

100391

Low Power Single Supply Hex TTL-to-PECL Translator

General Description

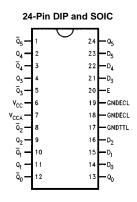
The 100391 is a hex translator for converting TTL logic levels to F100K PECL logic levels. The unique feature of this translator, is the ability to do this translation using only one +5V supply. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. A common enable (E), when LOW, holds all inverting outputs HIGH and all non-inverting inputs LOW.

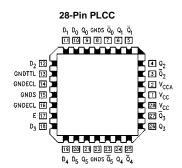
The 100391 is ideal for those mixed PECL/TTL applications which only have +5V supply available. When used in the differential mode, the 100391, due to its high common mode rejection, overcomes voltage gradients between the TTL and PECL ground systems.

Features

- Operates from a single +5V supply
- Differential PECL outputs
- 2000V ESD protection
- Companion chip to 100390 hex PECL-to-TTL translator

July 1992

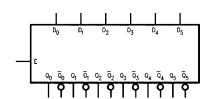

Revised August 2000


Ordering Code:

Order Number	Package Number	Package Description
100391SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100391PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100391QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100391QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

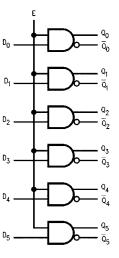
Connection Diagrams



Pin Descriptions

Pin Names	Description
D ₀ - D ₅	Data Inputs (TTL)
$D_0 - D_5$ $Q_0 - Q_5$ $\overline{Q}_0 - \overline{Q}_5$	Data Outputs (PECL)
\overline{Q}_0 - \overline{Q}_5	Inverting Data Outputs (PECL)
Е	Enable Input (TTL)

Logic Symbol


Logic Diagram

Truth Table

Inp	uts	Outputs			
D _n	E	Q _n	\overline{Q}_n		
Н	Н	Н	L		
L	Н	L	Н		
Н	L	L	Н		
L	L	L	Н		

H = HIGH Voltage Level
L = LOW Voltage Level

Absolute Maximum Ratings(Note 1)

 $\begin{tabular}{lll} Storage Temperature (T_{STG}) & -65°C to $+150^{\circ}$C \\ Maximum Junction Temperature (T_{J}) & $+150^{\circ}$C \\ \end{tabular}$

Pin Potential to Ground Pin (V_{CC}) -0.5V to +7.0V

PECL Output Current

(DC Output HIGH) -50 mA

TTL Input Voltage (Note 2) -0.5V to +7.0V TTL Input Current (Note 2) -30 mA to + 5.0 mA

ESD (Last Passing Voltage)

(Note 3) ≥2000V

Recommended Operating Conditions

Case Temperature (T_C)

 $\begin{array}{ccc} & & & & -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C} \\ & & & & \text{Commercial} & 0 ^{\circ} \text{C to } +85 ^{\circ} \text{C} \\ & & \text{Supply Voltage (V}_{\text{CC}}) & 4.5 \text{V to } 5.5 \text{V} \\ \end{array}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

 $\textbf{Note 2:} \ \textbf{Either voltage limit or current limit is sufficient to protect inputs.}$

Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

TTL-to-PECL DC Electrical Characteristics (Note 4)

 $V_{CC} = +5.0V \pm 10\%$, GND = 0V, $T_{C} = 0$ °C to +85°C

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OH}	Output HIGH Voltage	V _{CC} - 1025	V _{CC} - 955	V _{CC} - 870	mV	V _{IN} = V _{IH(max)} or V _{IL (min)}
V _{OL}	Output LOW Voltage	V _{CC} - 1890	V _{CC} - 1705	V _{CC} - 1620	mV	Loading with 50Ω to $V_{CC} - 2V$
V _{OHC}	Output HIGH Voltage	V _{CC} - 1035			mV	
	Corner Point High	V _{CC} - 1035			IIIV	$V_{IN} = V_{IH(min)}$ or $V_{IL (max)}$
V _{OLC}	Output LOW Voltage			V _{CC} – 1610	mV	Loading with 50Ω to $V_{CC} - 2V$
	Corner Point Low			vCC - 1010	IIIV	
V _{IH}	Input HIGH Voltage	2.0		5.0	V	Over V _{TTL} , V _{EE} , T _C Range
V _{IL}	Input LOW Voltage	0		0.8	V	Over V _{TTL} , V _{EE} , T _C Range
I _{IH}	Input LOW Current			10	μΑ	V _{IN} = +2.7V
	Breakdown Test			20	μΑ	$V_{IN} = +5.5V$
I _{IL}	Input LOW Current					
	Dn	-0.8			mA	$V_{IN} = +0.5V$
	E	-4.2				
V _{FCD}	Input Clamp	-1.2			V	I _{IN} = -18 mA
	Diode Voltage	-1.2			V	IN 10 IIIA
I _{CC}	V _{CC} Supply Current	32		69	mA	Inputs OPEN

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PDIP AC Electrical Characteristics

 $V_{CC} = 5.0V \pm 10\%$

Symbol	Parameter	T _C = 0°C		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions
		Min	Max	Min	Max	Min	Max	011110	Conditions
t _{PLH}	Propagation Delay	0.30	1.40	0.35	1.30	0.40	1.30	ns	Figures 1, 2
t _{PHL}	Data to Output	0.50	1.40	0.55	1.50	0.40	1.50	113	riguies 1, 2
t _{PLH}	Propagation Delay	0.40	1.50	0.45	1.40	0.50	1.40	ns	Figures 1, 2
t _{PHL}	Enable to Output	0.40	1.50	0.45	1.40	0.50	1.40	113	1 iguies 1, 2
t _{TLH}	Transition Time	0.35	1.70	0.35	1.70	0.35	1.70	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.33	1.70	0.33	1.70	0.33	1.70	115	rigules 1, 2

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

 $V_{CC} = 5.0V \pm 10\%$

Symbol	Parameter	T _C =	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Conditions
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	0.30	1.40	0.35	1.30	0.40	1.30	ns	
t _{PHL}	Data to Output	0.30	1.40	0.33	1.30	0.40	1.30	115	
t _{PLH}	Propagation Delay	0.40	1.50	0.45	1.40	0.50	1.40	ns	Figures 1, 2
t _{PHL}	Enable to Output	0.40	1.50	0.43	1.40	0.50	1.40	115	rigules 1, 2
t _{TLH}	Transition Time	0.35	1.70	0.35	1.70	0.35	1.70	ns	Ī
t _{THL}	20% to 80%, 80% to 20%	0.55	1.70	0.33	1.70	0.55	1.70	115	
toshl	Maximum Skew Common Edge								
	Output-to-Output Variation		750	750	750		750	ps	PLCC Only (Note 5)
	Data to Output Path								(11010 0)
t _{OSLH}	Maximum Skew Common Edge								
	Output-to-Output Variation		700		700		700	ps	PLCC Only (Note 5)
	Data to Output Path								(11010 0)
t _{OST}	Maximum Skew Opposite Edge								
	Output-to-Output Variation		450		450		450	ps	PLCC Only (Note 5)
	Data to Output Path								(14010-0)
t _{PS}	Maximum Skew								
	Pin (Signal) Transition Variation		525		525		525	ps	PLCC Only (Note 5)
	Data to Output Path								()

Note 5: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

PLCC DC Electrical Characteristics (Note 6)

 $V_{CC} = +5.0V \pm 10\%, \text{ GND} = 0V$

Symbol	Parameter	T _C =	$T_C = -40^{\circ}C$		to +85°C	Units	Conditions
Cyllibol		Min	Max	Min	Max	Omits	Conditions
V _{OH}	Output HIGH Voltage	V _{CC} - 1085	V _{CC} - 870	V _{CC} - 1025	V _{CC} - 870	mV	V _{IN} = V _{IH(max)} or V _{IL (min)}
V _{OL}	Output LOW Voltage	V _{CC} - 1830	V _{CC} – 1575	V _{CC} - 1830	V _{CC} – 1620	mV	Loading with 50Ω to V_{CC} – $2V$
V _{OHC}	Output HIGH Voltage	V _{CC} – 1095		V _{CC} – 1035		mV	$V_{IN} = V_{IH(min)}$ or $V_{IL(max)}$ Loading with 50Ω to $V_{CC} - 2V$
V _{OLC}	Output LOW Voltage		V _{CC} – 1565		V _{CC} – 1610	mV	
V _{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	
V _{IL}	Input LOW Voltage	0	0.8	0	0.8	V	
V _{IH}	Input HIGH Current		10		10	μΑ	$V_{IN} = +2.7V$
	Breakdown Test		20		20	μΑ	V _{IN} = +5.5V
I _{IL}	Input LOW Current						
	D _n	-0.8		-0.8		mV	$V_{IN} = +0.5V$
	E	-4.2		-4.2			
V _{FCD}	Input Clamp Diode Voltage	-1.2		-1.2		V	I _{IN} = -18 mA
I _{CC}	V _{CC} Supply Current	29	69	29	69	mA	Inputs OPEN

Note 6: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $V_{CC} = +5.0V \pm 10\%, \text{ GND} = 0V$

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max	Offics	Conditions
t _{PLH}	Propagation Delay Data to Output	0.20	1.50	0.35	1.30	0.40	1.30	ns	
t _{PLH}	Propagation Delay	0.35	1.60	0.45	1.40	0.50	1.40	ns	Figures 1, 2
t _{PHL}	Enable to Output	0.33	1.60	0.45	1.40	0.50	1.40	115	Figures 1, 2
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.35	1.70	0.35	1.70	0.35	1.70	ns	

Switching Waveforms

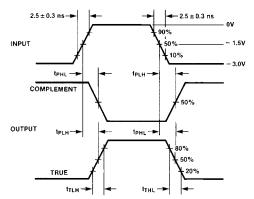


FIGURE 1. Propagation Delay, Cut-Off and Transition Times

Test Circuit

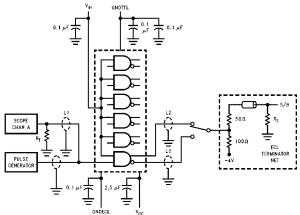
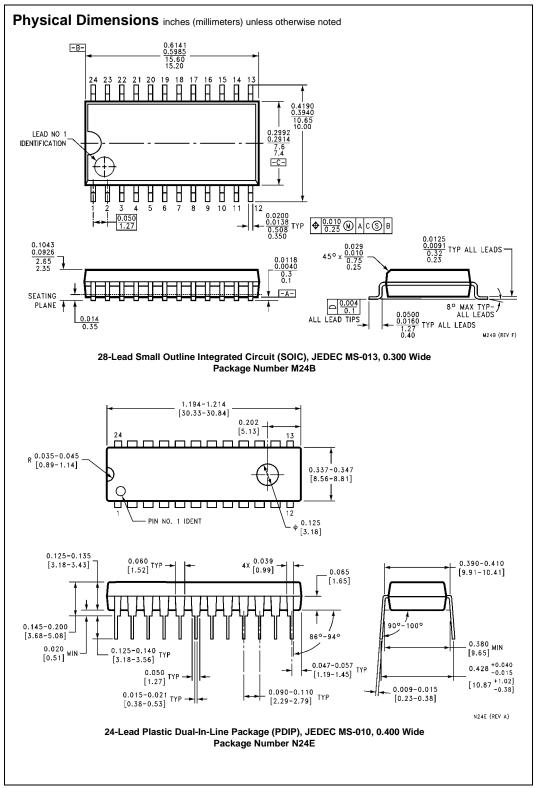


FIGURE 2. AC Test Circuit

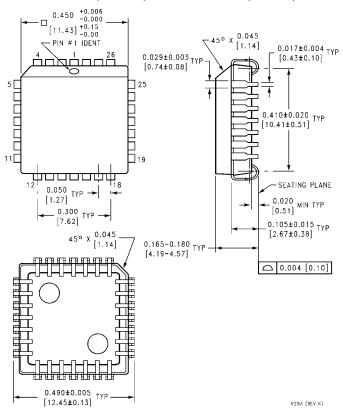
Notes:

 $V_{CC} = V_{CCA} = +2V$, GNDPECL = GNGTTL = 30.V

 $V_{IH}=0V,\ V_{IL}=-3V$


L1, L2 and L3 = equal length 50Ω impedance lines

 $R_{T}=50\Omega$ terminator internal to scope


Decoupling 0.1 μF from GND to $V_{\text{CC}},\,V_{\text{EE}}$ and V_{TTL}

All unused outputs are loaded with 50Ω to GND

 $C_L = Fixture and stray capacitance \le 3 pF$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com