
FJP3307D

High Voltage Fast Switching NPN Power Transistor

Features

- · Built-in Diode between Collector and Emitter
- · Suitable for Electronic Ballast and Switch Mode Power Supplies

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	700	V
V _{CEO}	Collector-Emitter Voltage	400	V
V _{EBO}	Emitter-Base Voltage	9	V
I _C	Collector Current (DC)	8	A
I _{CP}	* Collector Current (Pulse)	16	Α
I _B	Base Current (DC)	4	A
P _C	Collector Dissipation (T _C = 25°C)	80	W
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C

^{*} Pulse Test: PW = $300\mu s$, Duty Cycle = 2% Pulsed

Electrical Characteristics T_C = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 500 \mu A, I_E = 0$	700			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 5mA, I _B = 0	400			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 500 \mu A, I_C = 0$	9			V
I _{EBO}	Emitter Cut-off Current	V _{EB} = 9V, I _C = 0			1	mA
h _{FE1}	DC Current Gain	V _{CE} = 5V, I _C = 2A V _{CE} = 5V, I _C = 5A	8 5		40 30	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 2A, I _B = 0.4A			1	V
		I _C = 5A, I _B = 1A			2	V
		I _C = 8A, I _B = 2A			3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 2A, I _B = 0.4A			1.2	V
		$I_{C} = 5A, I_{B} = 1A$			1.6	V

Electrical Characteristics T_C = 25°C unless otherwise noted (Continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
V _F	Diode Forward Voltage	I _C = 3A			2.5	V
C _{ob}	Output Capatitance	V _{CB} = 10V, I _E = 0, f = 1MHz		60		pF
t _{STG}	Storage Time	V _{CC} = 125V, I _C = 5A			3	μS
t _F	Fall Time	$I_{B1} = -I_{B2} = 1A, R_L = 50\Omega$			0.7	μS
t _{STG}	Storage Time	V _{CC} = 30V, I _C = 5A, L=200μH			2.3	μS
t _F	Fall Time	I_{B1} =1A, R_{BB} = 0 Ω , $V_{BE(OFF)}$ = -5 V_{CLAMP} = 250 V			150	ns

^{*} Pulse test: PW=300 μ s, Duty cycle=2%

h_{FE} Classification

Classification	H1	H2	
h _{FE1}	15 ~ 28	26 ~ 39	

Typical Performance Characteristics

Figure 1. Static Characterstic

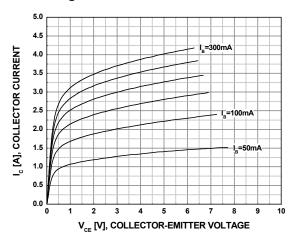


Figure 2. DC Current Gain (H1 Grade)

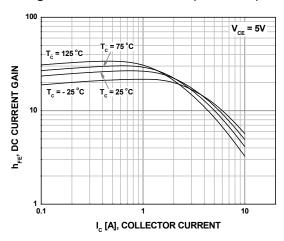


Figure 3. DC Current Gain (H2 Grade)

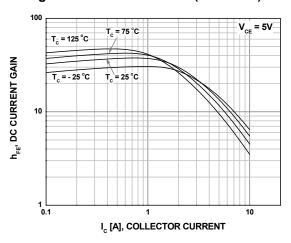


Figure 4. Collector-Emitter Saturation Voltage

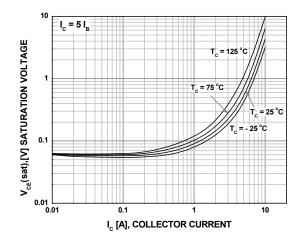


Figure 5. Base-Emitter Saturation Voltage

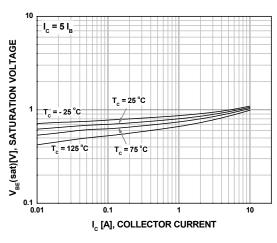
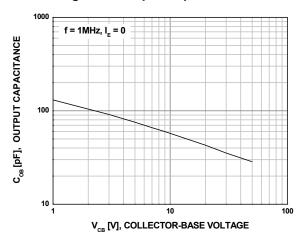



Figure 6. Output Capacitance

3

Typical Performance Characteristics (Continued)

Figure 7. Power Derating

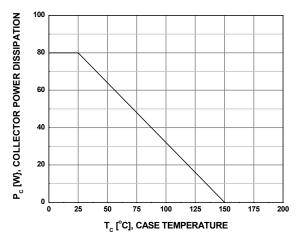
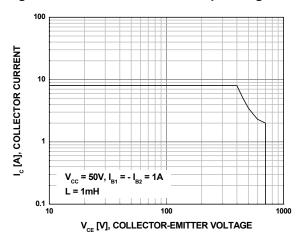
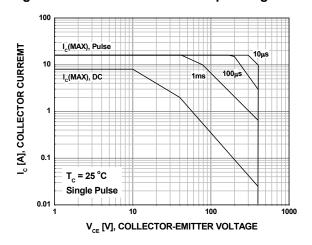
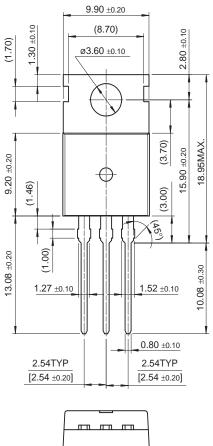
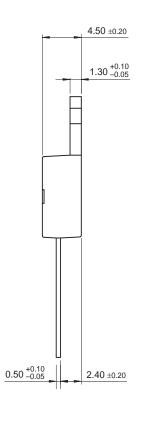


Figure 8. Reverse Biased Safe Operating Area


Figure 9. Forward Biased Safe Operating Area



4

Mechanical Dimensions

TO-220

10.00 ±0.20

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ **FAST®** ISOPLANAR™ SuperSOT™-6 ActiveArray™ $\mathsf{PowerTrench}^{\circledR}$ SuperSOT™-8 $FASTr^{\intercal_{M}}$ LittleFET™ Bottomless™ FPS™ QFET[®] SyncFET™ MICROCOUPLER™ Build it Now™ $MicroFET^{TM}$ QSTM ТСМ™ FRFET™ TinyLogic[®] CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ $TINYOPTO^{TM}$ $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™ GTO^TM RapidConfigure™ $TruTranslation ^{\intercal_{M}}$ $\mathsf{DOME}^\mathsf{TM}$ MSX™ HiSeC™ $\mathsf{UHC}^{\mathsf{TM}}$ $\mathsf{EcoSPARK}^{\mathsf{TM}}$ RapidConnect™ $MSXPro^{TM}$ I^2C^{TM} $\mathsf{UltraFET}^{\circledR}$ E²CMOSTM OCX^{TM} uSerDes™ i-Lo™ ScalarPump™ UniFET™ EnSigna™ $OCXPro^{TM}$ ImpliedDisconnect™ $\mathsf{OPTOLOGIC}^{\circledR}$ SILENT SWITCHER® VCX^{TM} FACT™ IntelliMAX™ OPTOPLANAR™ SMART START™ Wire™ FACT Quiet Series™ PACMAN™ SPM™ Across the board. Around the world.™ POP^{TM} Stealth™ The Power Franchise® Power247™ SuperFET™ Programmable Active Droop™ SuperSOT™-3 PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I18