Data sheet acquired from Harris Semiconductor SCHS204J

High-Speed CMOS Logic
 Phase-Locked Loop with VCO

Features

- Operating Frequency Range
- Up to 18 MHz (Typ) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Minimum Center Frequency of 12 MHz at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- Choice of Three Phase Comparators
- EXCLUSIVE-OR
- Edge-Triggered JK Flip-Flop
- Edge-Triggered RS Flip-Flop
- Excellent VCO Frequency Linearity
- VCO-Inhibit Control for ON/OFF Keying and for Low Standby Power Consumption
- Minimal Frequency Drift
- Operating Power Supply Voltage Range
- VCO Section . 3 V to 6 V
- Digital Section 2 V to 6 V
- Fanout (Over Temperature Range)
- Standard Outputs \qquad 10 LSTTL Loads
- Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
- 2V to 6V Operation
- High Noise Immunity: $\mathbf{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (Max), $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ (Min)
- CMOS Input Compatibility, $\mathrm{I}_{\mathrm{I}} \leq 1 \mu \mathrm{~A}$ at VOL, VOH

Applications

- FM Modulation and Demodulation
- Frequency Synthesis and Multiplication
- Frequency Discrimination
- Tone Decoding
- Data Synchronization and Conditioning
- Voltage-to-Frequency Conversion
- Motor-Speed Control

Description

The 'HC4046A and 'HCT4046A are high-speed silicon-gate CMOS devices that are pin compatible with the CD4046B of the "4000B" series. They are specified in compliance with JEDEC standard number 7.

The 'HC4046A and 'HCT4046A are phase-locked-loop circuits that contain a linear voltage-controlled oscillator (VCO) and three different phase comparators (PC1, PC2 and PC3). A signal input and a comparator input are common to each comparator.
The signal input can be directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. A self-bias input circuit keeps small voltage signals within the linear region of the input amplifiers. With a passive low-pass filter, the 4046A forms a second-order loop PLL. The excellent VCO linearity is achieved by the use of linear op-amp techniques.

Ordering Information

PART NUMBER	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE
CD54HC4046AF3A	-55 to 125	16 Ld CERDIP
CD54HCT4046AF3A	-55 to 125	16 Ld CERDIP
CD74HC4046AE	-55 to 125	16 Ld PDIP
CD74HC4046AM	-55 to 125	16 Ld SOIC
CD74HC4046AMT	-55 to 125	16 Ld SOIC
CD74HC4046AM96	-55 to 125	16 Ld SOIC
CD74HC4046ANSR	-55 to 125	16 Ld SOP
CD74HC4046APWR	-55 to 125	16 Ld TSSOP
CD74HC4046APWT	-55 to 125	16 Ld TSSOP
CD74HCT4046AE	-55 to 125	16 Ld PDIP
CD74HCT4046AM	-55 to 125	16 Ld SOIC
CD74HCT4046AMT	-55 to 125	16 Ld SOIC
CD74HCT4046AM96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Pinout

Functional Diagram

Pin Descriptions

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	PCPout	Phase Comparator Pulse Output
2	PC1OUT	Phase Comparator 1 Output
3	COMPIN	Comparator Input
4	$\mathrm{VCO}_{\text {OUT }}$	VCO Output
5	INH	Inhibit Input
6	$\mathrm{C1}_{\mathrm{A}}$	Capacitor C1 Connection A
7	$\mathrm{C1}_{\text {B }}$	Capacitor C1 Connection B
8	GND	Ground (0V)
9	$\mathrm{VCO}_{\text {IN }}$	VCO Input
10	DEM ${ }_{\text {OUT }}$	Demodulator Output
11	R_{1}	Resistor R1 Connection
12	R_{2}	Resistor R2 Connection
13	PC2OUT	Phase Comparator 2 Output
14	SIGIN	Signal Input
15	$\mathrm{PC3}^{\text {OUT }}$	Phase Comparator 3 Output
16	V_{CC}	Positive Supply Voltage

FIGURE 1. LOGIC DIAGRAM

General Description

VCO

The VCO requires one external capacitor C 1 (between $\mathrm{C1}_{\mathrm{A}}$ and $\mathrm{C} 1_{\mathrm{B}}$) and one external resistor R 1 (between R_{1} and GND) or two external resistors R1 and R2 (between R_{1} and GND, and R_{2} and GND). Resistor R1 and capacitor C1 determine the frequency range of the VCO. Resistor R2 enables the VCO to have a frequency offset if required. See logic diagram, Figure 1.

The high input impedance of the VCO simplifies the design of low-pass filters by giving the designer a wide choice of resistor/capacitor ranges. In order not to load the low-pass filter, a demodulator output of the VCO input voltage is provided at pin 10 (DEM OUT). In contrast to conventional techniques where the DEM ${ }_{\text {OUT }}$ voltage is one threshold voltage lower than the VCO input voltage, here the DEMOUT voltage equals that of the VCO input. If DEM load resistor (R_{S}) should be connected from DEM GND; if unused, DEM OUt should be left open. The VCO output ($\mathrm{VCO}_{\mathrm{OUT}}$) can be connected directly to the comparator input $\left(\mathrm{COMP}_{\mathrm{IN}}\right)$, or connected via a frequencydivider. The VCO output signal has a specified duty factor of 50%. A LOW level at the inhibit input (INH) enables the VCO and demodulator, while a HIGH level turns both off to minimize standby power consumption.

Phase Comparators

The signal input (SIG ${ }_{\mathrm{IN}}$) can be directly coupled to the selfbiasing amplifier at pin 14, provided that the signal swing is between the standard HC family input logic levels. Capacitive coupling is required for signals with smaller swings.

Phase Comparator 1 (PC1)

This is an Exclusive-OR network. The signal and comparator input frequencies (f_{i}) must have a 50% duty factor to obtain the maximum locking range. The transfer characteristic of PC1, assuming ripple ($f_{r}=2 f_{i}$) is suppressed, is:
$\mathrm{V}_{\text {DEMOUT }}=\left(\mathrm{V}_{\mathrm{CC}} / \pi\right)\left(\phi \mathrm{SIG}_{\mathrm{IN}}-\phi C O M P_{\text {IN }}\right)$ where $\mathrm{V}_{\text {DEMOUT }}$ is the demodulator output at pin 10; $\mathrm{V}_{\text {DEMOUT }}=\mathrm{V}_{\text {PC1OUT }}$ (via low-pass filter).
The average output voltage from PC1, fed to the VCO input via the low-pass filter and seen at the demodulator output at pin 10 ($\mathrm{V}_{\text {DEMOUT }}$), is the resultant of the phase differences of signals ($\mathrm{SIG}_{\mathrm{IN}}$) and the comparator input (COMP ${ }_{\mathrm{IN}}$) as shown in Figure 2. The average of $\mathrm{V}_{\mathrm{DEM}}$ is equal to $1 / 2$ V_{CC} when there is no signal or noise at $\mathrm{SIG}_{\operatorname{IN}}$, and with this input the VCO oscillates at the center frequency (f_{O}). Typical waveforms for the PC1 loop locked at f_{O} are shown in Figure 3.

The frequency capture range $\left(2 \mathrm{f}_{\mathrm{C}}\right)$ is defined as the frequency range of input signals on which the PLL will lock if it was initially out-of-lock. The frequency lock range (2fL) is defined as the frequency range of input signals on which the loop will stay locked if it was initially in lock. The capture range is smaller or equal to the lock range.

With PC1, the capture range depends on the low-pass filter characteristics and can be made as large as the lock range. This configuration retains lock behavior even with very noisy input signals. Typical of this type of phase comparator is that it can lock to input frequencies close to the harmonics of the VCO center frequency.

FIGURE 2. PHASE COMPARATOR 1: AVERAGE OUTPUT VOLTAGE vs INPUT PHASE DIFFERENCE:
$\mathrm{V}_{\text {DEMOUT }}=\mathrm{V}_{\text {PC1OUT }}=\left(\mathrm{V}_{\text {CC }} / \pi\right)\left(\phi\right.$ SIG $_{\text {IN }}-$ ϕ COMP $\left._{\text {IN }}\right) ; \phi_{\text {DEMOUT }}=\left(\phi\right.$ SIG $_{\text {IN }}-\phi$ COMP $\left._{\text {IN }}\right)$

FIGURE 3. TYPICAL WAVEFORMS FOR PLL USING PHASE COMPARATOR 1, LOOP LOCKED AT f_{0}

Phase Comparator 2 (PC2)

This is a positive edge-triggered phase and frequency detector. When the PLL is using this comparator, the loop is controlled by positive signal transitions and the duty factors of $\mathrm{SIG}_{\mathrm{IN}}$ and COMP ${ }_{\mathrm{IN}}$ are not important. PC2 comprises two D-type flip-flops, control-gating and a threestate output stage. The circuit functions as an up-down counter (Figure 1) where $\mathrm{SIG}_{\mathbb{N}}$ causes an up-count and COMP $_{\text {IN }}$ a down-count. The transfer function of PC 2 , assuming ripple ($f_{r}=f_{i}$) is suppressed, is:
$\mathrm{V}_{\text {DEMOUT }}=\left(\mathrm{V}_{\mathrm{CC}} / 4 \pi\right) \quad\left(\phi \mathrm{SIG}_{\mathrm{IN}}-\phi C O M P_{I N}\right)$ where $V_{\text {DEMOUT }}$ is the demodulator output at pin 10; $V_{\text {DEMOUT }}=V_{\text {PC2OUT }}$ (via low-pass filter).
The average output voltage from PC , fed to the VCO via the low-pass filter and seen at the demodulator output at pin 10 ($V_{\text {DEMOUT }}$), is the resultant of the phase differences of $\mathrm{SIG}_{\mathrm{IN}}$ and COMPIN as shown in Figure 4. Typical waveforms for the PC2 loop locked at f_{0} are shown in Figure 5.

FIGURE 4. PHASE COMPARATOR 2: AVERAGE OUTPUT VOLTAGE vs INPUT PHASE DIFFERENCE:
$V_{\text {DEMOUT }}=\mathrm{V}_{\text {PC2OUT }}$
$=\left(\mathrm{V}_{\mathrm{CC}} / 4 \pi\right)\left(\phi \mathrm{SIG}_{\text {IN }}-\phi\right.$ COMP $\left._{\text {IN }}\right)$;
ϕ DEMOUT $=\left(\phi\right.$ SIG $_{\text {IN }}-\phi$ COMPIN $)$

FIGURE 5. TYPICAL WAVEFORMS FOR PLL USING PHASE COMPARATOR 2, LOOP LOCKED AT f_{o}

When the frequencies of $\mathrm{SIG}_{I N}$ and COMP $_{\text {IN }}$ are equal but the phase of $\mathrm{SIG}_{I \mathrm{~N}}$ leads that of $\mathrm{COMP}_{\mathrm{IN}}$, the p -type output driver at PC2 Out is held "ON" for a time corresponding to the phase difference (фDEMOUT). When the phase of SIG $_{\text {IN }}$ lags that of COMP ${ }_{\text {IN }}$, the n-type driver is held " ON ".
When the frequency of $\mathrm{SIG}_{\mathrm{IN}}$ is higher than that of COMP ${ }_{\text {IN }}$, the p-type output driver is held "ON" for most of the input signal cycle time, and for the remainder of the cycle both n - and p -type drivers are "OFF" (three-state). If the SIG $_{\text {IN }}$ frequency is lower than the COMP $_{\text {IN }}$ frequency, then it is the n-type driver that is held "ON" for most of the cycle. Subsequently, the voltage at the capacitor (C2) of the low-pass filter connected to PC2OUT varies until the signal and comparator inputs are equal in both phase and
frequency. At this stable point the voltage on C2 remains constant as the PC2 output is in three-state and the VCO input at pin 9 is a high impedance. Also in this condition, the signal at the phase comparator pulse output (PCPOUT) is a HIGH level and so can be used for indicating a locked condition.

Thus, for PC2, no phase difference exists between $\mathrm{SIG}_{\mathbb{N}}$ and $\mathrm{COMP}_{\mathrm{IN}}$ over the full frequency range of the VCO. Moreover, the power dissipation due to the low-pass filter is reduced because both p - and n -type drivers are "OFF" for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range and is independent of the low-pass filter. With no signal present at $\mathrm{SIG}_{\mathbb{N}}$, the VCO adjusts, via PC2, to its lowest frequency.

Phase Comparator 3 (PC3)

This is a positive edge-triggered sequential phase detector using an RS-type flip-flop. When the PLL is using this comparator, the loop is controlled by positive signal transitions and the duty factors of $\mathrm{SIG}_{I N}$ and $\mathrm{COMP}_{I N}$ are not important. The transfer characteristic of PC3, assuming ripple ($f_{r}=f_{i}$) is suppressed, is:
$V_{\text {DEMOUT }}=\left(\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{p}\right)$ (fSIGIN $\left.-\mathrm{fCOMP}_{\mathrm{IN}}\right)$ where $\mathrm{V}_{\text {DEMOUT }}$ is the demodulator output at pin 10 ; $\mathrm{V}_{\text {DEMOUT }}$ $=V_{\text {PC3OUT }}$ (via low-pass filter).
The average output from PC3, fed to the VCO via the lowpass filter and seen at the demodulator at pin 10 ($\mathrm{V}_{\text {DEMOUT }}$), is the resultant of the phase differences of $S_{I G}{ }_{I N}$ and $C O M P ~_{I N}$ as shown in Figure 6. Typical waveforms for the PC3 loop locked at f_{0} are shown in Figure 7.

The phase-to-output response characteristic of PC3 (Figure 6) differs from that of PC2 in that the phase angle between $\mathrm{SIG}_{\mathrm{IN}}$ and COMP ${ }_{\text {IN }}$ varies between 0° and 360° and is 180° at the center frequency. Also PC3 gives a greater voltage swing than PC2 for input phase differences but as aconsequence the ripple content of the VCO input signal is higher. With no signal present at $\mathrm{SIG}_{\mathrm{IN}}$, the VCO adjusts, via PC3, to its highest frequency.

The only difference between the HC and HCT versions is the input level specification of the INH input. This input disables the VCO section. The comparator's sections are identical, so that there is no difference in the $\mathrm{SIG}_{\mathbb{N}}\left(\right.$ pin 14) or $\mathrm{COMP}_{\mathrm{IN}}$ (pin 3) inputs between the HC and the HCT versions.

FIGURE 6. PHASE COMPARATOR 3: AVERAGE OUTPUT VOLTAGE vs INPUT PHASE DIFFERENCE:
$\mathrm{V}_{\text {DEMOUT }}=\mathrm{V}_{\text {PC3OUT }}$ $=\left(\mathrm{V}_{\mathrm{CC}} / 2 \pi\right)\left(\phi \mathrm{SIG}_{\text {IN }}-\phi\right.$ COMP $\left._{\text {IN }}\right)$;
ϕ DEMOUT $=\left(\phi\right.$ SIG $_{\text {IN }}-\phi$ COMPIN $)$

FIGURE 7. TYPICAL WAVEFORMS FOR PLL USING PHASE COMPARATOR 3, LOOP LOCKED AT f_{o}

```
Absolute Maximum Ratings
DC Supply Voltage, \(\mathrm{V}_{\text {CC }} \ldots \ldots\). . . . . . . . . . . . . . . . . . . . -0.5 V to 7 V
DC Input Diode Current, \(\mathrm{I}_{\mathrm{K}}\)
    For \(\mathrm{V}_{1}<-0.5 \mathrm{~V}\) or \(\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\)
DC Output Diode Current, IOK
    For \(\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}\) or \(\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\)
DC Drain Current, per Output, Io
    For \(-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\). . . . . . . . . . . . . . . . . . . . . . . . \(\pm 25 \mathrm{~mA}\)
DC Output Source or Sink Current per Output Pin, Io
    For \(\mathrm{V}_{\mathrm{O}}>-0.5 \mathrm{~V}\) or \(\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\)
    \(\pm 25 \mathrm{~mA}\)
```


Thermal Information

Package Thermal Impedance, $\theta_{\text {JA }}$ (see Note 1):

	C/W
M (SOIC) Package.	C/W
NS (SOP) Package	$64^{\circ} \mathrm{C} / \mathrm{W}$
PW (TSSOP) Package.	$108^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Tempera	$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)	$\ldots . . .300^{\circ} \mathrm{C}$

Operating Conditions

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & V_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	$10(\mathrm{~mA})$		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES												
VCO SECTION												
INH High Level Input Voltage	V_{IH}	-	-	3	2.1	-	-	2.1	-	2.1	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
INH Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	3	-	-	0.9	-	0.9	-	0.9	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
$\mathrm{VCO}_{\text {Out }}$ High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or $\mathrm{V}_{\text {IL }}$	-0.02	3	2.9	-	-	2.9	-	2.9	-	V
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
VCOOUT High Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
VCO Out Low Level Output Voltage CMOS Loads	$\mathrm{V}_{\text {OL }}$	V_{IH} or V_{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
VCOOUT Low Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
C1A, C1B Low Level Output Voltage (Test Purposes Only)	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	4	4.5	-	-	0.40	-	0.47	-	0.54	V
			5.2	6	-	-	0.40	-	0.47	-	0.54	V

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A
DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		V_{cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ тO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
INH VCOIN ${ }_{\text {IN }}$ Input Leakage Current	I	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \text { or } \\ \mathrm{GND} \end{gathered}$	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
R1 Range (Note 2)	-	-	-	4.5	3	-	300	-	-	-	-	k Ω
R2 Range (Note 2)	-	-	-	4.5	3	-	300	-	-	-	-	k Ω
C1 Capacitance Range	-	-	-	3	-	-	$\begin{gathered} \text { No } \\ \text { Limit } \end{gathered}$	-	-	-	-	pF
				4.5	-	-		-	-	-	-	pF
				6	-	-		-	-	-	-	pF
$\mathrm{VCO}_{\text {IN }}$ Operating Voltage Range	-	Over the range specified for R1 for Linearity See Figure 10, and 34-37 (Note 3)		3	1.1	-	1.9	-	-	-	-	V
				4.5	1.1	-	3.2	-	-	-	-	V
				6	1.1	-	4.6	-	-	-	-	V
PHASE COMPARATOR SECTION												
$\mathrm{SIG}_{\mathrm{IN}}, \mathrm{COMP}_{\text {IN }}$ DC Coupled High-Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
SIG $_{\text {IN }}$, COMP $_{\text {IN }}$ DC Coupled Low-Level Input Voltage	VIL	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
PCP ${ }_{\text {OUT }}$, PCn OUT High-Level Output Voltage CMOS Loads	V_{OH}	V_{IL} or V_{IH}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
				4.5	4.4	-	-	4.4	-	4.4	-	V
				6	5.9	-	-	5.9	-	5.9	-	V
PCP ${ }_{\text {OUt, }}$ PCn OUT High-Level Output Voltage TTL Loads	V_{OH}	V_{IL} or $\mathrm{V}_{\text {IH }}$	-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
PCPout, PCn OUT Low-Level Output Voltage CMOS Loads	V_{OL}	V_{IL} or V_{IH}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
				4.5	-	-	0.1	-	0.1	-	0.1	V
				6	-	-	0.1	-	0.1	-	0.1	V
PCP out, PCn OUT Low-Level Output Voltage TTL Loads	$\mathrm{V}_{\text {OL }}$	V_{IL} or $\mathrm{V}_{\text {IH }}$	4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
SIG $_{\text {IN }}$, COMP $_{\text {IN }}$ Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	2	-	-	± 3	-	± 4	-	± 5	$\mu \mathrm{A}$
				3	-	-	± 7	-	± 9	-	± 11	$\mu \mathrm{A}$
				4.5	-	-	± 18	-	± 23	-	± 29	$\mu \mathrm{A}$
				6	-	-	± 30	-	± 38	-	± 45	$\mu \mathrm{A}$
PC2OUT Three-State Off-State Current	Ioz	V_{IL} or V_{IH}	-	6	-	-	± 0.5	-	± 5	-	± 10	$\mu \mathrm{A}$
SIG $_{\text {IN }}$, COMP $_{\text {IN }}$ Input Resistance	R_{1}	V_{1} at Self-Bias Operation Point: $\Delta \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V},$ See Figure 10		3	-	800	-	-	-	-	-	$\mathrm{k} \Omega$
				4.5	-	250	-	-	-	-	-	$\mathrm{k} \Omega$
				6	-	150	-	-	-	-	-	$\mathrm{k} \Omega$
DEMODULATOR SECTION												
Resistor Range	R_{S}	at $\mathrm{R}_{\mathrm{S}}>300 \mathrm{k} \Omega$ Leakage Current Can Influence $V_{\text {DEMOUT }}$		3	50	-	300	-	-	-	-	$\mathrm{k} \Omega$
				4.5	50	-	300	-	-	-	-	k Ω
				6	50	-	300	-	-	-	-	k Ω

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A
DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		V_{Cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	$10(m A)$		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Offset Voltage VCOIN to $V_{D E M}$	V ${ }_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{VCO}} \mathrm{IN}= \\ & \frac{\mathrm{VCC}}{2} \end{aligned}$ Values Taken Over R_{S} Range See Figure 23		3	-	± 30	-	-	-	-	-	mV
				4.5	-	± 20	-	-	-	-	-	mV
				6	-	± 10	-	-	-	-	-	mV
Dynamic Output Resistance at DEMOUT	R_{D}	$\begin{aligned} & \mathrm{V}_{\text {DEMOUT }}= \\ & \frac{\mathrm{V}_{\mathrm{CC}}}{2} \end{aligned}$		3	-	25	-	-	-	-	-	Ω
				4.5	-	25	-	-	-	-	-	Ω
				6	-	25	-	-	-	-	-	Ω
Quiescent Device Current	${ }^{\text {ICC }}$	Pins 3, 5 at V_{CC} GND, I_{1} and 14 exclu	and 14 in 9 at Pins 3 to be ded	6	-	-	8	-	80	-	160	$\mu \mathrm{A}$
HCT TYPES												
VCO SECTION												
INH High Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	-	2	-	2	-	V
INH Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	-	0.8	-	0.8	-	0.8	V
VCO Out High Level Output Voltage CMOS Loads	V_{OH}	$\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
VCO Out High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
$\mathrm{VCO}_{\text {OUT }}$ Low Level Output Voltage CMOS Loads	V_{OL}	$\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
VCOOUT Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
C1A, C1B Low Level Output Voltage (Test Purposes Only)	V_{OL}	V_{IH} or $\mathrm{V}_{\text {IL }}$	4	4.5	-	-	0.40	-	0.47	-	0.54	V
INH VCO ${ }_{\text {IN }}$ Input Leakage Current	1	Any Voltage Between V_{CC} and GND		5.5	-		± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
R1 Range (Note 2)	-	-	-	4.5	3	-	300	-	-	-	-	$\mathrm{k} \Omega$
R2 Range (Note 2)	-	-	-	4.5	3	-	300	-	-	-	-	$k \Omega$
C1 Capacitance Range	-	-	-	4.5	0	-	$\begin{gathered} \text { No } \\ \text { Limit } \end{gathered}$	-	-	-	-	pF
$\mathrm{VCO}_{\text {IN }}$ Operating Voltage Range	-	Over the specified f Linearity S 10, and (Note	range or R1 for ee Figure 34-37 3)	4.5	1.1	-	3.2	-	-	-	-	V
PHASE COMPARATOR SECTION												
$\mathrm{SIG}_{\mathrm{IN}}, \mathrm{COMP}_{\mathrm{IN}}$ DC Coupled High-Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	-	2	-	2	-	V

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A
DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		v_{Cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	$10(\mathrm{~mA})$		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
SIG $_{\text {IN }}$, COMP $_{\text {IN }}$ DC Coupled Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	-	0.8	-	0.8	-	0.8	V
PCP out, PCn OUT High-Level Output Voltage CMOS Loads	V_{OH}	$\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	4.5	4.4	-	-	4.4	-	4.4	-	V
PCP out, PCn OUT High-Level Output Voltage TTL Loads	V_{OH}	V_{IL} or V_{IH}	-	4.5	3.98	-	-	3.84	-	3.7	-	V
PCP out, PCn OUT Low-Level Output Voltage CMOS Loads	$\mathrm{V}_{\text {OL }}$	V_{IL} or V_{IH}	-	4.5	-	-	0.1	-	0.1	-	0.1	V
PCP out, PCn OUT Low-Level Output Voltage TTL Loads	V_{OL}	V_{IL} or $\mathrm{V}_{\text {IH }}$	-	4.5	-	-	0.26	-	0.33	-	0.4	V
SIG $_{\text {IN }}$, COMP $_{\text {IN }}$ Input Leakage Current	1	Any Voltage Between $V_{C C}$ and GND	-	5.5	-	-	± 30		± 38		± 45	$\mu \mathrm{A}$
PC2OUT Three-State Off-State Current	loz	V_{IL} or V_{IH}	-	5.5	-	-	± 0.5	± 5	-	-	± 10	$\mu \mathrm{A}$
SIG $_{\text {IN }}$, COMP $_{\text {IN }}$ Input Resistance	R_{1}	V_{1} at Se Operation $\Delta V_{I}=0$ See Fig	If-Bias n Point: 0.5 V , ure 10	4.5	-	250	-	-	-	-	-	k Ω
DEMODULATOR SECTION												
Resistor Range	R_{S}	at $\mathrm{R}_{\mathrm{S}}>$ Leakage Can Infl $V_{\text {DEM }}$	$300 \mathrm{k} \Omega$ Current luence OUT	4.5	5	-	300	-	-	-	-	k Ω
Offset Voltage $\mathrm{VCO}_{\text {IN }}$ to $\mathrm{V}_{\mathrm{DEM}}$	$\mathrm{V}_{\text {OFF }}$	$\begin{aligned} & V_{V_{I}}=V_{V C} \\ & \frac{V_{C C}}{2} \\ & \text { Values tak } \\ & R_{S} \text { Ra } \\ & \text { See Figu } \end{aligned}$	IN = ken over ange ure 23	4.5	-	± 20	-	-	-	-	-	mV
Dynamic Output Resistance at DEM	R_{D}	$\begin{aligned} & \mathrm{V}_{\mathrm{DEM}} \\ & \frac{\mathrm{~V}_{\mathrm{CC}}}{2} \end{aligned}$	OUT =	4.5	-	25	-	-	-	-	-	Ω
Quiescent Device Current	${ }^{\text {ICC }}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	5.5	-	-	8	-	80	-	160	$\mu \mathrm{A}$
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	${ }^{\Delta l}{ }_{C C}$ (Note 4)	V_{CC} -2.1 Excluding Pin 5	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	100	360	-	450	-	490	$\mu \mathrm{A}$

NOTES:

2. The value for R1 and R2 in parallel should exceed $2.7 \mathrm{k} \Omega$.
3. The maximum operating voltage can be as high as $\mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}$, however, this may result in an increased offset voltage.
4. For dual-supply systems theoretical worst case $\left(\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)$ specification is 1.8 mA .

HCT Input Loading Table

INPUT	UNIT LOADS
INH	1

NOTE: Unit load is $\Delta \mathrm{I}_{\mathrm{CC}}$ limit specific in DC Electrical Specifications Table, e.g., $360 \mu \mathrm{~A}$ max. at $25^{\circ} \mathrm{C}$.

Switching Specifications $C_{L}=50 p F$, Input $t_{r}, t_{f}=6 n s$

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A

Switching Specifications $C_{L}=50 \mathrm{pF}$, Input $t_{r}, t_{f}=6 \mathrm{~ns}$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Center Frequency		$\begin{gathered} \hline \mathrm{C}_{1}=40 \mathrm{pF} \\ \mathrm{R}_{1}=3 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \\ \mathrm{VCO} \mathrm{IN}= \\ \mathrm{VCC} / 2 \end{gathered}$	3	7	10	-	-	-	-	-	MHz
			4.5	12	17	-	-	-	-	-	MHz
			6	14	21	-	-	-	-	-	MHz
Frequency Linearity	$\Delta^{\text {f }} \mathrm{VCO}$	$\begin{gathered} \mathrm{R}_{1}=100 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \\ \mathrm{C}_{1}=100 \mathrm{pF} \end{gathered}$	3	-	0.4	-	-	-	-	-	\%
			4.5	-	0.4	-	-	-	-	-	\%
			6	-	0.4	-	-	-	-	-	\%
Offset Frequency		$\begin{gathered} \mathrm{R}_{2}=220 \mathrm{k} \Omega \\ \mathrm{C}_{1}=1 \mathrm{nF} \end{gathered}$	3	-	400	-	-	-	-	-	kHz
			4.5	-	400	-	-	-	-	-	kHz
			6	-	400	-	-	-	-	-	kHz
DEMODULATOR SECTION											
$\mathrm{V}_{\text {OUT }} \mathrm{V}_{\text {S }} \mathrm{f}_{\text {IN }}$		$\begin{gathered} \mathrm{R}_{1}=100 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \\ \mathrm{C}_{1}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{3}=100 \mathrm{k} \Omega \\ \mathrm{C}_{2}=100 \mathrm{pF} \end{gathered}$	3	-	-	-	-	-	-	-	mV/kHz
			4.5	-	330	-	-	-	-	-	mV/kHz
			6	-	-	-	-	-	-	-	$\mathrm{mV} / \mathrm{kHz}$

HCT TYPES

PHASE COMPARATOR SECTION

Propagation Delay $\mathrm{SIG}_{\text {IN }}$, COMP $_{\text {IN }}$ to $\mathrm{PCl}_{\text {OUT }}$	${ }^{\text {tPHL, }}$ tPLH	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	45	-	56	-	68	ns
$\mathrm{SIG}_{\text {IN }}, \mathrm{COMP}_{\text {IN }}$ to PCPOUT	tphL, tpli	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	68	-	85	-	102	ns
$\mathrm{SIG}_{\text {IN }}, \mathrm{COMP}_{\text {IN }}$ to PC3OUT	tPHL, tplh	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	58	-	73		87	ns
Output Transition Time	$\mathrm{t}_{\text {TLH, }} \mathrm{t}_{\text {THL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	15	-	19		22	ns
Output Enable Time, SIG $_{\mathrm{IN}}$, COMPIN to PC2OUT	$\mathrm{t}_{\text {PZH, }}$ tPZL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	60	-	75		90	pF
Output Disable Time, SIG ${ }_{\mathrm{N}}$, COMPIN to $\mathrm{PCZ}_{\text {OUT }}$	$\mathrm{t}_{\text {PHZ }}$ tPLZ	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	68	-	85		102	pF
AC Coupled Input Sensitivity (P-P) at SIG $_{\text {IN }}$ or COMPI		$\mathrm{V}_{1(\mathrm{P}-\mathrm{P})}$	4.5	-	15	-	-	-		-	mV
VCO SECTION											
Frequency Stability with Temperature Change	$\frac{\Delta f}{\bar{\Delta} \bar{T}}$	$\begin{gathered} \mathrm{R}_{1}=100 \mathrm{k} \Omega, \\ \mathrm{R}_{2}=\infty \end{gathered}$	4.5	-	0.11	-	-	-		-	\%/ ${ }^{\circ} \mathrm{C}$
Maximum Frequency	$\mathrm{f}_{\text {MAX }}$	$\begin{gathered} \mathrm{C}_{1}=50 \mathrm{pF} \\ \mathrm{R}_{1}=3.5 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \end{gathered}$	4.5	-	24	-	-	-	-	-	MHz
		$\begin{gathered} \mathrm{C}_{1}=0 \mathrm{pF} \\ \mathrm{R}_{1}=9.1 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \end{gathered}$	4.5	-	38	-	-	-	-	-	MHz
Center Frequency		$\begin{gathered} \mathrm{C}_{1}=40 \mathrm{pF} \\ \mathrm{R}_{1}=3 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \\ \mathrm{VCO} \mathrm{IN}= \\ \mathrm{VCC} / 2 \end{gathered}$	4.5	12	17	-	-	-	-	-	MHz
Frequency Linearity	${ }^{\Delta f} \mathrm{VCO}$	$\begin{gathered} \mathrm{R}_{1}=100 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \\ \mathrm{C}_{1}=100 \mathrm{pF} \end{gathered}$	4.5	-	0.4	-	-	-	-	-	\%

Switching Specifications $C_{L}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=6$ ns (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Offset Frequency		$\begin{gathered} \mathrm{R}_{2}=220 \mathrm{k} \Omega \\ \mathrm{C}_{1}=1 \mathrm{nF} \end{gathered}$	4.5	-	400	-	-	-	-	-	kHz
DEMODULATOR SECTION											
$\mathrm{V}_{\text {OUT }} \mathrm{V}_{\text {S }} \mathrm{f}_{\text {IN }}$		$\begin{gathered} \mathrm{R}_{1}=100 \mathrm{k} \Omega \\ \mathrm{R}_{2}=\infty \\ \mathrm{C}_{1}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{3}=100 \mathrm{k} \Omega \\ \mathrm{C}_{2}=100 \mathrm{pF} \end{gathered}$	4.5	-	330	-	-	-	-	-	mV/kHz

Test Circuits and Waveforms

FIGURE 8. INPUT TO OUTPUT PROPAGATION DELAYS AND OUTPUT TRANSITION TIMES

Typical Performance Curves

FIGURE 10. TYPICAL INPUT RESISTANCE CURVE AT SIGIN, COMPIN

FIGURE 9. THREE STATE ENABLE AND DISABLE TIMES FOR PC2out

Typical Performance Curves (Continued)

FIGURE 11. HC4046A TYPICAL CENTER FREQUENCY vs R1, C1 $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$

FIGURE 13. HC4046A TYPICAL CENTER FREQUENCY vs R1, C1 ($\left.\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{R} 2=\mathrm{OPEN}\right)$

FIGURE 15. HCT4046A TYPICAL CENTER FREQUENCY vs R1, C1 ($\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$)

FIGURE 12. HC4046A TYPICAL CENTER FREQUENCY vs R1, $\mathrm{C} 1\left(\mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}\right)$

FIGURE 14. HCT4046A TYPICAL CENTER FREQUENCY vs R1, C1 ($\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$)

FIGURE 16. HC4046A TYPICAL VCO FREQUENCY vs VCO IN $(R 1=1.5 \mathrm{M} \Omega, C 1=50 \mathrm{pF})$

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A
Typical Performance Curves (Continued)

FIGURE 17. HC4046A TYPICAL VCO FREQUENCY vs VCO ${ }_{I N}$ $(R 1=1.5 \mathrm{M} \Omega, C 1=0.1 \mu \mathrm{~F})$

FIGURE 19. HC4046A TYPICAL VCO FREQUENCY vs VCO ${ }_{\text {IN }}$ $(R 1=5.6 k \Omega, C 1=0.1 \mu F)$

FIGURE 21. HC4046A TYPICAL VCO FREQUENCY vs VCO ${ }_{\text {IN }}$ (R1 = 5.6k $\Omega, \mathrm{C} 1=50 \mathrm{pF})$

FIGURE 18. HC4046A TYPICAL VCO FREQUENCY vs VCO ${ }_{\text {IN }}$ (R1 = 150k $\Omega, C 1=0.1 \mu F)$

FIGURE 20. HC4046A TYPICAL VCO FREQUENCY vs VCO ${ }_{\text {IN }}$ $(R 1=150 \mathrm{k} \Omega, \mathrm{C} 1=50 \mathrm{pF})$

FIGURE 22. HC4046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1 ($\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$)

Typical Performance Curves (Continued)

FIGURE 23. HC4046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1 $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$

FIGURE 25. HCT4046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1

FIGURE 24. HC4046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF $\mathrm{R} 1\left(\mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}\right)$

FIGURE 26. HC4046A TYPICAL CHANGE IN VCO FREQUENCY vs AMBIENT TEMPERATURE AS A FUNCTION OF R1 $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$

Typical Performance Curves (Continued)

FIGURE 27. HC4046A OFFSET FREQUENCY vs R2, C1 $\left(\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}\right)$

FIGURE 29. HCT4046A OFFSET FREQUENCY vs R2, C1 $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$

FIGURE 31. HC4046A $\mathrm{f}_{\text {MIN }} / \mathrm{f}_{\text {MAX }}$ vs $\mathrm{R} 2 / \mathrm{R} 1\left(\mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, 4.5 \mathrm{~V}, 6 \mathrm{~V}\right)$

FIGURE 28. HC4046A OFFSET FREQUENCY vs R2, C1
($\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$)

FIGURE 30. HC4046A AND HCT4046A OFFSET FREQUENCY vs $\mathrm{R} 2, \mathrm{C} 1\left(\mathrm{~V}_{\mathrm{Cc}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}=5.5 \mathrm{~V}\right)$

FIGURE 32. HCT4046A $\mathrm{f}_{\mathrm{MAX}} / \mathrm{f}_{\text {MIN }}$ vs R2/R1 ($\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ TO 5.5 V)

Typical Performance Curves (Continued)

FIGURE 33. DEFINITION OF VCO FREQUENCY LINEARITY

FIGURE 35. HC4046A VCO LINEARITY vs $\mathrm{R} 1\left(\mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}\right)$

FIGURE 37. HCT4046A VCO LINEARITY vs $\mathrm{R} 1\left(\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$)

FIGURE 34. HC4046A VCO LINEARITY vs $\mathrm{R} 1\left(\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$

FIGURE 36. HC4046A VCO LINEARITY vs R1 ($\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$)

FIGURE 38. HC4046A DEMODULATOR POWER DISSIPATION vs RS (TYP) $\left(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 4.5 \mathrm{~V}, 6 \mathrm{~V}\right)$

Typical Performance Curves (Continued)

FIGURE 39. HCT4046A DEMODULATOR POWER DISSIPATION vs RS (TYP) ($\left.\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 4.5 \mathrm{~V}, 6 \mathrm{~V}\right)$

FIGURE 41. HCT4046A VCO POWER DISSIPATION vs R2
(C1 = 50pF, $1 \mu \mathrm{~F}$)

FIGURE 40. HC4046A VCO POWER DISSIPATION vs R1 $(C 1=50 p F, 1 \mu F)$

FIGURE 42. HCT4046A VCO POWER DISSIPATION vs R1 (C1 = 50pF, $1 \mu \mathrm{~F}$)

FIGURE 43. HC4046A VCO POWER DISSIPATION vs R2 (C1 = 50pF, $1 \mu \mathrm{~F}$)
HC/HCT4046A C $\mathbf{P D}$

CHIP SECTION	HC	HCT	UNIT
Comparator 1	48	50	pF
Comparators 2 and 3	39	48	pF
VCO	61	53	pF

Application Information

This information is a guide for the approximation of values of external components to be used with the 'HC4046A and 'HCT4046A in a phase-lock-loop system.

References should be made to Figures 11 through 15 and Figures 27 through 32 as indicated in the table.

Values of the selected components should be within the following ranges:

R1	Between $3 \mathrm{k} \Omega$ and $300 \mathrm{k} \Omega$
R2	Between $3 \mathrm{k} \Omega$ and $300 \mathrm{k} \Omega$
R1 + R2	Parallel Value $>2.7 \mathrm{k} \Omega$
C1	Greater Than 40 pF

SUBJECT	PHASE COMPARATOR	DESIGN CONSIDERATIONS
VCO Frequency Without Extra Offset	PC1, PC2 or PC3	VCO Frequency Characteristic With $\mathrm{R} 2=\infty$ and R 1 within the range $3 \mathrm{k} \Omega<\mathrm{R} 1<300 \mathrm{k} \Omega$, the characteristics of the VCO operation will be as shown in Figures 11-15. (Due to R1, C1 time constant a small offset remains when $\mathrm{R} 2=\infty$.) FIGURE 44. FREQUENCY CHARACTERISTIC OF VCO OPERATING WITHOUT OFFSET: $\mathrm{f}_{\mathrm{o}}=$ CENTER FREQUENCY: $\mathbf{2 f} \mathrm{f}_{\mathrm{L}}=$ FREQUENCY LOCK RANGE
	PC1	Selection of R1 and C1 Given f_{0}, determine the values of R1 and C1 using Figures 11-15
	PC2 or PC3	Given $f_{M A X}$ calculate f_{0} as $f_{M A X} / 2$ and determine the values of $R 1$ and $C 1$ using Figures 11 15. To obtain $2 \mathrm{f}_{\mathrm{L}}: 2 \mathrm{f}_{\mathrm{L}} \approx 1.2\left(\mathrm{~V}_{\mathrm{CC}}-1.8 \mathrm{~V}\right) /(\mathrm{R1C1})$ where valid range of $\mathrm{VCO}_{\text {IN }}$ is $1.1 \mathrm{~V}<\mathrm{VCO}_{\mathrm{IN}}$ $<\mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}$
VCO Frequency with Extra Offset	PC1, PC2 or PC3	VCO Frequency Characteristic With R1 and R2 within the ranges $3 \mathrm{k} \Omega<\mathrm{R} 1<300 \mathrm{k} \Omega, 3 \mathrm{k} \Omega,<\mathrm{R} 2<300 \mathrm{k} \Omega$, the characteristics of the VCO operation will be as shown in Figures 27-32. FIGURE 45. FREQUENCY CHARACTERISTIC OF VCO OPERATING WITH OFFSET: $\mathrm{f}_{\mathrm{o}}=$ CENTER FREQUENCY: $2 \mathrm{f}_{\mathrm{L}}=$ FREQUENCY LOCK RANGE
	PC1, PC2 or PC3	Selection of R1, R2 and C1 Given f_{0} and f_{L}, offset frequency, $f_{\text {MIN }}$, may be calculated from $f_{\text {MIN }} \approx f_{0}-1.6 f_{L}$. Obtain the values of C1 and R2 by using Figures 27-30. Calculate the values of R1 from Figures 31-32.

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A

SUBJECT	PHASE COMPARATOR	DESIGN CONSIDERATIONS
PLL Conditions with No Signal at the SIG ${ }_{\text {IN }}$ Input	PC1	VCO adjusts to f_{o} with $\phi_{\text {DEMOUT }}=90^{\circ}$ and $\mathrm{V}_{\text {VCOIN }}=1 / 2 \mathrm{~V}_{\text {CC }}$ (see Figure 2)
	PC2	VCO adjusts to $\mathrm{f}_{\text {MIN }}$ with $\phi_{\text {DEMOUT }}=-360^{\circ}$ and $\mathrm{V}_{\text {VCOIN }}=0 \mathrm{~V}$ (see Figure 4)
	PC3	VCO adjusts to $\mathrm{f}_{\text {MAX }}$ with $\phi_{\text {DEMOUT }}=360^{\circ}$ and $\mathrm{V}_{\mathrm{VCOIN}}=\mathrm{V}_{\mathrm{CC}}$ (see Figure 6)
PLL Frequency Capture Range	PC1, PC2 or PC3	Loop Filter Component Selection (A) $\tau=\mathbf{R} 3 \times \mathbf{C} 2$ (B) AMPLITUDE CHARACTERISTIC (C) POLE-ZERO DIAGRAM A small capture range $\left(2 f_{C}\right)$ is obtained if $\tau>2 f_{C} \approx 1 / \pi\left(2 \pi f_{L} / \tau \text {. }\right)^{1 / 2}$ FIGURE 46. SIMPLE LOOP FILTER FOR PLL WITHOUT OFFSET
		(A) $\begin{aligned} & \tau 1=R 3 \times C 2 ; \\ & \tau 2=R 4 \times C 2 ; \\ & \tau 3=(R 3+R 4) \times C 2 \end{aligned}$ (B) AMPLITUDE CHARACTERISTIC (C) POLE-ZERO DIAGRAM FIGURE 47. SIMPLE LOOP FILTER FOR PLL WITH OFFSET
PLL Locks on Harmonics at Center Frequency	PC1 or PC3	Yes
	PC2	No
Noise Rejection at Signal Input	PC1	High
	PC2 or PC3	Low
AC Ripple Content when PLL is Locked	PC1	
	PC2	$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{i}}$, small ripple content at QDEMOUT $=0^{\circ}$
	PC3	$\mathrm{f}_{\mathrm{r}}=\mathrm{fSIG}_{\mid \mathrm{N}}$, large ripple content at $\phi_{\text {DEMOUT }}=180^{\circ}$

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)
8 PINS SHOWN

PIMS ${ }^{* *}$	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189 $(4,80)$	0.337 $(8,55)$	0.386 $(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

