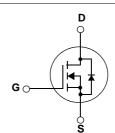


FDP090N10 N-Channel PowerTrench[®] MOSFET 100V, 75A, $9m\Omega$

Features

- $R_{DS(on)} = 7.2m\Omega$ (Typ.) @ $V_{GS} = 10V$, $I_D = 75A$
- Fast switching speed
- Low gate charge
- High performance trench technology for extremely low R_{DS(on)}
- High power and current handling capability
- RoHS compliant

Application


DC to DC convertors / Synchronous Rectification

GDS

General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

TO-220

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain to Source Voltage		100	V	
V _{GSS}	Gate to Source Voltage			±20	V
I _D	Drain Current -Continuous (T _C = 85 ^o C)			75	A
I _{DM}	Drain Current - Pulsed		(Note 1)	300	A
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	309	mJ
I _{AR}	Avalance Current		(Note 1)	75	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	20.8	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	5.6	V/ns
P _D	Deven Directory	$(T_{C} = 25^{\circ}C)$		208	W
	Power Dissipation	- Derate above 25 ^o C		1.39	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +175	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

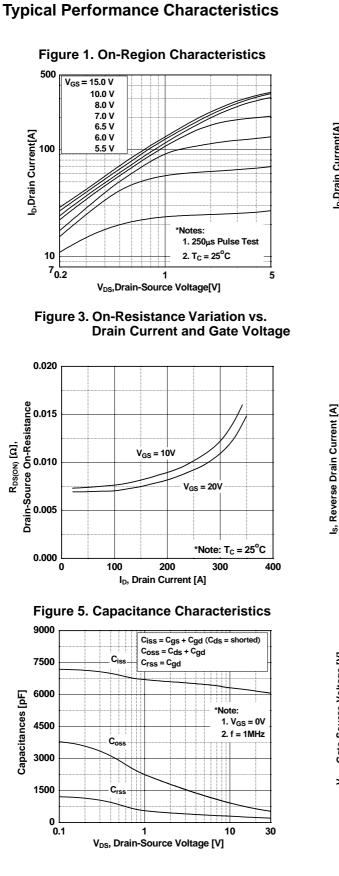
Thermal Characteristics

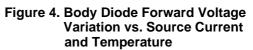
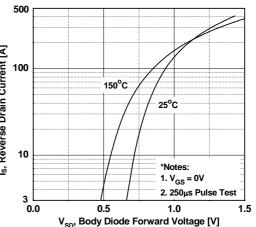
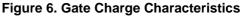
Symbol	Parameter	Ratings	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.72	
$R_{\theta CS}$	Thermal Resistance, Case to Sink Typ.	0.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	62.5	

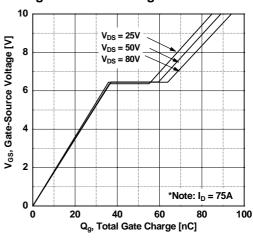
January 2008

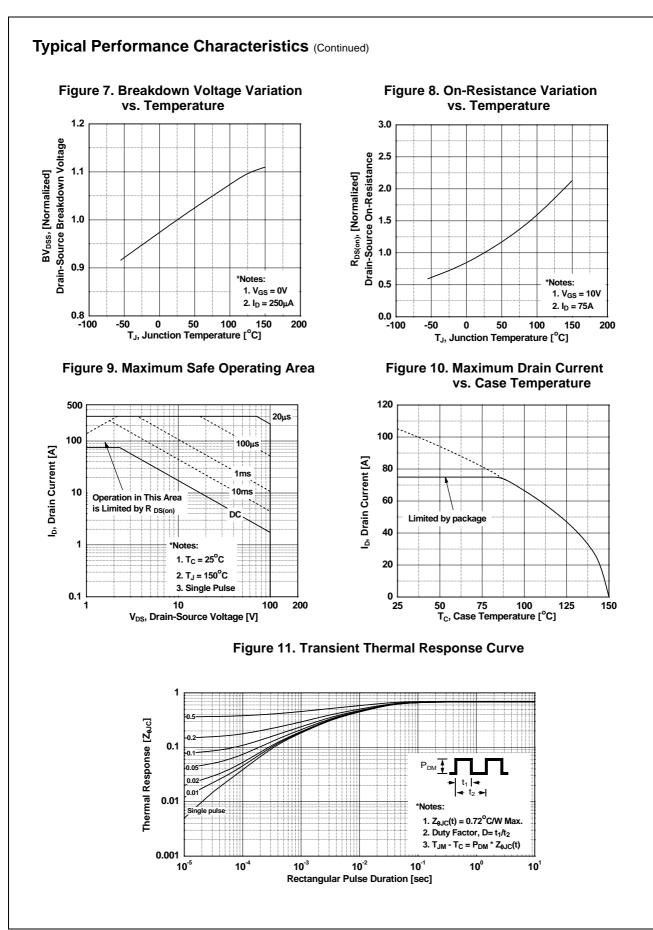
FDP090N10
N-Channel
PowerTrenc
h [®] MOSFET

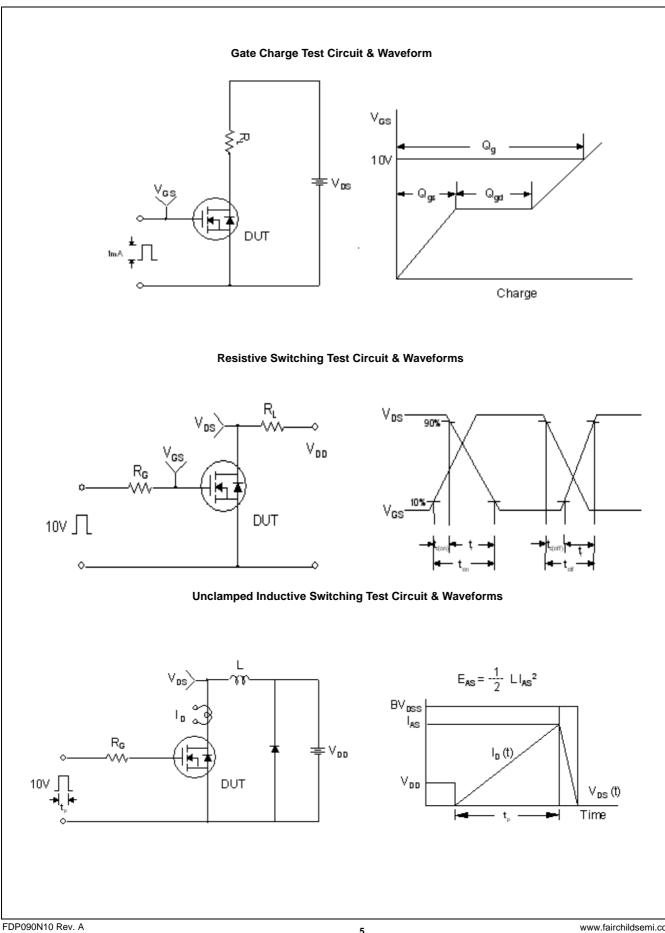
Device Marking FDP090N10		Device	Package	Reel Size	Таре	Width		Quantit	у
		FDP090N10	TO-220	0 1		-		50	
Electrica	l Char	actoristics		i	I		I		
Electrical Character		Parameter		Test Conditions		Min.	Тур.	Max.	Units
Off Charac	teristics	3							
BV _{DSS}	Drain to Source Breakdown Voltage		ide I	$I_D = 250\mu A, V_{GS} = 0V, T_C = 25^{\circ}C$		100	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{,l}}$	Breakdown Voltage Temperature Coefficient			$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	0.1	-	V/ºC
i	Zara Ca	to Valtage Drain Current	١	/ _{DS} = 100V, V _{GS} = 0V		-	-	1	
IDSS	Zero Gate Voltage Drain Current		١	$V_{\rm DS}$ = 100V, $V_{\rm GS}$ = 0V, $T_{\rm C}$	= 150 ^o C	-	-	500	μA
I _{GSS}	Gate to	Body Leakage Current		$V_{\rm GS} = \pm 20 \text{V}, \text{ V}_{\rm DS} = 0 \text{V}$		-	-	±100	nA
On Charac	teristics	3							
V _{GS(th)}	Gate Th	Gate Threshold Voltage		V _{GS} = V _{DS} , I _D = 250μA		2.5	3.5	4.5	V
R _{DS(on)}		rain to Source On Resista		$V_{GS} = 10V, I_D = 75A$		-	7.2	9	mΩ
9FS	Forward	I Transconductance		$V_{\rm DS} = 10V, I_{\rm D} = 37.5A$ (Note 4)		-	100	-	S
	-	pacitance		$V_{DS} = 25 V$, $V_{CS} = 0 V$	-	-	6185	8225	pF
C _{oss} C _{rss}		Capacitance Transfer Capacitance		V _{DS} = 25V, V _{GS} = 0V = 1MHz	-	-	6185 585 235	8225 775 355	pF pF pF
C _{oss} C _{rss} Switching	Reverse	Capacitance Transfer Capacitance				-	585	775	pF
_{Crss} Switching	Reverse Charact	Capacitance Transfer Capacitance	f	= 1MHz		-	585	775	pF
C _{rss} Switching t _{d(on)}	Reverse Charact Turn-On Turn-On	Capacitance Transfer Capacitance Ceristics Delay Time Rise Time	f	^z = 1MHz V _{DD} = 50V, I _D = 75A		-	585 235 107 322	775 355 224 655	pF pF
C_{rss} Switching $t_{d(on)}$ t_r	Reverse Charact Turn-On Turn-On Turn-Off	Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time	f	= 1MHz		-	585 235 107 322 166	775 355 224 655 342	pF pF ns
C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f	Reverse Charact Turn-On Turn-Off Turn-Off	Capacitance Transfer Capacitance eristics Delay Time Rise Time Delay Time Fall Time	f	^z = 1MHz V _{DD} = 50V, I _D = 75A	(Note 4, 5)	- - - - -	585 235 107 322 166 149	775 355 224 655 342 309	pF pF ns ns ns ns
C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(tot)}	Reverse Charact Turn-On Turn-Off Turn-Off Turn-Off Total Ga	Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V	f	^z = 1MHz V _{DD} = 50V, I _D = 75A V _{GS} = 10V, R _{GEN} = 25Ω	(Note 4, 5)	- - - - - - - -	585 235 107 322 166 149 89	775 355 224 655 342	pF pF ns ns ns ns nC
Crss Switching t _{d(on)} t _r t_d(off) t _f Q _{g(tot)} Q _{gs}	Reverse Charact Turn-On Turn-On Turn-Off Turn-Off Total Ga Gate to	Capacitance Transfer Capacitance eeristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge		$V_{DD} = 50V, I_D = 75A$ $V_{GS} = 10V, R_{GEN} = 25\Omega$ $V_{DS} = 50V, I_D = 75A$	(Note 4, 5)	- - - - -	585 235 107 322 166 149 89 37	775 355 224 655 342 309 116 -	pF pF ns ns ns nc nC
C_{rss} Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f $Q_{g(tot)}$	Reverse Charact Turn-On Turn-On Turn-Off Turn-Off Total Ga Gate to	Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V		^z = 1MHz V _{DD} = 50V, I _D = 75A V _{GS} = 10V, R _{GEN} = 25Ω	(Note 4, 5)	- - - - - - - -	585 235 107 322 166 149 89	775 355 224 655 342 309	pF pF ns ns ns ns nC
$\frac{C_{rss}}{Switching}$ $\frac{t_{d(on)}}{t_{f}}$ $\frac{t_{d(off)}}{Q_{g(tot)}}$ Q_{gs} Q_{gd}	Reverse Charact Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate to Gate to	Capacitance Transfer Capacitance eeristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge		$V_{DD} = 50V, I_D = 75A$ $V_{GS} = 10V, R_{GEN} = 25\Omega$ $V_{DS} = 50V, I_D = 75A$		- - - - - - - - - -	585 235 107 322 166 149 89 37	775 355 224 655 342 309 116 -	pF pF ns ns ns nc nC
C_{rss} Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f $Q_{g(tot)}$ Q_{gg} Q_{gd} Drain-Sou	Reverse Charact Turn-On Turn-Off Turn-Off Total Ga Gate to Gate to Cate to Maximur	Capacitance Transfer Capacitance Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge Ie Characteristics n Continuous Drain to So	urce Diode F	$F = 1 \text{MHz}$ $V_{DD} = 50 \text{V}, I_D = 75 \text{A}$ $V_{GS} = 10 \text{V}, R_{GEN} = 25 \Omega$ $V_{DS} = 50 \text{V}, I_D = 75 \text{A}$ $V_{GS} = 10 \text{V}$ Forward Current		- - - - - - - - - -	585 235 107 322 166 149 89 37	775 355 224 655 342 309 116 - - 75	pF pF ns ns ns nC nC nC
C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(tot)} Q _{gg} Q _{gd} Drain-Sou I _S I _{SM}	Reverse Charact Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Total Ga Gate to Gate to Cate to Cate to Maximur Maximur	Capacitance Transfer Capacitance Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge Ile Characteristics n Continuous Drain to Source	purce Diode Forw	$I_{DD} = 50V, I_D = 75A$ $V_{GS} = 10V, R_{GEN} = 25\Omega$ $V_{DS} = 50V, I_D = 75A$ $V_{GS} = 10V$ Forward Current ard Current		- - - - - - - - -	585 235 107 322 166 149 89 37 22	775 355 224 655 342 309 116 - - 75 300	pF pF ns ns ns nC nC nC A A
Crss Switching td(on) tr dd(off) tq Qg(tot) Qgg Qgd Drain-Sou Is IsM VSD	Reverse Charact Turn-On Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate to Gate to Cate to Maximur Maximur Drain to	Capacitance Transfer Capacitance Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge Ile Characteristics In Continuous Drain to Source Source Diode Forward Ve	purce Diode Forw	$F = 1 \text{MHz}$ $V_{DD} = 50 \text{V}, I_D = 75 \text{A}$ $V_{GS} = 10 \text{V}, R_{GEN} = 25 \Omega$ $V_{DS} = 50 \text{V}, I_D = 75 \text{A}$ $V_{GS} = 10 \text{V}$ Forward Current ard Current $V_{GS} = 0 \text{V}, I_{SD} = 75 \text{A}$		- - - - - - - - -	585 235 107 322 166 149 89 37 22 - - - -	775 355 224 655 342 309 116 - - 75	pF pF ns ns ns nC nC nC
$\frac{C_{rss}}{switching}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_{g(tot)}}{Q_{gs}}$ Q_{gd}	Reverse Charact Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Total Ga Gate to Gate to Gate to Maximur Maximur Drain to Reverse	Capacitance Transfer Capacitance Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge Ile Characteristics n Continuous Drain to Source	purce Diode Forwoltage	$I_{DD} = 50V, I_D = 75A$ $V_{GS} = 10V, R_{GEN} = 25\Omega$ $V_{DS} = 50V, I_D = 75A$ $V_{GS} = 10V$ Forward Current ard Current		- - - - - - - - - - - - -	585 235 107 322 166 149 89 37 22 -	775 355 224 655 342 309 116 - - 75 300	pF pF ns ns ns nC nC nC A A

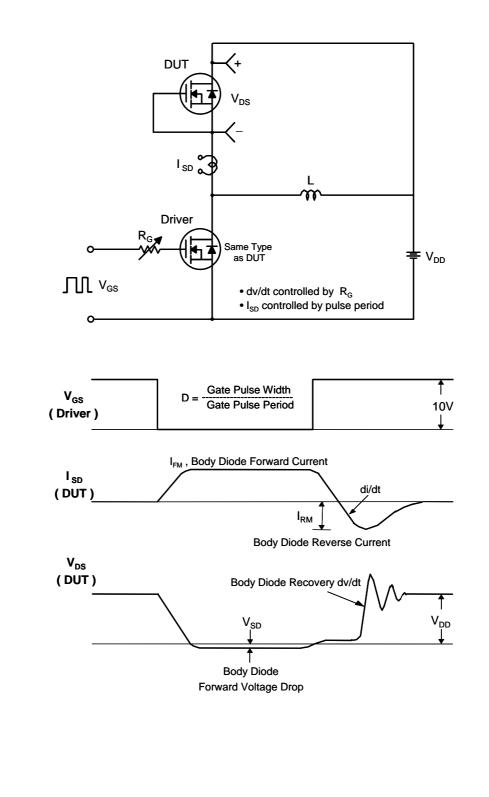


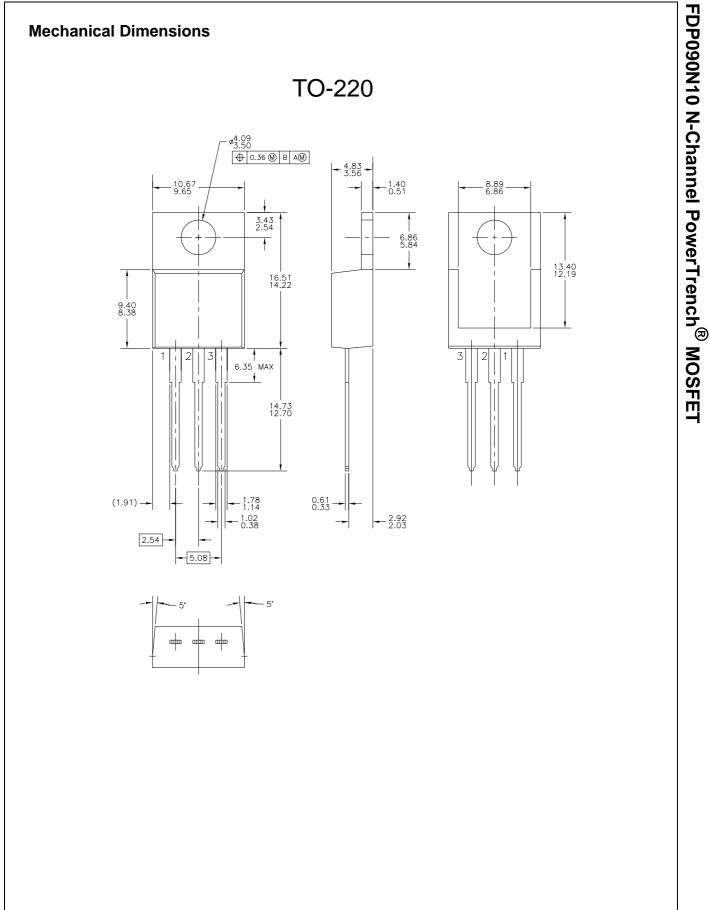





Figure 2. Transfer Characteristics








FDP090N10 N-Channel PowerTrench[®] MOSFET

FDP090N10 N-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] CROSSVOL7 [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] EZSWITCH [™] * Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FastvCore [™] FlashWriter [®]	FPS™ FRFET [®] Global Power Resource [™] Green FPS™ e-Series™ GTO™ <i>i-Lo™</i> IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC [®] OPTOPLANAR [®]	PDP-SPM [™] Power220 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -8	SupreMOS [™] SyncFET [™] SyncFET [™] General The Power Franchise [®] P franchise TinyBoost [™] TinyBoost [™] TinyBoost [™] TinyLogic [®] TINYOPTO [™] TinyPower [™] TinyPower [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] Ultra FRFET [™] UniFET [™] VCX [™]
---	---	--	--

* EZSWITCH[™] and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

PRODUCT STATUS DEFINITIONS