 1010.

ADR	A7	A6	A5	A4	A3	A2	A1	A0
Х	1	1	1	1	1	0	Х	0
0	1	1	1	1	1	0	0	0
1	1	1	1	1	1	0	1	0

TABLE 2. Device Address

BUS FORMAT


The l^2C bus format is shown in Figure 2. The "start" signal is generated by lowering the data signal while the clock is high. The start signal alerts all devices on the bus that a device address is being written to the bus.

The 8-bit device address is written to the bus next, most significant bit first. The data is latched in on the rising edge of the clock. Each address bit must be stable while the clock is high.

After the last address bit is sent, the master device releases the data line, during which time, an acknowledge clock pulse

is generated. If the LM4949 receives the address correctly, then the LM4949 pulls the data line low, generating an acknowledge bit (ACK).

Once the master device has registered the ACK bit, the 8-bit register address/data word is sent. Each data bit should be stable while the clock level is high. After the 8-bit word is sent, the LM4949 sends another ACK bit. Following the acknowledgement of the data word, the master device issues a "stop" bit, allowing SDA to go high while the clock signal is high.

TABLE :	3. I ² C	Control	Registers
---------	---------------------	---------	-----------

REGISTER	DECISTED	D7	D6	D5	D4	D3	D2	D1	D0
REGISTER	NAME	יט	00	D5	D4	03	02		DU
0.0	Shutdown Control	0	0	0	0	0	OCL_LGC *	OCL *	PWR_ON
0.1	Stereo Input Mode Control	0	0	0	1	L1_INSEL	L2_INSEL	SDB_HPSEL	SDB_MUXSEL
1	Speaker Output Mux Control	0	0	1	LS_XSEL	LSR_MSEL	LSR_SSEL	LSL_MSEL	LSL_SSEL
2	Headphone Output Mux Control	0	1	0	HP_XSEL	HPR_MSEL	HPR_SSEL	HPL_MSEL	HPL_SSEL
3.0	Output On/Off Control	0	1	1	0	HPR_ON	HPL_ON	LSR_ON	LSL_ON
3.1	Reserved	0	1	1	1	RESERVED	RESERVED	RESERVED	RESERVED
4.0	Headphone Output Stage Gain Control	1	0	0	0	HPG1	HPG0	RESERVED	RESERVED
4.1	Speaker Output Stage Gain Control	1	0	0	1	LSRG1	LSRG0	LSLG1	LSLG0
5	Mono Input Gain Control	1	0	1	MG4	MG3	MG2	MG1	MG0
6	Left Input Gain Control	1	1	0	LG4	LG3	LG2	LG1	LG0
7	Right Input Gain Control	1	1	1	RG4	RG3	RG2	RG1	RG0

* Note: OCL_LGC = 1 and OCL = 1 at the same time is not allowed.

GENERAL AMPLIFIER FUNCTION

Class D Amplifier

The LM4949 features a high-efficiency, filterless, Class D stereo amplifier. The LM4949 Class D amplifiers feature a filterless modulation scheme, the differential outputs of each channel switch at 300khz, from $V_{\rm DD}$ to GND. When there is no input signal applied, the two outputs (_LS+ and _LS-) switch with a 50% duty cycle, with both outputs in phase. Because the outputs of the LM4949 are differential, the two signals cancel each other. This results in no net voltage across the speaker, thus no load current during the idle state, conserving power.

When an input signal is applied, the duty cycle (pulse width) changes. For increasing output voltages, the duty cycle of _LS+ increases, while the duty cycle of _LS- decreases. For decreasing output voltages, the converse occurs, the duty cycle of _LS- increases while the duty cycle of _LS+ decreases. The difference between the two pulse widths yields the differential output voltage.

Headphone Amplifier

The LM4949 headphone amplifier features three different operating modes, output capacitorless (OCL), capacitor-coupled (CC), and external amplifier mode.

The OCL architecture eliminates the bulky, expensive output coupling capacitors required by traditional headphone amplifiers. The LM4949 headphone section uses three amplifiers. Two amplifiers drive the headphones while the third (VOC) is set to the internally generated bias voltage (typically $V_{DD}/2$). The third amplifier is connected to the return terminal of the headphone jack. In this configuration, the signal side of the headphones are biased to $V_{DD}/2$, the return is biased to $V_{DD}/2$, thus there is no net DC voltage across the headphone

phone, eliminating the need for an output coupling capacitor. Removing the output coupling capacitors from the headphone signal path reduces component count, reducing system cost and board space consumption, as well as improving low frequency performance.

In OCL mode, the headphone return sleeve is biased to $V_{DD}/2$. When driving headphones, the voltage on the return sleeve is not an issue. However, if the headphone output is used as a line out, the $V_{DD}/2$ can conflict with the GND potential that a line-in would expect on the return sleeve. When the return of the headphone jack is connected to GND, the VOC amplifier of the LM4949 detects an output short circuit condition and is disabled, preventing damage to the LM4949, and allowing the headphone return to be biased at GND.

Capacitor Coupled Headphone Mode

In capacitor coupled (CC) mode, the VOC pin is disabled, and the headphone outputs are coupled to the jack through series capacitors, allowing the headphone return to be connected to GND (Figure 4). In CC mode, the LM4949 requires output coupling capacitors to block the DC component of the amplifier output, preventing DC current from flowing to the load. The output capacitor and speaker impedance form a high pass filter with a -3dB roll-off determined by:

$$f_{-3dB} = 1 / 2\pi R_L C_{OUT}$$

Where R_L is the headphone impedance, and C_{OUT} is the output coupling capacitor. Choose C_{OUT} such that f_{-3dB} is well below the lowest frequency of interest. Setting f_{-3dB} too high results in poor low frequency performance. Select capacitor dielectric types with low ESR to minimize signal loss due to capacitor series resistance and maximize power transfer to the load.

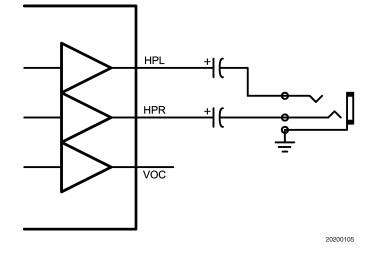


FIGURE 4. Capacitor Coupled Headphone Mode

External Headphone Amplifier

The LM4949 features the ability to drive and control a separate headphone amplifier for applications that require a True Ground headphone output (Figure 5). Configure the LM4949 into external headphone amplifier mode by setting bit D2 (OCL_LGC) in register 0.0 to 1 and bit D1 (OCL) to 0. In this mode the VOC output becomes a logic output used to drive the shutdown input of the external amplifier. The output level of VOC is controlled by bits D1 (SDB_HPSEL) and D2 (SDB_MUXSEL) in register 0.1. SDB_MUXSEL determines the source of the VOC control signal. With SDB_MUXSEL = 0, the VOC signal comes from the internal start-up circuitry of the LM4949. This allows the external headphone amplifier to be turned on and off simultaneously with the LM4949.

 I^2C bus, bit D1. With SDB_HPSEL = 0, VOC is a logic low, with SDB_HPSEL = 1, VOC is a logic high.

When SDB_MUXSEL = 1, the VOC signal comes from the

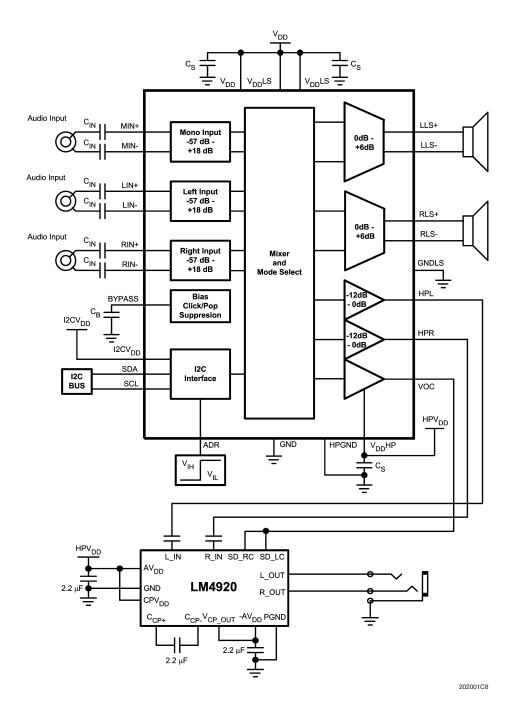
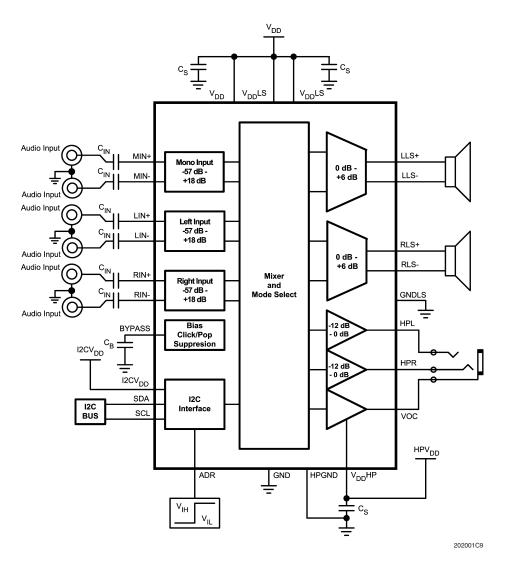



FIGURE 5. Driving an External Headphone Amplifier

Single-Ended Input

The left and right stereo inputs of the LM4949 can be configured for single-ended sources (Figure 6). In single-ended input mode, the LM4949 can accept up to 4 different singleended audio sources. Set bits L1_INSEL = 1 and L2_INSEL = 0 to use the RIN+ and LIN+ inputs. Set L1_INSEL = 0 and L2_INSEL = 1 to use the RIN- and LIN- inputs. Set L1_INSEL = L2_INSEL = 1 to use both input pairs. Table 4 shows the single ended input combinations.

			o i
INPUT MODE	L1_INSEL	L2_INSEL	INPUT DESCRIPTION
0	0	0	Fully Differential Input Mode
1	0	1	Single-ended input. RIN- and LIN- selected
2	1	0	Single-ended input. RIN+ and LIN+ selected
3	1	1	Single-ended input, BIN+ mixed with BIN- and LIN+ mixed with LIN-

TABLE 4. Single-Ended	Stereo	Input	Modes
-----------------------	--------	-------	-------

Input Mixer / Multiplexer

The LM4949 includes a comprehensive mixer/multiplexer controlled through the I2C interface. The mixer/multiplexer allows any input combination to appear on any output of the LM4949. Control bits LSR_SSEL and LSL_SSEL (loud-speakers), and HPR_SSEL and HPL_SSEL (headphones) select the individual stereo input channels; for example, LSR_SSEL = 1 outputs the right channel stereo input on the right channel loudspeaker, while LSL_SSEL = 1 outputs the left channel stereo input on the left channel loudspeaker. Control bits LSR_MSEL and LSL_MSEL (loudspeaker), and HPR_MSEL and HPR_LSEL (headphones) direct the mono input to the selected output. Setting HPR_MSEL = 1 outputs

the mono input on the right channel headphone. Control bits LS_XSEL (loudspeaker) and HP_XSEL (headphone) selects both stereo input channels and directs the signals to the opposite outputs, for example, LS_XSEL = 1 outputs the right channel stereo input on the left channel loudspeaker, while the left channel stereo input is output on the right channel loudspeaker. Setting __XSEL = selects both stereo inputs simultaneously, unlike the __SSEL controls which select the stereo input channels individually.

Multiple input paths can be selected simultaneously. Under these conditions, the selected inputs are mixed together and output on the selected channel. Tables 5 and 6 show how the input signals are mixed together for each possible input selection combination.

LS MODE	LS_XSEL	LSR_MSEL/	LSR_SSEL/	LEFT CHANNEL OUTPUT	RIGHT CHANNEL OUTPUT		
		LSL_MSEL	LSL_SSEL				
0		0	0	MUTE	MUTE		
1	0	1	0	MONO	MONO		
2	0	0	1	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+	RIGHT (DIFF)/ /RIN+/RIN-/		
				- LIN-)	(RIN+ - RIN-)		
3	0	1	1	MONO + LEFT (DIFF)/	MONO + RIGHT (DIFF)/		
				/LIN+/LIN-/ (LIN+ - LIN-)	/RIN+/RIN-/ (RIN+ - RIN-)		
4	1	0	1	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+		
				- LIN-) + RIGHT (DIFF)/	- LIN-) + RIGHT (DIFF)/		
				/RIN+/RIN-/ (RIN+ - RIN-)	/RIN+/RIN-/ (RIN+ - RIN-)		
5	1	1	1	MONO + LEFT (DIFF)/	MONO + LEFT (DIFF)/		
				/LIN+/LIN-/ (LIN+ - LIN-) +	/LIN+/LIN-/ (LIN+ - LIN-) +		
				RIGHT (DIFF)/ /RIN+/RIN-/	RIGHT (DIFF)/ /RIN+/RIN-/		
				(RIN+ - RIN-)	(RIN+ - RIN-)		

TABLE 5. Loudspeaker Multiplexer Control

TABLE 6.	Headphone	Multiplexer	Control
IADEE 0.	ricaupiione	manupicxci	00111101

HP MODE	HP_XSEL	HPR_MSEL/ HPL_MSEL	HPR_SSEL/ LSL_SSEL	LEFT CHANNEL OUTPUT	RIGHT CHANNEL OUTPUT
0		0	0	MUTE	MUTE
1	0	1	0	MONO	MONO
2	0	0	1	LEFT (DIFF)/ /LIN+/LIN-/	RIGHT (DIFF)/ /RIN+/RIN-/
				(LIN+ - LIN-)	(RIN+ - RIN-)
3	0	1	1	MONO + LEFT (DIFF)/	MONO + RIGHT (DIFF)/
				/LIN+/LIN-/ (LIN+ - LIN-)	/RIN+/RIN-/ (RIN+ - RIN-)
4	1	0	1	LEFT (DIFF)/ /LIN+/LIN-/	LEFT (DIFF)/ /LIN+/LIN-/
				(LIN+ - LIN-) + RIGHT	(LIN+ - LIN-) + RIGHT
				(DIFF)/ /RIN+/RIN-/ (RIN+ -	(DIFF)/ /RIN+/RIN-/ (RIN+ -
				RIN-)	RIN-)
5	1	1	1	MONO + LEFT (DIFF)/	MONO + LEFT (DIFF)/
				/LIN+/LIN-/ (LIN+ - LIN-) +	/LIN+/LIN-/ (LIN+ - LIN-) +
				RIGHT (DIFF)/ /RIN+/RIN-/	RIGHT (DIFF)/ /RIN+/RIN-/
				(RIN+ - RIN-)	(RIN+ - RIN-)

Power Supplies

The LM4949 uses different supplies for each portion of the device, allowing for the optimum combination of headroom, power dissipation and noise immunity. The speaker amplifier gain stage is powered from VDD, while the output stage is powered from VDDLS. The headphone amplifiers, input amplifiers and volume control stages are powered from VDDHP. The separate power supplies allow the speakers to operate

from a higher voltage for maximum headroom, while the headphones operate from a lower voltage, improving power dissipation. VDDHP may be driven by a linear regulator to further improve performance in noisy environments. The I²C portion if powered from I²CVDD, allowing the I²C portion of the LM4949 to interface with lower voltage digital controllers.

Shutdown Function

The LM4949 features five shutdown modes, configured through the I²C interface. Bit D0 (PWR_ON) in the Shutdown Control register shuts down/turns on the entire device. Set PWR_ON = 1 to enable the LM4949, set PWR_ON 0 to disable the device. Bits D0 – D3 in the Output On/Off Control shutdown/turn on the individual channels. HPR_ON (D3) controls the right channel headphone output, HPL_ON (D2) controls the left channel headphone output, LSR_ON (D1) controls the right channel loudspeaker output. The PWR_ON bit takes precedence over the individual channel controls.

Audio Amplifier Gain Setting

The each channel of the LM4949 has two separate gain stages. Each input stage features a 32 step volume control

with a range of -57dB to +18dB (Table 7). Each speaker output stage has 4 gain settings (Table 8); 0dB, 2dB, 4dB, and 6dB when either a fully differential signal or two single ended signals are applied on the _IN+ and _IN- pins; and 6dB, 8dB, 10dB and 12dB in single-ended input mode with only one signal applied. The headphone gain is not affected by the input mode. Each headphone output stage has 3 gain settings (Table 9), 0dB, -6dB, and -12dB. This allows for a maximum separation of 24dB between the speaker and headphone outputs when both are active.

Calculate the total gain of a given signal path as follows:

$$A_{VOL} + A_{OS} = A_{TOTAL}$$

Where A_{VOL} is the volume control level, A_{OS} is the gain setting of the output stage, and A_{TOTAL} is the total gain for the signal path.

TABLE 7. 32 Step Volume Control						
Volume Step	MG4/LG4/RG4	MG3/LG3/RG3	MG2/LG2/RG2	MG1/LG1/RG1	MG0/LG0/RG0	Gain (dB)
1	0	0	0	0	0	-57
2	0	0	0	0	1	-49
3	0	0	0	1	0	-42
4	0	0	0	1	1	-34.5
5	0	0	1	0	0	-30.5
6	0	0	1	0	1	-27
7	0	0	1	1	0	-24
8	0	0	1	1	1	-21
9	0	1	0	0	0	-18
10	0	1	0	0	1	-15
11	0	1	0	1	0	-13.5
12	0	1	0	1	1	-12
13	0	1	1	0	0	-10.5
14	0	1	1	0	1	-9
15	0	1	1	1	0	-7.5
16	0	1	1	1	1	-6
17	1	0	0	0	0	-4.5
18	1	0	0	0	1	-3
19	1	0	0	1	0	-1.5
20	1	0	0	1	1	0
21	1	0	1	0	0	1.5
22	1	0	1	0	1	3
23	1	0	1	1	0	4.5
24	1	0	1	1	1	6
25	1	1	0	0	0	7.5
26	1	1	0	0	1	9
27	1	1	0	1	0	10.5
28	1	1	0	1	1	12
29	1	1	1	0	0	13.5
30	1	1	1	0	1	15
31	1	1	1	1	0	16.5
32	1	1	1	1	1	18

TABLE 8. Loudspeaker Gain Setting

LSRG1/LSLG1	LSRG0/LSLG0	Gain (dB)		
LSRGI/LSLGI	LSRG0/LSLG0	_IN+ ≠ _IN-	_IN+ =_IN-	
0	0	12	6	
0	1	10	4	
1	0	8	2	
1	1	6	0	

TABLE 9. Headphone Gain Setting

HPG1	HPG0	Gain (dB)
0	0	0
0	1	-6
1	0	-12

Differential Audio Amplifier Configuration

As logic supply voltages continue to shrink, system designers increasingly turn to differential signal handling to preserve signal to noise ratio with decreasing voltage swing. The LM4949 can be configured as a fully differential amplifier, amplifying the difference between the two inputs. The advantage of the differential architecture is any signal component that is common to both inputs is rejected, improving common-mode rejection (CMRR) and increasing the SNR of the amplifier by 6dB over a single-ended architecture. The improved CMRR and SNR of a differential amplifier reduce sensitivity to ground offset related noise injection, especially important in noisy applications such as cellular phones. Driving the LM4949 differentially also allows the inputs to be DC coupled, eliminating two external capacitors per channel. Set bits L1_INSEL and L2_INSEL = 0 for differential input mode. The left and right stereo inputs have selectable differential or single-ended input modes, while the mono input is always differential.

Single-Ended Audio Amplifier Configuration

In single-ended input mode, the audio sources must be capacitively coupled to the LM4949. With LIN+ \neq LIN- and RIN+ \neq RIN-, the loud speaker gain is 6dB more than in differential input mode, or when LIN+ = LIN- and RIN+ = RIN-. The headphone gain does not change. The mono input channel is not affected by L1_INSEL and L2_INSEL, and is always configured as a differential input.

Power Dissipation and Efficiency

The major benefit of Class D amplifiers is increased efficiency versus Class AB. The efficiency of the LM4949 speaker amplifiers is attributed to the output transistors' region of operation. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with the switching losses due to gate charge.

The maximum power dissipation per headphone channel in Capacitor-Coupled mode is given by:

$$\mathsf{P}_{\mathsf{DMAX}} = \mathsf{V}_{\mathsf{DD}}^2 / 2\pi^2 \mathsf{R}_{\mathsf{L}}$$

In OCL mode, the maximum power dissipation per headphone channel increases due to the use of a third amplifier as a buffer. The power dissipation is given by:

$$\mathsf{P}_{\mathsf{DMAX}} = \mathsf{V}_{\mathsf{DD}}^2 / \pi^2 \mathsf{R}_{\mathsf{L}}$$

PROPER SELECTION OF EXTERNAL COMPONENTS

Audio Amplifier Power Supply Bypassing / Filtering

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Typical applications employ a voltage regulator with 10µF and 0.1µF bypass capacitors that increase supply stability. These capacitors do not eliminate the need for bypassing of the LM4949 supply pins. A 1µF ceramic capacitor placed close to each supply pin is recommended.

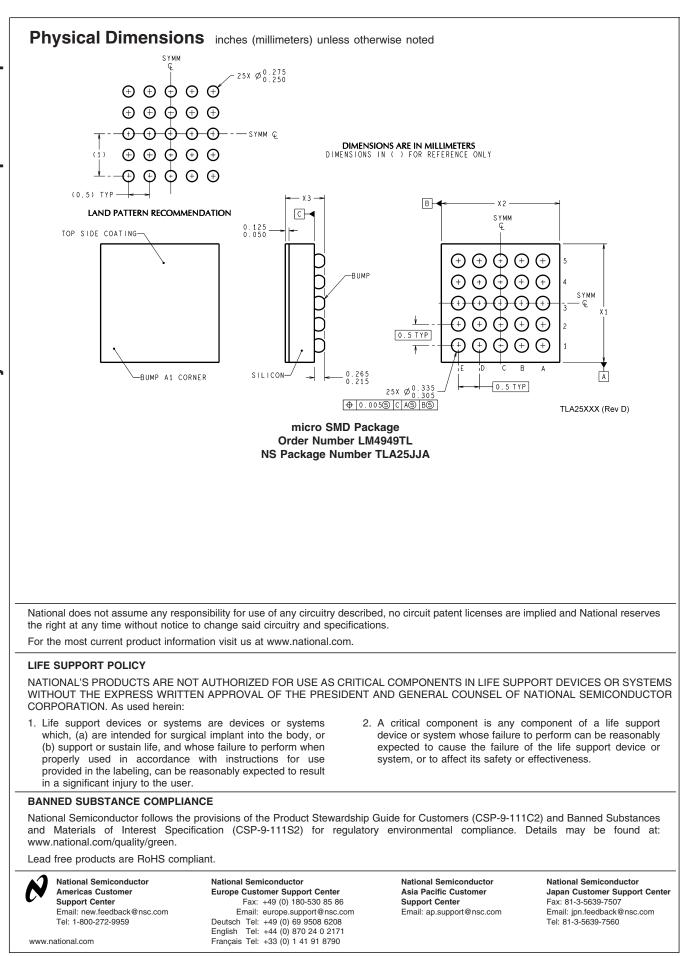
Bypass Capacitor Selection

The LM4949 generates a V_{DD}/2 common-mode bias voltage internally. The BYPASS capacitor, C_B, improves PSRR and THD+N by reducing noise at the BYPASS node. Use a 1 μ F capacitor, placed as close to the device as possible for C_B.

Audio Amplifier Input Capacitor Selection

Input capacitors, C_{IN} , in conjunction with the input impedance of the LM4949 forms a high pass filter that removes the DC bias from an incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimal DC level. Assuming zero source impedance, the -3dB point of the high pass filter is given by:

$$f_{-3dB} = 1 / 2\pi R_{IN} C_{IN}$$


Choose C_{IN} such that f_{-3dB} is well below the lowest frequency of interest. Setting f_{-3dB} too high affects the lowfrequency response of the amplifier. Use capacitors with low voltage coefficient dielectrics, such as tantalum or aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, may result in increased distortion at low frequencies. Other factors to consider when designing the input filter include the constraints of the overall system. Although high fidelity audio requires a flat frequency response between 20Hz and 20kHz, portable devices such as cell phones may only concentrate on the frequency range of the spoken human voice (typically 300Hz to 4kHz). In addition, the physical size of the speakers used in such portable devices limits the low frequency response; in this case, frequencies below 150Hz may be filtered out.

PCB LAYOUT GUIDELINES

Minimize trace impedance of the power, ground and all output traces for optimum performance. Voltage loss due to trace resistance between the LM4949 and the load results in decreased output power and efficiency. Trace resistance between the power supply and GND of the LM4949 has the same effect as a poorly regulated supply, increased ripple and reduced peak output power. Use wide traces for powersupply inputs and amplifier outputs to minimize losses due to trace resistance, as well as route heat away from the device. Proper grounding improves audio performance, minimizes crosstalk between channels and prevents switching noise from interfering with the audio signal. Use of power and ground planes is recommended.

Place all digital components and digital signal traces as far as possible from analog components and traces. Do not run digital and analog traces in parallel on the same PCB layer.

Rev	Date	Description
1.0	09/06/06	Initial release.
1.1	09/27/06	Fixed some of the Typical Performance Curves.

