

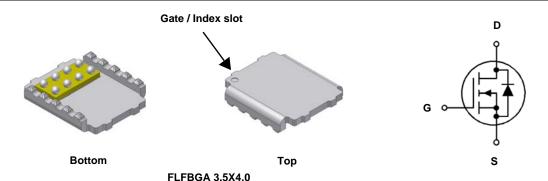
March 2008

FDZ4676

N-Channel PowerTrench® MOSFET BGA 30V, 14A, 7.0m Ω

Features

- Max $r_{DS(on)} = 7.0 \text{m}\Omega$ at $V_{GS} = 10 \text{V}$, $I_D = 14 \text{A}$
- Max $r_{DS(on)} = 12m\Omega$ at $V_{GS} = 4.5V$, $I_D = 10A$
- Ultra-thin package: less than 0.85mm height when mounted to PCB
- Outstanding thermal transfer characteristics
- Ultra-low gate charge x r_{DS(on)} product
- RoHS Compliant



General Description

This part is optimized for very high density and high current synchronous buck converters using Fairchild's proprietary PowerTrench® process. This part has been tailored for the high side application, optimized both for low $r_{DS(on)},\ Q_g,$ and package parasitics; essential for high efficiency and fast switching. The part is offered in a standard format 3.5X4 footprint to offer both high side and low side in the same footprint. Partner low side FDZ4670 or FDZ4670S (SyncFET TM version).

Applications

- High Current POL
- DC-DC in server
- Networking
- High current microprocessor

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Paran	neter		Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current - Continuous	T _A = 25°C	(Note 1a)	14	۸
ID	-Pulsed			63	Α
D	Power Dissipation	T _A = 25°C	(Note 1a)	2.2	14/
P_{D}	Power Dissipation	$T_A = 25$ °C	(Note 1b)	1.1	W
T_J , T_{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.85	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a	56	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)) 110	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
4676	FDZ4676	FLFBGA 3.5X4.0	13"	12mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 24V,$			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.8	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		-4		mV/°C
		$V_{GS} = 10V, I_D = 14A$		5.6	7.0	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 10A$		9.0	12	mΩ
		$V_{GS} = 10V, I_D = 14A, T_J = 125$ °C		7.3	10	
9 _{FS}	Forward Transconductance	V _{DD} = 10V, I _D = 14A		57		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 45V V 0V	1000	1330	pF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	480	640	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11/11/12	75	115	pF
R_g	Gate Resistance	f = 1MHz	0.67		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		7.5	15	ns
t _r	Rise Time	V _{DD} = 15V, I _D = 14A,	2.2	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$	18	32	ns
t _f	Fall Time		1.6	10	ns
Q_g	Total Gate Charge	V _{GS} = 10V	16	22	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = 15V$	3		nC
Q _{gd}	Gate to Drain "Miller" Charge	I _D = 14A	2.4		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 1.8A$ (Note 2)		0.7	1.2	V
t _{rr}	Reverse Recovery Time			28	45	ns
Q _{rr}	Reverse Recovery Charge	T _F = 14A, α//αι = 100A/μs		12	19	nC

NOTES

^{1.} $R_{\theta JA}$ is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a.56°C/W when mounted on a 1 in 2 pad of 2 oz copper.

 b. 110°C/W when mounted on a minimum pad of 2 oz copper.

^{2.} Pulse Test: Pulse Width < $300\mu\text{s},$ Duty cycle < 2.0%.

Typical Characteristics T_J = 25°C unless otherwise noted

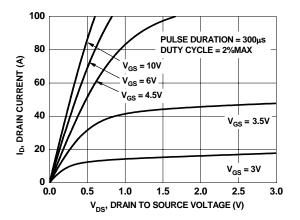


Figure 1. On-Region Characteristics

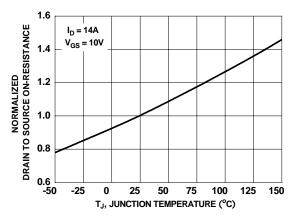


Figure 3. Normalized On-Resistance vs Junction Temperature

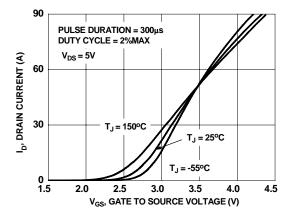


Figure 5. Transfer Characteristics

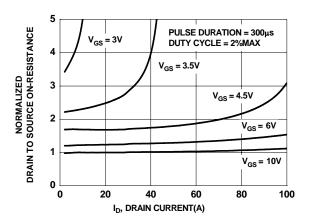


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

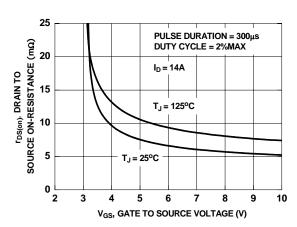


Figure 4. On-Resistance vs Gate to Source Voltage

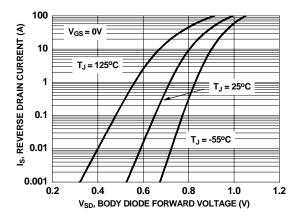


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25°C unless otherwise noted

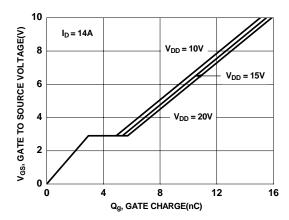


Figure 7. Gate Charge Characteristics

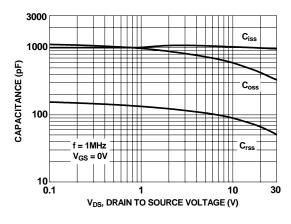


Figure 8. Capacitance vs Drain to Source Voltage

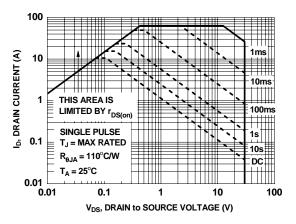


Figure 9. Forward Bias Safe Operating Area

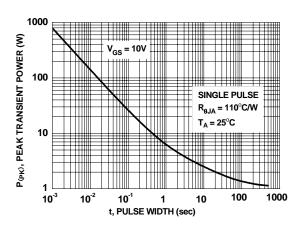
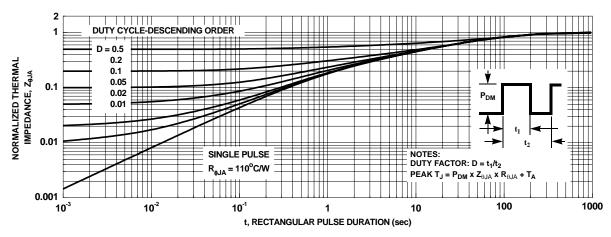
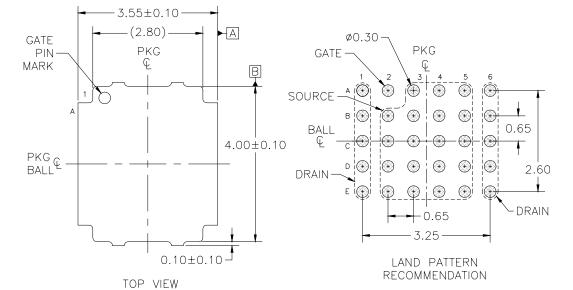
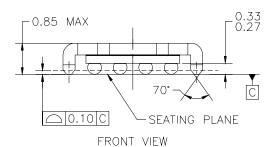
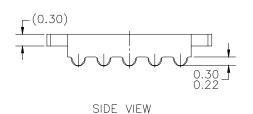
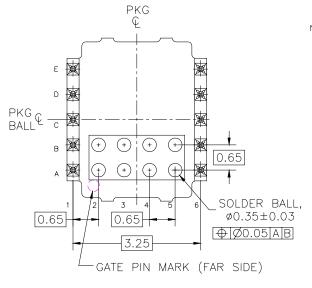


Figure 10. Single Pulse Maximum Power Dissipation


Figure 11. Transient Thermal Response Curve

Dimensional Outline and Pad Layout

BOTTOM VIEW

- NOTES: UNLESS OTHERWISE SPECIFIED

 A) ALL DIMENSIONS ARE IN MILLIMETERS.
 - NO JEDEC REGISTRATION REFERENCE AS OF MARCH 2006.
 - TERMINAL CONFIGURATION TABLE

ı	POSITION	DESIGNATION	TYPE
	A1,B1,C1,D1,E1, A6,B6,C6,D6,E6	DRAIN	COPPER STUD
	A2	GATE	SOLDER
	A3,A4,A5,B2,B3, B4,B5	SOURCE	BALL

E) DRAWING FILE NAME: BGA18BREV1

BGA18BREV1

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™

CTL™ Current Transfer Logic™ **EcoSPARK**® EfficentMax™ EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT[®] FAST[®] FastvCore™ FlashWriter®* FPS™ F-PFS™ FRFET®

Global Power ResourceSM

Green FPS™

Green FPS™ e-Series™

GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ $\mathsf{OPTOLOGIC}^{\mathbb{B}}$ OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET^o $\mathsf{Q}\mathsf{S}^{\mathsf{TM}}$

Quiet Series™ RapidConfigure™

Saving our world, 1mW at a time™

SmartMax™ SMART START™

SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ® GENERAL

The Power Franchise®

franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

_wer

UHC[®]

Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 134