

Absolute Maximum (Note 3)	ngs(Note 2)	Recommended Operating Conditions (Note 3)
Supply Voltage (V_{DD})	-0.5 to $+18 \mathrm{~V}_{\text {DC }}$	DC Supply Voltage (V_{DD}) +3.0 to $+15 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage (V_{IN})	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$	Input Voltage ($\mathrm{V}_{\mathbb{I}}$) 0 to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}$
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Operating Temperature Range (T_{A}) $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (P_{D})		Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Dual-In-Line	700 mW	
Small Outine	500 mW	
Lead Temperature (T_{L}) (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	ditions for actual device operation. Note $3: \mathrm{V}_{\text {ss }}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	$55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 5.0 \\ 10 \\ 20 \end{gathered}$			$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} & \|\mathrm{O}\| \leq 1.0 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} & \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	HIGH Level Output Voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \quad \mid \mathrm{I} \mathrm{l} \leq 1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} & \end{array}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{array}{c\|} \hline 4.95 \\ 9.95 \\ 14.95 \end{array}$	$\begin{gathered} \hline 5.0 \\ 10.0 \\ 15.0 \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V
$\overline{\mathrm{V}} \mathrm{IL}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$			$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V
$\stackrel{\text { loL }}{ }$	LOW Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$		mA
$\overline{\mathrm{IOH}}$	HIGH Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.64 \\ -1.6 \\ -4.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline-0.51 \\ -1.3 \\ -3.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$		$\begin{aligned} & \hline-0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$		mA
$\overline{I_{N}}$	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$			$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} \hline-1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$
$\overline{\mathrm{l}} \mathrm{Oz}$	3-STATE Output Leakage Current	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 15 V		0.3			± 0.3		± 9	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 5)$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }_{\text {tPHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Clock to Q_{S}	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 300 \\ 125 \\ 95 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 600 \\ & 250 \\ & 190 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$, PLLH	Propagation Delay Clock to Q'	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 230 \\ & 110 \\ & 75 \end{aligned}$	$\begin{aligned} & \hline 460 \\ & 220 \\ & 150 \\ & \hline \end{aligned}$	ns
$\overline{t_{\text {PHL }}, t_{\text {PLH }}}$	Propagation Delay Clock to Parallel Out	$\begin{array}{\|l} \hline V_{D D}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & \hline 420 \\ & 195 \\ & 135 \end{aligned}$	$\begin{aligned} & \hline 840 \\ & 390 \\ & 270 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$, PLLH	Propagation Delay Strobe to Parallel Out	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 290 \\ & 145 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 580 \\ & 290 \\ & 200 \\ & \hline \end{aligned}$	ns
$\overline{t_{\text {PHZ }}}$	Propagation Delay HIGH Level to HIGH Impedance	$\begin{array}{\|l\|} \hline V_{D D}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PLZ }}$	Propagation Delay LOW Level to HIGH Impedance	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	ns
$\overline{t_{\text {PzH }}}$	Propagation Delay HIGH Impedance to HIGH Level	$\begin{array}{\|l\|} \hline V_{D D}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PZL }}$	Propagation Delay HIGH Impedance to LOW Level	$\begin{array}{\|l\|} \hline V_{D D}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$	Transition Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 100 \\ 50 \\ 40 \\ \hline \end{array}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
$\mathrm{t}_{\text {SU }}$	Set-Up Time Data to Clock	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 10 \end{aligned}$		ns
$\overline{t_{r}, t_{f}}$	Maximum Clock Rise and Fall Time	$\begin{array}{\|l\|} \hline V_{D D}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$			ms
$\mathrm{t}_{\text {PC }}$	Minimum Clock Pulse Width	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 200 \\ & 100 \\ & 83 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 100 \\ 50 \\ 40 \\ \hline \end{array}$		ns
$\mathrm{t}_{\text {PS }}$	Minimum Strobe Pulse Width	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 80 \\ 70 \\ \hline \end{array}$	$\begin{aligned} & \hline 100 \\ & 40 \\ & 35 \\ & \hline \end{aligned}$		ns
$\overline{f_{\text {max }}}$	Maximum Clock Frequency	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 8.0 \end{aligned}$		MHz
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input		5.0	7.5	pF
Note 5: AC Parameters are guaranteed by DC correlated testing.						

Timing Diagram

Test Circuits and Timing Diagrams for 3-STATE

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
