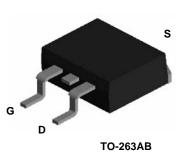
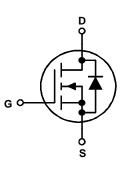


FDB3502 N-Channel Power Trench[®] MOSFET 75V, 14A, 47m Ω

Features

- Max $r_{DS(on)} = 47 m\Omega$ at $V_{GS} = 10V$, $I_D = 6A$
- 100% UIL Tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

Synchronous rectifier

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			75	V	
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25°C		14	A	
ID	-Continuous (Silicon limited)	T _C = 25°C		22		
	-Continuous	T _A = 25°C	(Note 1a)	6		
	-Pulsed			40		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	54	mJ	
P _D	Power Dissipation	T _C = 25°C		41		
	Power Dissipation $T_A = 25^{\circ}C$ (Note 1a)		3.1	W		
TJ, TSTG	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	C/vv

Package Marking and Ordering Information

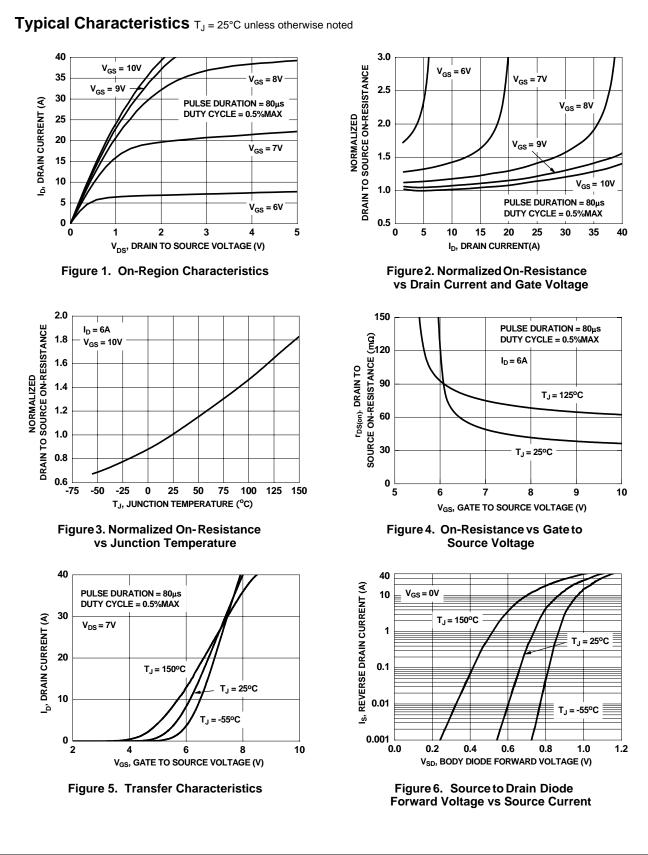
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB3502	FDB3502	TO-263AB	330mm	24mm	800 units

March 2008

FDB3502
N-Channel
Power T
[rench [®]
MOSFET

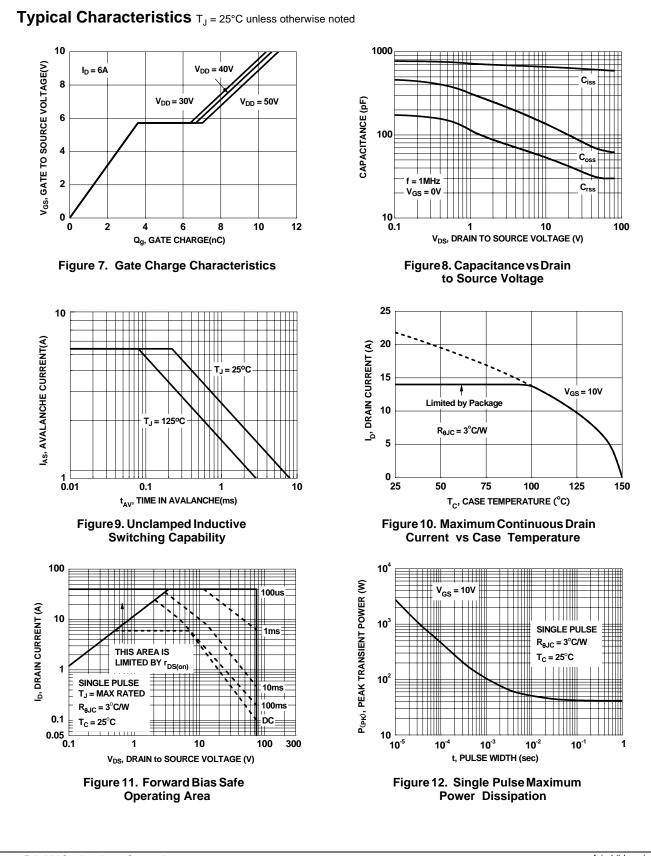
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	75			V	
ΔΒV _{DSS} ΔΤ _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		70		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 60V,$			1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2.5	3.8	4.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C		-10		mV/°C	
	Static Drain to Source On Resistance	$V_{GS} = 10V, I_{D} = 6A$		37	47		
r _{DS(on)}		$V_{GS} = 10V, I_D = 6A, T_J = 125^{\circ}C$		63	80	mΩ	
9fs	Forward Transconductance	$V_{DD} = 10V, I_D = 6A$		13		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			615	815	pF	
C _{oss}	Output Capacitance	V _{DS} = 40V, V _{GS} = 0V, f = 1MHz		75	105	pF	
C _{rss}	Reverse Transfer Capacitance			35	40	pF	
R _g	Gate Resistance	f = 1MHz		1.5		Ω	
	g Characteristics						
t _{d(on)}	Turn-On Delay Time			9	17	ns	
t _r	Rise Time	$V_{DD} = 40V, I_{D} = 6A,$		3	10	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		13	22	ns	
t _f	Fall Time			3	10	ns	
Q _q	Total Gate Charge at 10V			11	15	nC	
Q _{gs}	Gate to Source Charge	$V_{DD} = 40V$		4		nC	
Q _{gd}	Gate to Drain "Miller" Charge	I _D = 6A		3		nC	

V.	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 2.6A$	(Note 2)	0.78	1.2	V
V _{SD} Source to Drain Diode Forward Voltage		$V_{GS} = 0V, I_S = 6A$ (Note 2)		0.83	1.3	v
t _{rr}	Reverse Recovery Time	$I_{F} = 6A, di/dt = 100A/\mu s \frac{25 41}{17 32}$		25	41	ns
Q _{rr}	Reverse Recovery Charge			32	nC	


Notes:

1: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.

a. 40°C/W when mounted on a 1 in $^2\,\text{pad}$ of 2 oz copper b. 62.5°C/W when mounted on a minimum pad.


2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3: Starting $T_J = 25^{\circ}C$, L = 3mH, $I_{AS} = 6A$, $V_{DD} = 75V$, $V_{GS} = 10V$.

©2008 Fairchild Semiconductor Corporation FDB3502 Rev.C

www.fairchildsemi.com

©2008 Fairchild Semiconductor Corporation FDB3502 Rev.C

www.fairchildsemi.com

FDB3502 N-Channel Power Trench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACE $x^{\textcircled{B}}$ Build it Now TM CorePLUS TM CorePOWER TM <i>CROSSVOLT</i> TM CTL TM Current Transfer Logic TM EcoSPARK [®] EfficentMax TM EZSWITCH TM *	FPS TM F-PFS TM FRFET [®] Global Power Resource SM Green FPS TM e-Series TM GTOT ^M IntelliMAX TM ISOPLANAR TM MegaBuck TM MICROCOUPLER TM MicroFET TM MicroPak TM MillerDrive TM MotionMax TM Motion-SPM TM OPTOLOGIC [®] OPTOPLANAR [®]	SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™	The Power Franchise [®] pranchise TinyBoost TM TinyBouck TM TinyLogic [®] TINYOPTO TM TinyPOwer TM TinyPWMT ^M TinyPWMT ^M USerDes TM USerDes TM UHC [®] Ultra FRFET TM UniFET TM VCX TM VisualMax TM
FlashWriter [®] *	U		

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

FDB3502 Rev.C

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			