## FPF2193／4／5

# Full Function Load Switch with Adjustable Current Limit 

## Features

－ 1.8 to 5.5 V Input Voltage Range
■ Controlled Turn－On
－0．15－1．5A Adjustable Current Limit
－Undervoltage Lockout
－Thermal Shutdown
－＜2uA Shutdown Current
－Auto Restart
－Fast Current limit Response Time
■ 5us to Moderate Over Currents
－30ns to Hard Shorts
－Fault Blanking
■ Reverse Current Blocking
－RoHS Compliant

## Applications

－PDAs
－Cell Phones
■ GPS Hand－held Devices
■ Portable Enterprise／Industrial Devices
－Digital Cameras
－Peripheral Ports and Accessories
－Portable Medical Equipment
－Hot Swap Supplies

## General Description

The FPF2193，FPF2194，and FPF2195 is a series of load switches which provides full protection to systems and loads which may encounter large current conditions．These devices contain a $55 \mathrm{~m} \Omega$ current－limited P －channel MOSFET which can operate over an input voltage range of $1.8-5.5 \mathrm{~V}$ ．Internally， current is prevented from flowing when the MOSFET is off and the output voltage is higher than the input voltage．Switch control is by a logic input（ON）capable of interfacing directly with low voltage control signals．Each part contains thermal shutdown protection which shuts off the switch to prevent damage to the part when a continuous over－current condition causes excessive heating．

When the switch current reaches the current limit，the parts operate in a constant－current mode to prohibit excessive currents from causing damage．For the FPF2193 and FPF2194， if the constant current condition still persists after 30 ms ，these parts will shut off the switch and pull the fault signal pin（FLAGB） low．The FPF2193 has an auto－restart feature which will turn the switch on again after 450 ms if the ON pin is still active．The FPF2194 does not have this auto－restart feature so the switch will remain off until the ON pin is cycled．The FPF2195 will not turn off after a current limit fault，but will rather remain in the constant current mode indefinitely．The minimum current limit is 150 mA ．

These parts are available in a space－saving 6 ball advanced． Pb－Free $1 \times 1.5 \mathrm{~mm}$ CSP package．


Ordering Information

| Part | Current Limit <br> $[\mathrm{mA}]$ | Current Limit <br> Blanking Time <br> $[\mathrm{ms}]$ | Auto－Restart <br> Time <br> $[\mathrm{ms}]$ | ON Pin <br> Activity | Top Mark |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FPF2193 | $150-1500$ | $15 / 30 / 60$ | $225 / 450 / 900$ | Active HI | G |
| FPF2194 | $150-1500$ | $15 / 30 / 60$ | NA | Active HI | H |
| FPF2195 | $150-1500$ | 0 | NA | Active HI | J |

## Typical Application Circuit



## Functional Block Diagram



## Pin Configuration



Pin Description

| Pin | Name | Function |
| :---: | :---: | :--- |
| C1 | $\mathrm{I}_{\text {SET }}$ | Current Limit Set Input: A resistor from I IET to ground sets the current limit for the switch. |
| B2 | $\mathrm{V}_{\text {IN }}$ | Supply Input: Input to the power switch and the supply voltage for the IC |
| B1 | $\mathrm{V}_{\text {OUT }}$ | Switch Output: Output of the power switch |
| A1 | FLAGB | Fault Output: Active LO, open drain output which indicates an over current supply under <br> voltage or over temperature state. |
| C2 | GND | Ground |
| A2 | ON | ON Control Input: Active Hi |

Absolute Maximum Ratings

| Parameter | Min. | Max. | Unit |
| :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, ON, FLAGB, ISET to GND | -0.3 | 6 | V |
| Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}($ Note 1) |  | 1.2 | W |
| Operating Temperature Range | -40 | 125 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance, Junction to Ambient | HBM | 8000 |  |
| Electrostatic Discharge Protection | MM | 400 |  |

## Recommended Operating Range

| Parameter | Min. | Max. | Unit |
| :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IN}}$ | 1.8 | 5.5 | V |
| Ambient Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

## Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=1.8$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| Parameter | Symbol | Conditions |  | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic Operation |  |  |  |  |  |  |  |
| Operating Voltage | $\mathrm{V}_{\text {IN }}$ |  |  | 1.8 |  | 5.5 | V |
| Quiescent Current | $\mathrm{I}_{\mathrm{Q}}$ | $\begin{aligned} & I_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{ON}}=\mathrm{V}_{\text {IN }} \end{aligned}$ | $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ |  | 70 |  | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ |  | 75 |  |  |
|  |  |  | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  | 80 |  |  |
| On-Resistance | $\mathrm{R}_{\mathrm{ON}}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$ |  |  | 55 | 80 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\text {A }}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$ |  |  |  | 135 |  |

Note 1: Package power dissipation on 1square inch pad, 2 oz. copper board.

## Electrical Characteristics Cont.

$\mathrm{V}_{\text {IN }}=1.8$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| Parameter | Symbol | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ON Input Logic High Voltage (ON) | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ | 0.8 |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ | 1.4 |  |  |  |
| ON Input Logic Low Voltage | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ |  |  | 0.5 | V |
|  |  | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  |  | 1.0 |  |
| ON Input Leakage |  | $\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND | -1 | 0 | 1 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{IN}}$ Shutdown Current |  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\text { short to } \mathrm{GND} \end{aligned}$ | -2 |  | 2 | $\mu \mathrm{A}$ |
| FLAGB Output Logic Low Voltage |  | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$ |  | 0.05 | 0.2 | V |
|  |  | $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$ |  | 0.12 | 0.3 |  |
| FLAGB Output High Leakage Current |  | $\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$, Switch ON |  |  | 1 | $\mu \mathrm{A}$ |
| Reverse Block |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OUT }}$ Shutdown Current |  | $\begin{aligned} & \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\text { short to } \mathrm{GND} \end{aligned}$ | -2 |  | 2 | $\mu \mathrm{A}$ |
| Reverse Breakdown Voltage | $\mathrm{V}_{\text {breakdown }}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=200 \mu \mathrm{~A}$ |  | 9 |  | V |
| Protections |  |  |  |  |  |  |
| Current Limit | LIIM | $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.0 \mathrm{~V}, \mathrm{R}_{\text {SET }}=690 \Omega$ | 600 | 800 | 1000 | mA |
| Min. Current Limit | LIIM(min.) | $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.0 \mathrm{~V}$ |  | 150 |  | mA |
| Thermal Shutdown |  | Shutdown Threshold |  | 140 |  | ${ }^{\circ} \mathrm{C}$ |
|  |  | Return from Shutdown |  | 130 |  |  |
|  |  | Hysteresis |  | 10 |  |  |
| Under Voltage Lockout | $\mathrm{V}_{\text {UVLO }}$ | $\mathrm{V}_{\text {IN }}$ Increasing | 1.55 | 1.65 | 1.75 | V |
| Under Voltage Lockout Hysteresis |  |  |  | 50 |  | mV |
| Dynamic |  |  |  |  |  |  |
| Delay On Time | $\mathrm{td}_{\text {ON }}$ | $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ |  | 20 |  | $\mu \mathrm{s}$ |
| $\mathrm{V}_{\text {Out }}$ Rise Time | $\mathrm{t}_{\mathrm{R}}$ | $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ |  | 20 |  | $\mu \mathrm{s}$ |
| Turn On Time | $\mathrm{t}_{\mathrm{ON}}$ | $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ |  | 40 |  | $\mu \mathrm{s}$ |
| Delay Off Time | tdoff | $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ |  | 15 |  | $\mu \mathrm{s}$ |
| $\mathrm{V}_{\text {Out }}$ Fall Time | $\mathrm{t}_{\mathrm{F}}$ | $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ |  | 110 |  | $\mu \mathrm{s}$ |
| Turn Off Time | toff | $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ |  | 125 |  | $\mu \mathrm{s}$ |
| Over Current Blanking Time | $\mathrm{t}_{\text {blank }}$ | FPF2193, FPF2194 | 15 | 30 | 60 | ms |
| Auto-Restart Time | ${ }_{\text {trstri }}$ | FPF2193 | 225 | 450 | 900 | ms |
|  |  | FPF2194, FPF2195 |  | NA |  |  |
| Short Circuit Response Time |  | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V} \text {. Moderate }$ Over-Current Condition. |  | 5 |  | $\mu \mathrm{s}$ |
|  |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$. Hard Short. |  | 30 |  | ns |

## Typical Characteristics



Figure 1. Quiescent Current vs. Input Voltage


Figure 3. Quiescent Current vs. Temperature


Figure 5. $\mathrm{V}_{\mathrm{ON}}$ Low Voltage vs. Input Voltage


Figure 2. Quiescent Current vs. Input Voltage


Figure 4. $\mathrm{V}_{\mathrm{ON}}$ High Voltage vs. Input Voltage


Figure 6. Current Limit vs. Output Voltage

## Typical Characteristics



Figure 7. Current Limit vs. Temperature


Figure 9. $\mathrm{R}_{\mathrm{ON}}$ vs. Temperature


Figure 11. $\mathrm{T}_{\text {RISE }} / \mathrm{T}_{\text {FALL }}$ vs. Temperature


Figure 8. $\mathrm{R}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\mathrm{IN}}$


Figure 10. $\mathrm{T}_{\text {ON }} / \mathrm{T}_{\text {OFF }}$ vs. Temperature


Figure 12. $\mathrm{T}_{\text {RESTART }}$ vs. Temperature

## Typical Characteristics



Figure 13. $\mathrm{T}_{\text {BLANK }}$ vs. Temperature


Figure 15. Toff Response


Figure 17. Current Limit Response Time (Switch is powered into a short)


Figure 14. $\mathrm{T}_{\mathrm{ON}}$ Response


Figure 16. Short Circuit Response Time (Output shorted to GND)


Figure 18. Current Limit Response Time (Output is loaded by $2.2 \Omega, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}$ )

## Typical Characteristics



Figure 19. Current Limit Response Time (Output is loaded by $2.2 \Omega, \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$ )


Figure 21. $\mathrm{T}_{\text {BLANK }}$ Response


Figure 20. Short Circuit Detection Function (Note 2)


Figure 22. $\mathrm{T}_{\text {RESTART }}$ Response

Note 2: When the output voltage is below $\mathrm{VSCTH}=1.1 \mathrm{~V}$, the current limit value is set at $62.5 \%$ of the current limit value.
Note 3: $V_{\text {DRV }}$ signal forces the device to go into overcurrent condition by loading.

## Description of Operation

The FPF2193, FPF2194, and FPF2195 are current limited switches that protect systems and loads which can be damaged or disrupted by the application of high currents. The core of each device is a $55 \mathrm{~m} \Omega \mathrm{P}$-channel MOSFET and a controller capable of functioning over a wide input operating range of 1.85.5 V . The controller protects against system malfunctions through current limiting, under-voltage lockout and thermal shutdown. The current limit is adjustable from 150 mA to 1.5 A through the selection of an external resistor.

## On/Off Control

The ON pin controls the state of the switch. When ON is high, the switch is in the on state. Activating ON continuously holds the switch in the on state so long as there is no fault. For all versions, an under-voltage on $\mathrm{V}_{\mathrm{IN}}$ or a junction temperature in excess of $140^{\circ} \mathrm{C}$ overrides the ON control to turn off the switch. In addition, excessive currents will cause the switch to turn off in the FPF2193 and FPF2194. The FPF2193 has an Auto-Restart feature which will automatically turn the switch on again after 450 ms . For the FPF2194, the ON pin must be toggled to turn-on the switch again. The FPF2195 does not turn off in response to an over current condition but instead remains operating in a constant current mode so long as ON is active and the thermal shutdown or under-voltage lockout have not activated.

## Fault Reporting

Upon the detection of an over-current, an input under-voltage, or an over-temperature condition, the FLAGB signals the fault mode by activating LO. For the FPF2193 and FPF2194, the FLAGB goes LO at the end of the blanking time while FLAGB goes LO immediately for the FPF2195. FLAGB remains LO through the Auto-Restart Time for the FPF2195. For the FPF2194, FLAGB is latched LO and ON must be toggled to release it. With the FPF2195, FLAGB is LO during the faults and immediately returns HI at the end of the fault condition. FLAGB is an open-drain MOSFET which requires a pull-up resistor between VIN and FLAGB. During shutdown, the pull-down on FLAGB is disabled to reduce current draw from the supply.

## Current Limiting

The current limit ensures that the current through the switch doesn't exceed a maximum value while not limiting at less than a minimum value. The current at which the parts will limit is adjustable through the selection of an external resistor connected to ISET. Information for selecting the resistor is found in the Application Info section. The FPF2193 and FPF2194 have a blanking time of 30 ms , nominally, during which the switch will act as a constant current source. At the end of the blanking time, the switch will be turned-off. The FPF2195 has no current limit blanking period so it will remain in a constant current state until the ON pin is deactivated or the thermal shutdown turns-off the switch.

For preventing the switch from large power dissipation during heavy load a short circuit detection feature is introduced. Short circuit condition is detected by observing the output voltage. The switch is put into short circuit current limiting mode if the switch is loaded with a heavy load. When the output voltage drops below VSCTH, short circuit detection threshold voltage, the current limit value re-conditioned and short circuit current limit value is decreased to $62.5 \%$ of the current limit value. This
keeps the power dissipation of the part below a certain limit even at dead short conditions at 5.5 V input voltage. The VSCTH value is set to be 1 V . At around 1.1 V of output voltage the switch is removed from short circuit current limiting mode and the current limit is set to the current limit value.

## Under-Voltage Lockout

The under-voltage lockout turns-off the switch if the input voltage drops below the under-voltage lockout threshold. With the ON pin active the input voltage rising above the undervoltage lockout threshold will cause a controlled turn-on of the switch which limits current over-shoots.

## Thermal Shutdown

The thermal shutdown protects the die from internally or externally generated excessive temperatures. During an over-temperature condition the FLAGB is activated and the switch is turned-off. The switch automatically turns-on again if temperature of the die drops below the threshold temperature.

## Reverse Current Blocking

The entire FPF2193/95 family has a Reverse Current Blocking feature that protects input source against current flow from output to input. For a standard USB power design, this is an important feature which protects the USB host from being damaged due to reverse current flow on $V_{B U S}$.

When the load switch is OFF, no current flows from the output to the input. If the switch is turned on and the output voltage is greater than input voltage this feature is activated and turns off the switch. This will prevent any current flow from output to input. The reverse current blocking feature will be deactivated if the $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}$ is smaller than a typically 50 mV threshold. During this time some current $\left(50 \mathrm{mV} / \mathrm{R}_{\mathrm{ON}}\right)$ will flow from the output to input until input voltage become greater than output voltage. The FLAGB operation is independent of the Reverse Current blocking and will not report a fault condition if this feature is activated.

## Timing Diagram


where:
td ${ }_{\text {ON }}=$ Delay On Time
$t_{R}=V_{\text {OUT }}$ Rise Time
$t_{\text {ON }}=$ Turn On Time
tdoff $=$ Delay Off Time
$t_{F}=V_{\text {OUT }}$ Fall Time
$\mathrm{t}_{\text {OFF }}=$ Turn Off Time

## Application Information

Typical Application


## Setting Current Limit

The FPF2193, FPF2194, and FPF2195 have a current limit which is set with an external resistor connected between ISET and GND. This resistor is selected by using the following equation,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SET}}=\frac{551.6}{\mathrm{I}_{\mathrm{LIM}}} \tag{1}
\end{equation*}
$$

$$
\mathrm{R}_{\mathrm{SET}} \text { is in Ohms and that of } \mathrm{I}_{\mathrm{SET}} \text { is Amps }
$$

The table below can also be used to select $\mathrm{R}_{\text {SET }}$. A typical application would be the 500 mA current that is required by a single USB port. Using the table below an appropriate selection for the $\mathrm{R}_{\mathrm{SET}}$ resistor would be $788 \Omega$. This will ensure that the port load could draw 525 mA , but not more than 875 mA . Likewise for a dual port system, an $\mathrm{R}_{\mathrm{SET}}$ of $368 \Omega$ would always deliver at least 1125mA and never more than 1875 mA .

## Current Limit Various R $_{\text {SET }}$ Values

| $R_{\text {SET }}$ <br> $[\Omega]$ | Min. Current <br> Limit <br> $[\mathrm{mA}]$ | Typ. Current <br> Limit <br> $[\mathrm{mA}]$ | Max. Current <br> Limit <br> $[\mathrm{mA}]$ |
| :---: | :---: | :---: | :---: |
| 368 | 1125 | 1500 | 1875 |
| 441 | 938 | 1250 | 1562 |
| 552 | 750 | 1000 | 1250 |
| 613 | 675 | 900 | 1125 |
| 690 | 600 | 800 | 1000 |
| 788 | 525 | 700 | 875 |
| 919 | 450 | 600 | 750 |
| 1103 | 375 | 500 | 625 |
| 1226 | 338 | 450 | 563 |
| 1379 | 300 | 400 | 500 |
| 1576 | 263 | 350 | 438 |
| 1839 | 225 | 300 | 375 |
| 2206 | 188 | 250 | 313 |
| 2758 | 150 | 200 | 250 |
| 3677 | 113 | 150 | 188 |

## Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch is turned on into a discharged load capacitor or a short-circuit, a capacitor needs to be placed between $\mathrm{V}_{\mathrm{IN}}$ and GND. A 0.1 uF ceramic capacitor, $\mathrm{C}_{\mathrm{IN}}$, placed close to the pins is usually sufficient. Higher values of $C_{\mathbb{I N}}$ can be used to further reduce the voltage drop.

## Output Capacitor

A 0.1 uF capacitor $\mathrm{C}_{\text {OUT }}$, should be placed between $\mathrm{V}_{\text {OUT }}$ and GND. This capacitor will prevent parasitic board inductances from forcing $\mathrm{V}_{\text {OUT }}$ below GND when the switch turns-off. For the FPF2193 and FPF2194, the total output capacitance needs to be kept below a maximum value, $\mathrm{C}_{\mathrm{OUT}}(\max )$, to prevent the part from registering an over-current condition and turning-off the switch. The maximum output capacitance can be determined from the following formula,

$$
\begin{equation*}
\mathrm{C}_{\mathrm{OUT}(\max )}=\frac{\mathrm{I}_{\mathrm{LIM}}(\max ) \times \mathrm{t}_{\mathrm{BLANK}}(\min )}{\mathrm{V}_{\mathrm{IN}}} \tag{2}
\end{equation*}
$$

## Power Dissipation

During normal operation as a switch, the power dissipated in the part will depend upon the level at which the current limit is set. The maximum allowed setting for the current limit is 1.5 A and this will result in a power dissipation of,

$$
\begin{equation*}
\mathrm{P}=\left(\mathrm{I}_{\mathrm{LIM}}\right)^{2} \times \mathrm{R}_{\mathrm{ON}}=(1.5)^{2} \times 0.055=123.75 \mathrm{~mW} \tag{3}
\end{equation*}
$$

If the part goes into current limit the maximum power dissipation will occur when the output is shorted to ground. For the FPF2193, the power dissipation will scale by the Auto-Restart Time, $\mathrm{t}_{\text {RSTRT }}$, and the Over Current Blanking Time, $\mathrm{t}_{\text {BLANK, }}$, so that the maximum power dissipated is,

$$
\begin{align*}
P(\max ) & =\frac{t_{\text {BLANK }}}{t_{\text {BLANK }}+t_{\text {RSTRT }}} \times V_{\text {IN }}(\max ) \times \mathrm{I}_{\mathrm{LIM}}(\max ) \\
& =\frac{30}{30+450} \times 5.5 \times 1.5=515.6 \mathrm{~mW} \tag{4}
\end{align*}
$$

This is more power than the package can dissipate, but the thermal shutdown of the part will activate to protect the part from damage due to excessive heating. When using the FPF2194, attention must be given to the manual resetting of the part. The junction temperature will only be able to increase to the thermal shutdown threshold. Once this temperature has been reached, toggling ON will not turn-on the switch until the junction temperature drops. For the FPF2195, a short on the output will cause the part to operate in a constant current state dissipating a worst case power of,

$$
\begin{align*}
\mathrm{P}(\max ) & =\mathrm{V}_{\mathrm{IN}}(\max ) \times \mathrm{I}_{\mathrm{LIM}}(\max )  \tag{5}\\
& =5.5 \times 1.5=8.25 \mathrm{~W}
\end{align*}
$$

This large amount of power will activate the thermal shutdown and the part will cycle in and out of thermal shutdown so long as the ON pin is active and the short is present.

## Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}$ and GND will help minimize parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Dimensional Outline and Pad Layout


## FAIRCHILD

SEMICONDபCTロR

## TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx ${ }^{\left({ }^{\text {a }}\right.}$ | Green FPS ${ }^{\text {TM }}$ | Power247 ${ }^{\text {® }}$ | SuperSOT ${ }^{\text {TM }}$-8 |
| :---: | :---: | :---: | :---: |
| Build it Now ${ }^{\text {TM }}$ | Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$ | POWEREDGE ${ }^{\circledR}$ | SyncFET ${ }^{\text {TM }}$ |
| CorePLUS ${ }^{\text {™ }}$ | GTO ${ }^{\text {™ }}$ | Power-SPM ${ }^{\text {TM }}$ | The Power Franchise ${ }^{\circledR}$ |
| CROSSVOLT ${ }^{\text {TM }}$ | $i-L o^{\text {TM }}$ | PowerTrench ${ }^{\circledR}$ | the |
| CTL ${ }^{\text {TM }}$ | IntelliMAX ${ }^{\text {™ }}$ | Programmable Active Droop ${ }^{\text {TM }}$ | Ofranchise |
| Current Transfer Logic ${ }^{\text {TM }}$ | ISOPLANAR ${ }^{\text {™ }}$ | QFET ${ }^{\text {® }}$ | TinyBoost ${ }^{\text {TM }}$ |
| Ecospark ${ }^{\circledR}$ | MegaBuck ${ }^{\text {TM }}$ | QS ${ }^{\text {™ }}$ | TinyBuck ${ }^{\text {TM }}$ |
| $\%^{\circledR}$ | MICROCOUPLER ${ }^{\text {TM }}$ | QT Optoelectronics ${ }^{\text {TM }}$ | TinyLogic ${ }^{(8}$ |
| Fairchild ${ }^{\text {® }}$ | MicroFET ${ }^{\text {TM }}$ | Quiet Series ${ }^{\text {TM }}$ | TINYOPTO ${ }^{\text {™ }}$ |
| Fairchild Semiconductor ${ }^{(8)}$ | MicroPak ${ }^{\text {TM }}$ | RapidConfigure ${ }^{\text {™ }}$ | TinyPower ${ }^{\text {TM }}$ |
| FACT Quiet Series ${ }^{\text {TM }}$ | MillerDrive ${ }^{\text {™ }}$ | SMART START ${ }^{\text {TM }}$ | TinyPWM ${ }^{\text {TM }}$ |
| $\mathrm{FACT}^{\text {® }}$ | Motion-SPM ${ }^{\text {™ }}$ | SPM ${ }^{\circledR}$ | TinyWire ${ }^{\text {TM }}$ |
| $\mathrm{FAST}^{\text {® }}$ | OPTOLOGIC ${ }^{\circledR}$ | STEALTH ${ }^{\text {™ }}$ | $\mu$ SerDes $^{\text {™ }}$ |
| FastvCore ${ }^{\text {TM }}$ | OPTOPLANAR ${ }^{\circledR}$ | SuperFET ${ }^{\text {TM }}$ | UHC ${ }^{\text {® }}$ |
| FPS ${ }^{\text {TM }}$ | (1) ${ }^{\circledR}$ | SuperSOT ${ }^{\text {TM }}$-3 | UniFET ${ }^{\text {TM }}$ |
| FRFET ${ }^{\text {® }}$ | PDP-SPM ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$-6 | VCX ${ }^{\text {™ }}$ |
| Global Power Resource ${ }^{\text {SM }}$ | Power220 ${ }^{\text {® }}$ |  |  |

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :--- | :--- | :--- |
| Advance Information | Formative or In Design | This datasheet contains the design specifications for product development. <br> Specifications may change in any manner without notice. |
| Preliminary | First Production | This datasheet contains preliminary data; supplementary data will be <br> published at a later date. Fairchild Semiconductor reserves the right to make <br> changes at any time without notice to improve design. |
| No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves <br> the right to make changes at any time without notice to improve design. |
| Obsolete | Not In Production | This datasheet contains specifications on a product that has been <br> discontinued by Fairchild semiconductor. The datasheet is printed for <br> reference information only. |

